Co-consumption of Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort of Adults from Alberta’s Tomorrow Project
Abstract
:1. Introduction
2. Materials and Methods
3. Data Analyses
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Continuous Update Project Report: Diet, Nutrition, Physical Activity and Cancer: A Global Perspective (Third Expert Report Edition). Available online: https://www.wcrf.org/dietandcancer (accessed on 27 June 2020).
- Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Andrews, K.G.; Engell, R.E.; Mozaffarian, D. Global, regional and national consumption of major food groups in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 2015, 5, e008705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Truswell, A.S. Problems with red meat in the WCRF2. Am. J. Clin. Nutr. 2009, 89, 1274–1275. [Google Scholar] [CrossRef]
- Lauber, S.N.; Gooderharn, N.J. The cooked meat-derived genotoxic carcinogen 2-Amino-3-Methylimidazo 4,5-b Pyridine has potent hormone-like activity: Mechanistic support for a role in breast cancer. Cancer Res. 2007, 67, 9597–9602. [Google Scholar] [CrossRef] [Green Version]
- Sanz Alaejos, M.; Afonso, A.M. Factors That Affect the Content of Heterocyclic Aromatic Amines in Foods. Compr. Rev. Food Sci. Food Saf. 2011, 10, 52–108. [Google Scholar] [CrossRef]
- Alomirah, H.; Al-Zenki, S.; Al-Hooti, S.; Zaghloul, S.; Sawaya, W.; Ahmed, N.; Kannan, K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 2011, 22, 2028–2035. [Google Scholar] [CrossRef]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono114.pdf (accessed on 27 June 2020).
- Norat, T.; Scoccianti, C.; Boutron-Ruault, M.C.; Anderson, A.; Berrino, F.; Cecchini, M.; Espina, C.; Key, T.; Leitzmann, M.; Powers, H.; et al. European Code against Cancer 4th Edition: Diet and cancer. Cancer Epidemiol. 2015, 39, S56–S66. [Google Scholar] [CrossRef] [Green Version]
- Robson, P.J.; Solbak, N.M.; Haig, T.R.; Whelan, H.K.; Vena, J.E.; AK, A.; Rosner, W.K.; Darren, R.; Brenner, D.R.; Cook, L.S.; et al. Cohort profile: Design, methods, and demographics from phase I of Alberta’s Tomorrow Project cohort. CMAJ Open 2016, 4, E515–E527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, H.; Robson, P.; Ullman, R.; Friedenreich, C.M.; Dawe, U. Population-based cohort development in Alberta, Canada: A feasibility study. Chronic Dis. Can. 2006, 27, 55–63. [Google Scholar]
- North American Association of Central Cancer Registries—Certification Levels. Available online: https://www.naaccr.org/Certification/CertificationLevels.aspx (accessed on 20 September 2016).
- National Institutes of Health. Diet History Questionnaire; National Institutes of Health: Washington, DC, USA, 2007. Available online: hAttp://epi.grants.cancer.gov/DHQ/ (accessed on 30 August 2016).
- Csizmadi, I.; Boucher, B.; Lo Siou, G.; Massarrelli, I.; Rondeau, I.; Garriguet, D.; Koushik, A.; Elenko, J.; Subar, A.F. Using national dietary intake data to evaluate and adapt the US Diet History Questionnaire: The stepwise tailoring of an FFQ for Canadian use. Public Health Nutr. 2016, 28, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csizmadi, I.; Kahle, L.; Ullman, R.; Dawe, U.; Zimmerman, T.P.; Friedenreich, C.M.; Bryant, H.; Subar, A.F. Adaptation and evaluation of the National Cancer Institute’s Diet History Questionnaire and nutrient database for Canadian populations. Public Health Nutr. 2007, 10, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Canada. Eating Well with Canada’s Food Guide. Available online: https://www.canada.ca/en/health-canada/services/canada-food-guides.html (accessed on 27 June 2020).
- Canadian Cancer Society. Eat well. Available online: https://www.cancer.ca/en/prevention-and-screening/reduce-cancer-risk/make-healthy-choices/eat-well/?region=on (accessed on 27 June 2020).
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 27 June 2020).
- Oladimeji, O. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study. 2015. Lancet 2016, 388, 1659–1724. [Google Scholar]
- Aune, D.; Chan, D.S.M.; Vieira, A.R.; Rosenblatt, D.A.N.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat intake and risk of colorectal adenomas: A systematic review and meta-analysis of epidemiological studies. Cancer Causes Control 2013, 24, 611–627. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.S.M.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and Processed Meat and Colorectal Cancer Incidence: Meta-Analysis of Prospective Studies. PLoS ONE 2011, 66, e20456. [Google Scholar] [CrossRef] [Green Version]
- Friedenreich, C.M.; Courneya, K.S.; Neilson, H.K.; Matthews, C.E.; Willis, G.; Irwin, M.; Troiano, R.; Ballard-Barbash, R. Reliability and validity of the Past Year Total Physical Activity Questionnaire. Am. J. Epidemiol. 2006, 163, 959–970. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Zhou, B.; Latouche, A.; Rocha, V.; Fine, J. Competing risks regression for stratified data. Biometrics 2011, 67, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Zhou, B.; Fine, J.; Laird, G. Goodness-of-fit test for proportional subdistribution hazards model. Stat. Med. 2013, 32, 3804–3811. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Lee, D.S.; Fine, J.P. Introduction to the Analysis of Survival Data in the Presence of Competing Risks. Circulation 2016, 133, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Hutton, J.L.; Monaghan, P.F. Choice of parametric accelerated life and proportional hazards models for survival data: Asymptotic results. Lifetime Data Anal. 2002, 8, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Bagdonavicius, V.; Nikulin, M. Accelerated Life Models. Modeling and Statistical Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Orbe, J.; Ferreira, E.; Nunez-Anton, V. Comparing proportional hazards and accelerated failure time models for survival analysis. Stat. Med. 2002, 21, 3493–3510. [Google Scholar] [CrossRef] [PubMed]
- Swindell, W.R. Accelerated failure time models provide a useful statistical framework for aging research. Exp. Gerontol. 2009, 44, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Ning, J.; Qin, J. Analyzing Length-biased Data with Semiparametric Transformation and Accelerated Failure Time Models. J. Am. Stat. Assoc. 2009, 104, 1192–1202. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. Survival Analysis: Models and Applications; John Wiley & Sons Ltd: Chichester, UK; Higher Education Press: Beijing, China, 2012. [Google Scholar]
- Diallo, A.; Deschasaux, M.; Latino-Martel, P.; Hercberg, S.; Galan, P.; Fassier, P.; Alles, B.; Gueraud, F.; Pierre, F.H.; Touvier, M. Red and processed meat intake and cancer risk: Results from the prospective NutriNet-Sante cohort study. Int. J. Cancer 2018, 142, 230–237. [Google Scholar] [CrossRef]
- Arthur, R.; Kirsh, V.A.; Kreiger, N.; Rohan, T. A healthy lifestyle index and its association with risk of breast, endometrial, and ovarian cancer among Canadian women. Cancer Causes Control 2018, 29, 485–493. [Google Scholar] [CrossRef]
- Romaguera, D.; Vergnaud, A.C.; Peeters, P.H.; van Gils, C.H.; Chan, D.S.; Ferrari, P.; Romieu, I.; Jenab, M.; Slimani, N.; Clavel-Chapelon, F.; et al. Is concordance with World Cancer Research Fund/American Institute for Cancer Research guidelines for cancer prevention related to subsequent risk of cancer? Results from the EPIC study. Am. J. Clin. Nutr. 2012, 96, 150–163. [Google Scholar] [CrossRef]
- Leroy, F.; Cofnas, N. Should dietary guidelines recommend low red meat intake? Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [Green Version]
- Fraser, G.E. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am. J. Clin. Nutr. 1999, 70, 532S–538S. [Google Scholar] [CrossRef]
- Key, T.J.; Appleby, P.N.; Spencer, E.A.; Travis, R.C.; Roddam, A.W.; Allen, N.E. Cancer incidence in vegetarians: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am. J. Clin. Nutr. 2009, 89, S1620–S1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oostindjer, M.; Alexander, J.; Amdam, G.V.; Andersen, G.; Bryan, N.S.; Chen, D.; Corpet, D.E.; De Smet, S.; Dragsted, L.O.; Haug, A.; et al. The role of red and processed meat in colorectal cancer development: A perspective. Meat Sci. 2014, 97, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Roser, M. Meat and Dairy Production. Available online: https://ourworldindata.org/meat-production (accessed on 27 June 2020).
- Zhang, F.F.; Cudhea, F.; Shan, Z.; Michaud, D.S.; Imamura, F.; Eom, H.; Ruan, M.; Rehm, C.D.; Liu, J.; Du, M.; et al. Preventable Cancer Burden Associated With Poor Diet in the United States. JNCI Cancer Spectr. 2019, 3, pkz034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Position of the American Dietetic Association and Dietitians of Canada: Vegetarian Diets. Can. J. Diet. Pract. Res. 2003, 64, 62–81. [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, N. Cutting Europe’s meat and dairy consumption would benefit health and environment, says report. Br. Med. J. 2014, 348, g2949. [Google Scholar] [CrossRef]
- Zeng, L.; Ruan, M.; Liu, J.; Wilde, P.; Naumova, E.N.; Mozaffarian, D.; Zhang, F.F. Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the United States, 1999–2016. J. Acad. Nutr. Diet. 2019, 119, 1085–1098. [Google Scholar] [CrossRef]
- Tugault-Lafleur, C.N.; Black, J.L. Differences in the Quantity and Types of Foods and Beverages Consumed by Canadians between 2004 and 2015. Nutrients 2019, 11, 526. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Siegel, R.L.; Rosenberg, P.S.; Jemal, A. Emerging cancer trends among young adults in the USA: Analysis of a population-based cancer registry. Lancet Public Health 2019, 4, e137–e147. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.R.; Ruan, Y.; Shaw, E.; O’Sullivan, D.; Poirier, A.E.; Heer, E.; Villeneuve, P.J.; Walter, S.D.; Friedenreich, C.M.; Smith, L.; et al. Age-standardized cancer-incidence trends in Canada, 1971–2015. Can. Med. Assoc. 2019, 191, E1262–E1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; De, P. Trends in colorectal cancer incidence and related lifestyle risk factors in 15–49-year-olds in Canada, 1969-2010. Cancer Epidemiol. 2016, 42, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.D.; Cushing, C.A. Red meat and colorectal cancer: A critical summary of prospective epidemiologic studies. Obes. Rev. 2011, 12, e472–e493. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.D.; Weed, D.L.; Cushing, C.A.; Lowe, K.A. Meta-analysis of prospective studies of red meat consumption and colorectal cancer. Eur. J. Cancer Prev. 2011, 20, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Arab, L.; Su, J.; Steck, S.E.; Ang, A.; Fontham, E.T.H.; Bensen, J.T.; Mohler, J.L. Adherence to World Cancer Research Fund/American Institute for Cancer Research Lifestyle Recommendations Reduces Prostate Cancer Aggressiveness among African and Caucasian Americans. Nutr. Cancer Int. J. 2013, 65, 633–643. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Red and processed meat consumption and risk of pancreatic cancer: Meta-analysis of prospective studies. Br. J. Cancer 2012, 106, 603–607. [Google Scholar] [CrossRef]
- Kim, E.; Coelho, D.; Blachier, F. Review of the association between meat consumption and risk of colorectal cancer. Nutr. Res. 2013, 33, 983–994. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, Q.; Yin, Z.; Shuang, J.; Bai, B.; Yu, P.; Guo, M.; Zhao, Q. Red and processed meat consumption and colorectal cancer risk: A systematic review and meta-analysis. Oncotarget 2017, 8, 83306–83314. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; et al. Food groups and risk of colorectal cancer. Int. J. Cancer 2018, 142, 1748–1758. [Google Scholar] [CrossRef] [Green Version]
- Zeraatkar, D.; Johnston, B.C.; Bartoszko, J.; Cheung, K.; Bala, M.M.; Valli, C.; Rabassa, M.; Sit, D.; Milio, K.; Sadeghirad, B.; et al. Effect of Lower versus Higher Red Meat Intake on Cardiometabolic and Cancer Outcomes: A Systematic Review of Randomized Trials. Ann. Intern. Med. 2019, 171, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Vernooij, R.W.M.; Zeraatkar, D.; Han, M.A.; El Dib, R.; Zworth, M.; Milio, K.; Sit, D.; Lee, Y.; Gomaa, H.; Valli, C.; et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.A.; Zeraatkar, D.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Zhang, Y.; Algarni, A.; Leung, G.; Storman, D.; Valli, C.; et al. Reduction of Red and Processed Meat Intake and Cancer Mortality and Incidence: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catsburg, C.; Kim, R.S.; Kirsh, V.A.; Soskolne, C.L.; Kreiger, N.; Rohan, T.E. Dietary patterns and breast cancer risk: A study in 2 cohorts. Am. J. Clin. Nutr. 2015, 101, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Wang, P.P.; Woodrow, J.; Zhu, Y.; Roebothan, B.; McLaughlin, J.R.; Parfrey, P.S. Dietary patterns and colorectal cancer: Results from a Canadian population-based study. Nutr. J. 2015, 14, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Wu, H.; Wang, P.P.; Savas, S.; Woodrow, J.; Wish, T.; Jin, R.; Green, R.; Woods, M.; Roebothan, B.; et al. Dietary patterns and colorectal cancer recurrence and survival: A cohort study. BMJ Open 2013, 3, e002270. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and beverages and colorectal cancer risk: A systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Makarem, N.; Nicholson, J.M.; Bandera, E.V.; McKeown, N.M.; Parekh, N. Consumption of whole grains and cereal fiber in relation to cancer risk: A systematic review of longitudinal studies. Nutr. Rev. 2016, 74, 353–373. [Google Scholar] [CrossRef] [Green Version]
- Statistics Canada. Canadian Community Health Survey: Overview of Canadians’ Eating Habits. 2006. Available online: http://www.statcan.gc.ca/daily-quotidien/060706/dq060706b-eng.htm (accessed on 9 September 2016).
- Cancer Care Ontario. Cancer Risk Factors in Ontario: Healthy Weights, Healthy Eating and Active Living. Available online: www.cancercare.on.ca/healthylivingreport (accessed on 8 September 2016).
- Liese, A.D.; Krebs-Smith, S.M.; Subar, A.F.; George, S.M.; Harmon, B.E.; Neuhouser, M.L.; Boushey, C.J.; Schap, T.E.; Reedy, J. The Dietary Patterns Methods Project: Synthesis of findings across cohorts and relevance to dietary guidance. J. Nutr. 2015, 145, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Carroll, R.J.; Midthune, D.; Subar, A.F.; Shumakovich, M.; Freedman, L.S.; Thompson, F.E.; Kipnis, V. Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am. J. Epidemiol. 2012, 175, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Shimazu, T.; Ishihara, J.; Takachi, R.; Mizoue, T.; Inoue, M.; Tsugane, S. Reproducibility and validity of dietary patterns assessed by a food frequency questionnaire used in the 5-year follow-up survey of the Japan Public Health Center-Based Prospective Study. J. Epidemiol. 2012, 22, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimokoti, R.W.; Newby, P.K.; Gona, P.; Zhu, L.; Campbell, W.R.; D’Agostino, R.B.; Millen, B.E. Stability of the Framingham Nutritional Risk Score and its component nutrients over 8 years: The Framingham Nutrition Studies. Eur. J. Clin. Nutr. 2012, 66, 336–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebagliato, M. Validation of self reported smoking. J. Epidemiol. Commun. Health 2002, 56, 163–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, C.M.; Russell, A.J.; Rubin, G.P. Patient delay in cancer diagnosis: What do we really mean and can we be more specific? BMC Health Serv. Res. 2014, 14, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabat, G.; Matthews, C.; Kamensky, V.; Hollenbeck, A.; Rohan, T. Adherence to cancer prevention guidelines and cancer incidence, cancer mortality, and total mortality: A prospective cohort study. Am. J. Clin. Nutr. 2015, 101, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Poirier, A.E.; Hebert, L.A.; Grevers, X.; Walter, S.D.; Villeneuve, P.J.; Brenner, D.R.; Friedenreich, C.M.; ComPARe Study Team. Estimates of the current and future burden of cancer attributable to red and processed meat consumption in Canada. Prev. Med. 2019, 122, 31–39. [Google Scholar] [CrossRef]
Men | Women | Total | |
---|---|---|---|
(n = 9825) | (n = 16,393) | (n = 26,218) | |
% or Mean (SD) | % or Mean (SD) | % or Mean (SD) | |
Age at enrollment, years | 50.5 (9.2) | 50.3 (9.2) | 50.4 (9.2) |
Family history of cancer * | 50.2 | 53.9 | 52.5 |
Personal history of chronic disease * a | 50.6 | 44.6 | 46.8 |
Geographic location * | |||
Urban | 77.5 | 75.9 | 76.5 |
Rural | 22.5 | 24.1 | 23.5 |
Educational attainment * | |||
High school or less | 25.0 | 29.8 | 28.0 |
Technical, college, some university | 47.2 | 46.7 | 46.8 |
University and postgraduate | 27.8 | 23.7 | 25.3 |
Annual household income * | |||
≤$39,999 | 15.4 | 24.5 | 21.7 |
$40,000–$69,999 | 28.1 | 27.2 | 27.6 |
≥$70,000 | 55.1 | 44.4 | 48.4 |
Smoking status * | |||
Current smoker | 18.1 | 17.2 | 17.5 |
Former smoker | 39.8 | 36.3 | 37.6 |
Never smoked | 42.0 | 46.5 | 44.8 |
Alcohol intake, drinks/day * | 1.3 (3.4) | 0.5 (1.5) | 0.8 (2.4) |
Weight status * | |||
Normal weight (<25 kg/m2) | 23.1 | 39.3 | 34.0 |
Overweight (25–30 kg/m2) | 49.7 | 33.7 | 39.7 |
Obese (>30 kg/m2) | 27.0 | 25.5 | 26.0 |
Body Mass Index, kg/m2* | 28.1 (4.4) | 27.3 (5.9) | 27.6 (5.4) |
Moderate or vigorous physical activity, MET-hours/week * b | 20.4 (24.8) | 15.5 (20.9) | 17.3 (22.6) |
Total energy intake, kcal/day * | 2235 (1017) | 1641 (668) | 1863 (866) |
Dietary intake | |||
Red meat, gram/week * | 461.4 (347.5) | 262.9 (191.9) | 337.3 (278.4) |
Processed meat, gram/week * | 172.6 (170.4) | 85.9 (93.3) | 118.4 (134.5) |
Vegetables and fruit, serving/day * | 4.3 (2.9) | 4.9 (3.2) | 4.7 (3.1) |
Whole grains, serving/day * | 1.3 (1.0) | 1.0 (0.7) | 1.1 (0.8) |
Fiber, gram/week * | 157.3 (71.5) | 136 (61.4) | 144 (61.1) |
Cancer incidence | |||
All-cause cancers * c | 11.0 | 8.9 | 9.7 |
15 cancers* d | 9.6 | 7.7 | 8.4 |
Gastrointestinal (GI) cancers * e | 2.0 | 1.3 | 1.5 |
Colorectal cancers * f | 1.2 | 0.9 | 1.0 |
All-cause mortality * | 3.7 | 2.4 | 2.9 |
All-Cause Cancers b | 15 Cancers c | |||||
---|---|---|---|---|---|---|
Vegetables and Fruit (Serving/Day) d | Vegetables and Fruit (Serving/Day) d | |||||
<55 years: <4 | <55 years: 4–6 | <55 years: >6 | <55 years: <4 | <55 years: 4–6 | <55 years: >6 | |
≥55 years: <3 | ≥55 years: 3–5 | ≥55 years: >5 | ≥55 years: <3 | ≥55 years: 3–5 | ≥55 years: >5 | |
Red meat (gram/week) e | ||||||
<250 | 1.04 (0.79–1.36) | 1.02 (0.89–1.17) | Ref. | 0.97 (0.73–1.30) | 0.99 (0.85–1.14) | Ref. |
250–500 | 1.17 (0.92–1.47) | 1.01 (0.85–1.21) | 0.88 (0.76–1.02) | 1.18 (0.92–1.52) | 1.01 (0.84–1.22) | 0.86 (0.73–1.02) |
>500 | 1.31 (1.02–1.69) | 1.01 (0.79–1.29) | 0.78 (0.57–1.05) | 1.44 (1.10–1.88) | 1.04 (0.79–1.35) | 0.75 (0.54–1.04) |
Processed meat (gram/week) f | ||||||
<42 | 1.56 (1.13–2.16) | 1.25 (1.06–1.47) | Ref. | 1.53 (1.08–2.16) | 1.24 (1.04–1.47) | Ref. |
42–168 | 1.73 (1.32–2.26) | 1.49 (1.22–1.83) | 1.29 (1.09–1.52) | 1.68 (1.26–2.24) | 1.43 (1.15–1.77) | 1.21 (1.02–1.45) |
>168 | 1.91 (1.45–2.51) | 1.78 (1.35–2.35) | 1.66 (1.19–2.31) | 1.85 (1.38–2.48) | 1.65 (1.23–2.22) | 1.47 (1.04–2.09) |
Whole grains (serving/day) g | Whole grains (serving/day) g | |||||
<0.75 | 0.75–1.5 | >1.5 | <0.75 | 0.75–1.5 | >1.5 | |
Red meat (gram/week) | ||||||
<250 | 1.22 (0.94–1.58) | 1.11 (0.972–1.26) | Ref. | 1.30 (0.99–1.71) | 1.14 (0.99–1.31) | Ref. |
250–500 | 1.10 (0.90–1.36) | 1.12 (0.96–1.31) | 1.14 (1.00–1.30) | 1.25 (1.00–1.56) | 1.20 (1.02–1.42) | 1.17 (1.01–1.34) |
>500 | 1.00 (0.79–1.27) | 1.14 (0.92–1.41) | 1.30 (1.00–1.68) | 1.19 (0.92–1.54) | 1.27 (1.01–1.61) | 1.36 (1.03–1.80) |
Processed meat (gram/week) | ||||||
<42 | 0.90 (0.67–1.22) | 0.95 (0.82–1.10) | Ref. | 0.91 (0.66–1.26) | 0.95 (0.81–1.12) | Ref. |
42–168 | 1.11 (0.87–1.40) | 1.13 (0.95–1.35) | 1.16 (1.01–1.33) | 1.14 (0.88–1.47) | 1.11 (0.92–1.34) | 1.09 (0.93–1.26) |
>168 | 1.36 (1.05–1.75) | 1.35 (1.06–1.72) | 1.34 (1.02–1.77) | 1.41 (1.08–1.86) | 1.29 (0.99–1.68) | 1.18 (0.87–1.60) |
Fiber (gram/week) h | Fiber (gram/week) h | |||||
<117 | 117–150 | >150 | <117 | 117–150 | >150 | |
Red meat (gram/week) | ||||||
<250 | 1.39 (1.10–1.77) | 1.18 (1.05–1.33) | Ref. | 1.24 (0.96–1.60) | 1.11 (0.98–1.27) | Ref. |
250–500 | 1.28 (1.04–1.58) | 1.18 (1.02–1.37) | 1.09 (0.97–1.23) | 1.33 (1.07–1.66) | 1.19 (1.02–1.38) | 1.06 (0.93–1.20) |
>500 | 1.18 (0.90–1.539) | 1.19 (0.96–1.46) | 1.19 (0.94–1.52) | 1.43 (1.08–1.90) | 1.26 (1.01–1.58) | 1.11 (0.86–1.44) |
Processed meat (gram/week) | ||||||
<42 | 1.42 (1.07–1.89) | 1.19 (1.03–1.37) | Ref. | 1.30 (0.96–1.76) | 1.14 (0.98–1.33) | Ref. |
42–168 | 1.53 (1.22–1.92) | 1.40 (1.19–1.65) | 1.27 (1.12–1.45) | 1.47 (1.15–1.87) | 1.31 (1.10–1.56) | 1.17 (1.02–1.35) |
>168 | 1.65 (1.28–2.14) | 1.64 (1.30–2.06) | 1.62 (1.25–2.11) | 1.66 (1.26–2.18) | 1.51 (1.18–1.93) | 1.38 (1.04–1.82) |
All-Cause Cancers b | 15 Cancers c | |||||
---|---|---|---|---|---|---|
Vegetables and Fruit (Serving/Day) d | Vegetables and Fruit (Serving/Day) d | |||||
<3 | 3–5 | >5 | <3 | 3–5 | >5 | |
Red meat (gram/week) e | ||||||
<150 | 1.02 (0.83–1.25) | 1.01 (0.91–1.12) | Ref. | 0.94 (0.76–1.17) | 0.97 (0.87–1.08) | Ref. |
150–300 | 1.06 (0.90–1.27) | 1.00 (0.88–1.13) | 0.93 (0.84–1.04) | 1.02 (0.84–1.22) | 0.96 (0.83–1.09) | 0.90 (0.80–1.01) |
>300 | 1.12 (0.91–1.37) | 0.99 (0.82–1.18) | 0.87 (0.70–1.08) | 1.09 (0.87–1.37) | 0.94 (0.78–1.14) | 0.81 (0.64–1.02) |
Processed meat (gram/week) f | ||||||
<28 | 1.13 (0.90–1.43) | 1.06 (0.95–1.20) | Ref. | 1.07 (0.84–1.38) | 1.036 (0.91–1.17) | Ref. |
28–112 | 1.28 (1.07–1.53) | 1.21 (1.06–1.39) | 1.15 (1.02–1.29) | 1.26 (1.04–1.54) | 1.21 (1.05–1.40) | 1.16 (1.02–1.31) |
>112 | 1.44 (1.17–1.77) | 1.38 (1.14–1.67) | 1.32 (1.05–1.67) | 1.49 (1.19–1.86) | 1.41 (1.15–1.73) | 1.34 (1.04–1.72) |
Whole grains (serving/day) g | Whole grains (serving/day) g | |||||
<0.6 | 0.6–1.1 | >1.1 | <0.6 | 0.6–1.1 | >1.1 | |
Red meat (gram/week) | ||||||
<150 | 0.90 (0.73–1.10) | 0.95 (0.86–1.05) | Ref. | 1.00 (0.81–1.25) | 1.00 (0.90–1.12) | Ref. |
150–300 | 0.95 (0.80–1.12) | 0.93 (0.82–1.05) | 0.92 (0.82–1.02) | 1.06 (0.88–1.26) | 0.97 (0.85–1.11) | 0.90 (0.80–1.01) |
>300 | 1.00 (0.82–1.21) | 0.91 (0.77–1.09) | 0.84 (0.68–1.05) | 1.11 (0.91–1.37) | 0.95 (0.78–1.14) | 0.81 (0.64–1.02) |
Processed meat (gram/week) | ||||||
<28 | 0.94 (0.75–1.18) | 0.97 (0.87–1.08) | Ref. | 1.07 (0.83–1.36) | 1.03 (0.91–1.17) | Ref. |
28–112 | 1.12 (0.94–1.35) | 1.11 (0.97–1.27) | 1.10 (0.97–1.23) | 1.30 (1.07–1.58) | 1.21 (1.05–1.40) | 1.12 (0.99–1.27) |
>112 | 1.34 (1.09–1.66) | 1.27 (1.05–1.54) | 1.20 (0.95–1.52) | 1.59 (1.27–1.99) | 1.42 (1.16–1.74) | 1.26 (0.98–1.62) |
Fiber (gram/week) h | Fiber (gram/week) h | |||||
<110 | 110–161 | >161 | <110 | 110–161 | >161 | |
Red meat (gram/week) | ||||||
<150 | 1.11 (0.88–1.39) | 1.05 (0.94–1.18) | Ref. | 1.01 (0.79–1.30) | 1.01 (0.89–1.14) | Ref. |
150–300 | 1.13 (0.93–1.38) | 1.02 (0.89–1.18) | 0.93 (0.83–1.04) | 1.03 (0.84–1.28) | 0.98 (0.84–1.13) | 0.93 (0.82–1.05) |
>300 | 1.15 (0.93–1.43) | 1.00 (0.83–1.21) | 0.87 (0.69–1.09) | 1.05 (0.83–1.33) | 0.95 (0.78–1.17) | 0.861 (0.67–1.10) |
Processed meat (gram/week) | ||||||
<28 | 1.27 (0.99–1.62) | 1.13 (1.00–1.27) | Ref. | 1.1 (0.85–1.43) | 1.05 (0.92–1.20) | Ref. |
28–112 | 1.38 (1.12–1.69) | 1.28 (1.11–1.49) | 1.19 (1.05–1.36) | 1.26 (1.01–1.57) | 1.228 (1.05–1.44) | 1.20 (1.04–1.38) |
>112 | 1.50 (1.20–1.87) | 1.46 (1.19–1.79) | 1.43 (1.10–1.85) | 1.44 (1.14–1.82) | 1.44 (1.15–1.79) | 1.433 (1.08–1.90) |
All-Cause Cancers b | 15 Cancers c | ||||||
---|---|---|---|---|---|---|---|
Vegetables and Fruit (Serving/Day) d | Vegetables and Fruit (Serving/Day) d | ||||||
<55 years: <4 | <55 years: 4–6 | <55 years: >6 | <55 years: <4 | <55 years: 4–6 | <55 years: >6 | ||
≥55 years: <3 | ≥55 years: 3–5 | ≥55 years: >5 | ≥55 years: <3 | ≥55 years: 3–5 | ≥55 years: >5 | ||
Red meat (gram/week) e | |||||||
<250 | 72.55 (70.80–74.34) | 75.82 (73.68–78.02) | 75.82 (73.51–78.21) | 75.10 (73.08–77.18) | 78.52 (76.03–81.08) | 77.93 (75.29–80.66) | |
250–500 | 71.20 (69.61–72.83) | 74.05 (72.22–75.93) | 74.4 (72.37–76.49) | 73.64 (71.79–75.54) | 76.19 (74.09–78.36) | 77.62 (75.20–80.11) | |
>500 | 70.34 (68.66–72.05) | 74.16 (72.17–76.20) | 75.08 (73.05–77.16) | 72.21 (70.30–74.17) | 77.09 (74.75–79.51) | 77.84 (75.48–80.27) | |
Processed meat (gram/week) f | |||||||
<42 | 73.59 (71.36–75.89) | 76.28 (73.53–79.12) | 77.57 (74.51–80.75) | 75.99 (73.41–78.66) | 78.06 (74.99–81.25) | 80.37 (76.80–84.10) | |
42–168 | 71.00 (69.49–72.53) | 74.59 (72.82–76.40) | 75.31 (73.37–77.30) | 73.34 (71.60–75.13) | 76.87 (74.83–78.97) | 78.32 (76.04–80.67) | |
>168 | 71.03 (69.38–72.73) | 73.81 (71.93–75.73) | 73.81 (71.90–75.77) | 73.26 (71.35–75.22) | 77.02 (74.79–79.32) | 76.44 (74.22–78.73) | |
Whole grains (serving/day) g | Whole grains (serving/day) g | ||||||
<0.75 | 0.75–1.5 | >1.5 | <0.75 | 0.75–1.5 | >1.5 | ||
Red meat (gram/week) | |||||||
<250 | 73.48 (71.52–75.50) | 75.12 (73.01–77.29) | 75.38 (73.35–77.46) | 76.19 (73.91–78.54) | 77.90 (75.44–80.43) | 77.74 (75.41–80.14) | |
250–500 | 72.23 (70.34–74.17) | 73.17 (71.40–74.97) | 73.62 (71.86–75.43) | 74.66 (72.48–76.90) | 75.60 (73.56–77.70) | 76.56 (74.47–78.70) | |
>500 | 72.55 (70.62–74.53) | 71.93 (70.00–73.91) | 73.96 (72.11–75.86) | 74.59 (72.40–76.85) | 74.67 (72.42–77.00) | 76.56 (74.40–78.78) | |
Processed meat (gram/week) | |||||||
<42 | 75.01 (72.46–77.64) | 76.78 (73.94–79.74) | 75.65 (73.10–78.29) | 77.79 (74.82–80.87) | 79.06 (75.80–82.46) | 77.67 (74.78–80.66) | |
42–168 | 72.80 (71.06–74.58) | 73.09 (71.41–74.80) | 73.78 (72.08–75.52) | 75.08 (73.07–77.13) | 75.70 (73.75–77.71) | 76.43 (74.44–78.47) | |
>168 | 71.30 (69.44–73.22) | 72.32 (70.44–74.24) | 74.00 (72.26–75.79) | 73.61 (71.47–75.82) | 74.98 (72.79–77.23) | 76.87 (74.82–78.98) | |
Fiber (gram/week) h | Fiber (gram/week) h | ||||||
<117 | 117–150 | >150 | <117 | 117–150 | >150 | ||
Red meat (gram/week) | |||||||
<250 | 73.85 (71.90–75.84) | 73.40 (71.11–75.75) | 75.93 (73.89–78.02) | 76.26 (74.02–78.57) | 76.04 (73.4–78.78) | 78.15 (75.82–80.55) | |
250–500 | 72.52 (70.56–74.54) | 72.65 (70.71–74.65) | 73.44 (71.8–75.11) | 74.93 (72.66–77.27) | 74.72 (72.5–77) | 76.19 (74.27–78.15) | |
>500 | 71.72 (69.35–74.18) | 71.9 (69.69–74.17) | 73.69 (72.00–75.41) | 73.25 (70.62–75.99) | 73.5 (71.04–76.05) | 76.72 (74.74–78.76) | |
Processed meat (gram/week) | |||||||
<42 | 75.53 (72.93–78.21) | 72.66 (69.87–75.57) | 77.68 (75.05–80.40) | 78.43 (75.38–81.60) | 74.10 (70.99–77.34) | 79.80 (76.82–82.9) | |
42–168 | 72.35 (70.58–74.16) | 73.08 (71.21–75.01) | 73.86 (72.26–75.49) | 74.34 (72.32–76.41) | 75.56 (73.39–77.79) | 76.63 (74.75–78.55) | |
>168 | 72.55 (70.32–74.85) | 71.77 (69.68–73.93) | 73.20 (71.59–74.86) | 75.1 (72.52–77.78) | 73.56 (71.20–76.00) | 76.17 (74.26–78.12) |
All-Cause Cancers b | 15 Cancers c | |||||
---|---|---|---|---|---|---|
Vegetables and Fruit (Serving/Day) d | Vegetables and Fruit (Serving/Day) d | |||||
<3 | 3–5 | >5 | <3 | 3–5 | >5 | |
Red meat (gram/week) e | ||||||
<150 | 74.04 (72.15–75.98) | 77.28 (75.28–79.34) | 75.75 (73.97–77.56) | 76.93 (74.73–79.20) | 79.50 (77.22–81.84) | 77.74 (75.72–79.81) |
150–300 | 73.21 (71.34–75.14) | 75.55 (73.83–77.31) | 77.02 (75.31–78.77) | 75.45 (73.30–77.66) | 77.84 (75.88–79.86) | 79.97 (77.96–82.03) |
>300 | 72.42 (70.30–74.59) | 74.93 (73.19–76.72) | 77.57 (75.75–79.44) | 74.43 (72.04–76.89) | 77.72 (75.67–79.83) | 80.02 (77.92–82.17) |
Processed meat (gram/week) f | ||||||
<28 | 76.23 (73.94–78.59) | 77.26 (75.18–79.39) | 76.80 (74.96–78.69) | 79.77 (77.04–82.59) | 79.60 (77.23–82.05) | 79.27 (77.14–81.46) |
28–112 | 73.31 (71.61–75.05) | 76.35 (74.74–78.00) | 76.89 (75.27–78.55) | 75.73 (73.77–77.74) | 78.98 (77.10–80.9) | 79.23 (77.36–81.14) |
>112 | 71.24 (69.17–73.37) | 73.54 (71.66–75.48) | 76.51 (74.64–78.43) | 72.95 (70.63–75.34) | 75.74 (73.58–77.95) | 79.15 (76.97–81.38) |
Whole grains (serving/day) g | Whole grains (serving/day) g | |||||
<0.6 | 0.6–1.1 | >1.1 | <0.6 | 0.6–1.1 | >1.1 | |
Red meat (gram/week) | ||||||
<150 | 75.38 (73.50–77.31) | 76.61 (74.67–78.60) | 75.77 (73.93–77.66) | 77.81 (75.64–80.04) | 78.89 (76.67–81.18) | 78.06 (75.95–80.23) |
150–300 | 74.53 (72.73–76.37) | 75.66 (73.89–77.47) | 76.82 (75.08–78.60) | 76.93 (74.85–79.06) | 77.92 (75.89–80) | 79.61 (77.58–81.69) |
>300 | 73.57 (71.70–75.49) | 75.54 (73.66–77.47) | 77.30 (75.45–79.19) | 75.58 (73.45–77.76) | 78.24 (76.04–80.49) | 80.00 (77.86–82.20) |
Processed meat (gram/week) | ||||||
<28 | 76.44 (74.43–78.51) | 78.12 (75.97–80.33) | 76.87 (74.87–78.92) | 79.28 (76.92–81.70) | 80.47 (78.01–83.00) | 79.65 (77.33–82.05) |
28–112 | 74.56 (72.90–76.26) | 75.87 (74.23–77.56) | 77.24 (75.60–78.92) | 76.91 (75–78.87) | 78.26 (76.36–80.20) | 79.88 (77.97–81.83) |
>112 | 72.77 (70.75–74.85) | 74.19 (72.23–76.21) | 75.41 (73.57–77.30) | 74.49 (72.23–76.83) | 76.72 (74.45–79.06) | 77.78 (75.66–79.96) |
Fiber (gram/week) h | Fiber (gram/week) h | |||||
<110 | 110–161 | >161 | <110 | 110–161 | >161 | |
Red meat (gram/week) | ||||||
<150 | 74.13 (72.31–76.00) | 74.73 (72.88–76.64) | 76.75 (74.66–78.88) | 77.06 (74.94–79.25) | 76.78 (74.67–78.96) | 78.87 (76.50–81.31) |
150–300 | 72.56 (70.84–74.32) | 75.58 (73.88–77.31) | 77.99 (76.04–79.99) | 75.05 (73.06–77.09) | 78.17 (76.21–80.19) | 80.67 (78.41–83) |
>300 | 72.75 (70.72–74.84) | 74.44 (72.73–76.19) | 78.77 (76.78–80.81) | 75.24 (72.9–77.66) | 77.06 (75.08–79.11) | 81.11 (78.83–83.46) |
Processed meat (gram/week) | ||||||
<28 | 75.51 (73.49–77.60) | 75.71 (73.72–77.75) | 77.76 (75.61–79.97) | 78.85 (76.45–81.33) | 78.18 (75.89–80.54) | 80.14 (77.68–82.68) |
28–112 | 73.62 (71.97–75.30) | 75.22 (73.66–76.82) | 78.03 (76.21–79.90) | 76.44 (74.51–78.42) | 77.50 (75.70–79.35) | 80.55 (78.44–82.72) |
>112 | 70.21 (68.26–72.22) | 74.16 (72.29–76.06) | 77.60 (75.54–79.72) | 71.96 (69.77–74.22) | 77.03 (74.85–79.27) | 79.71 (77.36–82.14) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maximova, K.; Khodayari Moez, E.; Dabravolskaj, J.; Ferdinands, A.R.; Dinu, I.; Lo Siou, G.; Al Rajabi, A.; Veugelers, P.J. Co-consumption of Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort of Adults from Alberta’s Tomorrow Project. Nutrients 2020, 12, 2265. https://doi.org/10.3390/nu12082265
Maximova K, Khodayari Moez E, Dabravolskaj J, Ferdinands AR, Dinu I, Lo Siou G, Al Rajabi A, Veugelers PJ. Co-consumption of Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort of Adults from Alberta’s Tomorrow Project. Nutrients. 2020; 12(8):2265. https://doi.org/10.3390/nu12082265
Chicago/Turabian StyleMaximova, Katerina, Elham Khodayari Moez, Julia Dabravolskaj, Alexa R. Ferdinands, Irina Dinu, Geraldine Lo Siou, Ala Al Rajabi, and Paul J. Veugelers. 2020. "Co-consumption of Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort of Adults from Alberta’s Tomorrow Project" Nutrients 12, no. 8: 2265. https://doi.org/10.3390/nu12082265
APA StyleMaximova, K., Khodayari Moez, E., Dabravolskaj, J., Ferdinands, A. R., Dinu, I., Lo Siou, G., Al Rajabi, A., & Veugelers, P. J. (2020). Co-consumption of Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort of Adults from Alberta’s Tomorrow Project. Nutrients, 12(8), 2265. https://doi.org/10.3390/nu12082265