Docosahexaenoic Acid and Arachidonic Acid Levels Are Associated with Early Systemic Inflammation in Extremely Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Study Design
2.2. Sample Collection and Definitions
2.3. Fatty Acid Analyses and Measurement of IL-6 in Cord Blood
2.4. Statistical Methods
3. Results
3.1. Characteristics of the Study Population
3.2. Docosahexaenoic Acid, Arachidonic Acid, and Early Postnatal Systemic Inflammation
3.3. Docosahexaenoic Acid and Arachidonic Acid in Cord Blood and Signs of Fetal Inflammation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
CI | confidence interval |
DHA | docosahexaenoic acid |
FIRS | fetal inflammatory response syndrome |
HCA | histological chorioamnionitis |
IL-6 | Interleukin-6 |
LCPUFA | long-chain polyunsaturated fatty acid |
SGA | small for gestational age |
References
- Gotsch, F.; Romero, R.; Kusanovic, J.P.; Mazaki-Tovi, S.; Pineles, B.L.; Erez, O.; Espinoza, J.; Hassan, S.S. The fetal inflammatory response syndrome. Clin. Obstet. Gynecol. 2007, 50, 652–683. [Google Scholar] [CrossRef]
- Hofer, N.; Kothari, R.; Morris, N.; Müller, W.; Resch, B. The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am. J. Obstet. Gynecol. 2013, 209, 542.e1–542.e11. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Laughon, M.; Allred, E.N.; Van Marter, L.J.; O’Shea, T.M.; Ehrenkranz, R.A.; Fichorova, R.; Leviton, A. Elgan Study Investigators Blood protein concentrations in the first two postnatal weeks that predict bronchopulmonary dysplasia among infants born before the 28th week of gestation. Pediatr. Res. 2011, 69, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuban, K.C.K.; Joseph, R.M.; O’Shea, T.M.; Heeren, T.; Fichorova, R.N.; Douglass, L.; Jara, H.; Frazier, J.A.; Hirtz, D.; Rollins, J.V.; et al. Circulating Inflammatory-Associated Proteins in the First Month of Life and Cognitive Impairment at Age 10 Years in Children Born Extremely Preterm. J. Pediatr. 2017, 180, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uauy, R.; Mena, P.; Rojas, C. Essential fatty acids in early life: Structural and functional role. Proc. Nutr. Soc. 2000, 59, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef] [Green Version]
- Carnielli, V.P.; Simonato, M.; Verlato, G.; Luijendijk, I.; De Curtis, M.; Sauer, P.J.; Cogo, P.E. Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids. Am. J. Clin. Nutr. 2007, 86, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Buonocore, G.; Carnielli, V.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary From the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef]
- Leghi, G.E.; Muhlhausler, B.S. The effect of n-3 LCPUFA supplementation on oxidative stress and inflammation in the placenta and maternal plasma during pregnancy. Prostaglandins Leukot. Essent. Fat. Acids 2016, 113, 33–39. [Google Scholar] [CrossRef]
- Makrides, M.; Gibson, R.A.; McPhee, A.J.; Collins, C.T.; Davis, P.G.; Doyle, L.W.; Simmer, K.; Colditz, P.B.; Morris, S.; Smithers, L.G.; et al. Neurodevelopmental Outcomes of Preterm Infants Fed High-Dose Docosahexaenoic Acid: A Randomized Controlled Trial. JAMA 2009, 301, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, C.T.; Makrides, M.; McPhee, A.J.; Sullivan, T.R.; Davis, P.G.; Thio, M.; Simmer, K.; Rajadurai, V.S.; Travadi, J.; Berry, M.J.; et al. Docosahexaenoic Acid and Bronchopulmonary Dysplasia in Preterm Infants. N. Engl. J. Med. 2017, 376, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, V.; Glover, R.; Malviya, M.N. Alternative lipid emulsions versus pure soy oil based lipid emulsions for parenterally fed preterm infants. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Beken, S.; Dilli, D.; Fettah, N.D.; Kabataş, E.U.; Zenciroğlu, A.; Okumuş, N. The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: A randomized controlled trial. Early Hum. Dev. 2014, 90, 27–31. [Google Scholar] [CrossRef]
- Bernabe-García, M.; Villegas-Silva, R.; Villavicencio-Torres, A.; Calder, P.C.; Rodríguez-Cruz, M.; Maldonado-Hernández, J.; Macías-Loaiza, D.; López-Alarcón, M.; Inda-Icaza, P.; Cruz-Reynoso, L. Enteral Docosahexaenoic Acid and Retinopathy of Prematurity: A Randomized Clinical Trial. JPEN J. Parenter. Enter. Nutr. 2019, 43, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Najm, S.; Löfqvist, C.; Hellgren, G.; Engström, E.; Lundgren, P.; Hård, A.-L.; Lapillonne, A.; Sävman, K.; Nilsson, A.K.; Andersson, M.X.; et al. Effects of a lipid emulsion containing fish oil on polyunsaturated fatty acid profiles, growth and morbidities in extremely premature infants: A randomized controlled trial. Clin. Nutr. ESPEN 2017, 20, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Löfqvist, C.A.; Najm, S.; Hellgren, G.; Engström, E.; Sävman, K.; Nilsson, A.K.; Andersson, M.X.; Hård, A.-L.; Smith, L.E.H.; Hellström, A. Association of Retinopathy of Prematurity With Low Levels of Arachidonic Acid: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Hecht, J.L.; Allred, E.N.; Kliman, H.J.; Zambrano, E.; Doss, B.J.; Husain, A.; Pflueger, S.M.V.; Chang, C.-H.; Livasy, C.A.; Roberts, D.; et al. Histological characteristics of singleton placentas delivered before the 28th week of gestation. Pathology 2008, 40, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Marsál, K.; Persson, P.H.; Larsen, T.; Lilja, H.; Selbing, A.; Sultan, B. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr. 1996, 85, 843–848. [Google Scholar] [CrossRef]
- International Committee for the Classification of Retinopathy of Prematurity the International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Koenker, R.; Basset, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Calder, P.C.; Grimble, R.F. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 2002, 56 (Suppl. 3), S14–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa, C.; Pacifico, L.; Natale, F.; Hofer, N.; Osborn, J.F.; Resch, B. Fetal and early neonatal interleukin-6 response. Cytokine 2015, 76, 1–12. [Google Scholar] [CrossRef]
- Espiritu, M.M.; Lin, H.; Foley, E.; Tsang, V.; Rhee, E.; Perlman, J.; Cunningham-Rundles, S. Omega-3 fatty acids modulate neonatal cytokine response to endotoxin. J. Perinat. Med. 2016, 44, 711–721. [Google Scholar] [CrossRef]
- Khalfoun, B.; Thibault, F.; Watier, H.; Bardos, P.; Lebranchu, Y. Docosahexaenoic and eicosapentaenoic acids inhibit in vitro human endothelial cell production of interleukin-6. Adv. Exp. Med. Biol. 1997, 400, 589–597. [Google Scholar]
- Lewis, R.M.; Childs, C.E.; Calder, P.C. New perspectives on placental fatty acid transfer. Prostaglandins Leukot. Essent. Fat. Acids 2018, 138, 24–29. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Gibson, R.A.; Yelland, L.N.; Makrides, M. Heterogeneity in cord blood DHA concentration: Towards an explanation. Prostaglandins Leukot. Essent. Fat. Acids 2014, 91, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Lager, S.; Jansson, N.; Olsson, A.L.; Wennergren, M.; Jansson, T.; Powell, T.L. Effect of IL-6 and TNF-α on fatty acid uptake in cultured human primary trophoblast cells. Placenta 2011, 32, 121–127. [Google Scholar] [CrossRef]
- Cetin, I.; Giovannini, N.; Alvino, G.; Agostoni, C.; Riva, E.; Giovannini, M.; Pardi, G. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr. Res. 2002, 52, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Haghiac, M.; Yang, X.; Presley, L.; Smith, S.; Dettelback, S.; Minium, J.; Belury, M.A.; Catalano, P.M.; Hauguel-de Mouzon, S. Dietary Omega-3 Fatty Acid Supplementation Reduces Inflammation in Obese Pregnant Women: A Randomized Double-Blind Controlled Clinical Trial. PLoS ONE 2015, 10, e0137309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozurkewich, E.L.; Berman, D.R.; Vahratian, A.; Clinton, C.M.; Romero, V.C.; Chilimigras, J.L.; Vazquez, D.; Qualls, C.; Djuric, Z. Effect of prenatal EPA and DHA on maternal and umbilical cord blood cytokines. BMC Pregnancy Childbirth 2018, 18, 261. [Google Scholar] [CrossRef]
- Suganuma, H.; McPhee, A.J.; Collins, C.T.; Liu, G.; Leemaqz, S.; Andersen, C.C.; Ikeda, N.; Ohkawa, N.; Taha, A.Y.; Gibson, R.A. Intravenous fat induces changes in PUFA and their bioactive metabolites: Comparison between Japanese and Australian preterm infants. Prostaglandins Leukot. Essent. Fat. Acids 2019, 156, 102026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fares, S.; Sethom, M.M.; Hammami, M.B.; Cheour, M.; Feki, M.; Hadj-Taieb, S.; Kacem, S. Postnatal RBC arachidonic and docosahexaenoic acids deficiencies are associated with higher risk of neonatal morbidities and mortality in preterm infants. Prostaglandins Leukot. Essent. Fat. Acids 2017, 126, 112–116. [Google Scholar] [CrossRef]
- Martin, C.R.; Dasilva, D.A.; Cluette-Brown, J.E.; Dimonda, C.; Hamill, A.; Bhutta, A.Q.; Coronel, E.; Wilschanski, M.; Stephens, A.J.; Driscoll, D.F.; et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J. Pediatr. 2011, 159, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Gomez, R.; Romero, R.; Ghezzi, F.; Yoon, B.H.; Mazor, M.; Berry, S.M. The fetal inflammatory response syndrome. Am. J. Obstet. Gynecol. 1998, 179, 194–202. [Google Scholar] [CrossRef]
- Mitha, A.; Foix-L’Hélias, L.; Arnaud, C.; Marret, S.; Vieux, R.; Aujard, Y.; Thiriez, G.; Larroque, B.; Cambonie, G.; Burguet, A.; et al. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatrics 2013, 132, e372–e380. [Google Scholar] [CrossRef] [Green Version]
- García-Muñoz Rodrigo, F.; Galán Henríquez, G.; Figueras Aloy, J.; García-Alix Pérez, A. Outcomes of very-low-birth-weight infants exposed to maternal clinical chorioamnionitis: A multicentre study. Neonatology 2014, 106, 229–234. [Google Scholar] [CrossRef]
- Metcalfe, A.; Lisonkova, S.; Sabr, Y.; Stritzke, A.; Joseph, K.S. Neonatal respiratory morbidity following exposure to chorioamnionitis. BMC Pediatr. 2017, 17, 128. [Google Scholar] [CrossRef]
- Maddipati, K.R.; Romero, R.; Chaiworapongsa, T.; Chaemsaithong, P.; Zhou, S.-L.; Xu, Z.; Tarca, A.L.; Kusanovic, J.P.; Gomez, R.; Docheva, N.; et al. Clinical chorioamnionitis at term: The amniotic fluid fatty acyl lipidome. J. Lipid Res. 2016, 57, 1906–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggarty, P. Meeting the fetal requirement for polyunsaturated fatty acids in pregnancy. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, W.; Raith, M.; Koch, V.; Kunze, R.; Maas, C.; Abele, H.; Poets, C.F.; Franz, A.R. Plasma phospholipids indicate impaired fatty acid homeostasis in preterm infants. Eur. J. Nutr. 2014, 53, 1533–1547. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.K.; Löfqvist, C.; Najm, S.; Hellgren, G.; Sävman, K.; Andersson, M.X.; Smith, L.E.H.; Hellström, A. Influence of Human Milk and Parenteral Lipid Emulsions on Serum Fatty Acid Profiles in Extremely Preterm Infants. J. Parenter. Enter. Nutr. 2018, 43, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletzko, B.; Bergmann, K.; Brenna, J.T.; Calder, P.C.; Campoy, C.; Clandinin, M.T.; Colombo, J.; Daly, M.; Decsi, T.; Demmelmair, H.; et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am. J. Clin. Nutr. 2020, 111, 10–16. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Early Systemic Inflammation n = 23 | No Early Systemic Inflammation n = 67 |
---|---|---|
Gestational age, weeks + days | 25 + 1, 25 + 0 (23 + 1–27 + 6) | 25 + 4, 25 + 3 (22 + 5–27 + 6) |
Birth weight, gram | 748, 760 (420–1180) | 790, 760 (415–1260) |
SGA | 4 (17) | 9 (13) |
Sex, male | 13 (57) | 38 (57) |
Preeclampsia | 5 (23) | 7 (11) |
Cesarean delivery | 9 (39) | 33 (49) |
Mortality before term age | 5 (22) | 7 (10) |
Histologic Chorioamnionitis a | 15 (75) | 33 (57) |
Histologic Fetal Inflammation a | 10 (53) | 24 (41) |
Fatty Acid | Early Systemic Inflammation, Median (25th–75th pctl) | No Early Systemic Inflammation, Median (25th–75th pctl) | Difference (95% CI) p-Value a |
---|---|---|---|
DHA, cord blood b mol% | 3.0 (2.2–3.3) | 3.5 (2.9–3.7) | 0.76 (0.1–1.5), 0.034 |
AA, cord blood b mol% | 15.2 (12.9–16.8) | 16.5 (15.1–18.4) | 1.4 (−0.8–3.6), 0.216 |
DHA, day 1 c mol% | 2.8 (2.2–3.2) | 3.4 (2.8–3.9) | 0.5 (0.2–0.9), 0.006 |
AA, day 1 c mol% | 13.9 (12.0–16.1) | 14.7 (13.6–15.9) | 0.8 (−0.8–2.4), 0.299 |
DHA, day 7 d mol% | 2.1 (1.9–2.4) | 2.2 (1.9–2.6) | 0.1 (−0.2–0.3), 0.598 |
AA, day 7 d mol% | 7.7 (7.0–8.7) | 8.0 (7.0–9.1) | 0.2 (−0.7–1.1), 0.662. |
Fatty Acid | HCA Median (25th–75th pctl) | No HCA Median (25th–75th pctl) | Difference (95% CI), p-Value a |
---|---|---|---|
DHA, cord blood b mol% | 3.3 (2.7–3.6) | 3.6 (2.9–3.9) | 0.3 (−0.3–0.9), 0.285 |
AA, cord blood b mol% | 15.5 (14.2–17.3) | 16.6 (15.4–18.4) | 1.0 (−0.7–2.7), 0.230 |
FIRS Median (25th–75th pctl) | No FIRS Median (25th–75th pctl) | Difference (95% CI), p-value a | |
DHA, cord blood c mol% | 3.2 (2.6–3.6) | 3.6 (2.9–3.9) | 0.4 (−0.2–1.0), 0.217 |
AA, cord blood c mol% | 15.3 (13.8–17.6) | 16.5 (15.4–18.4) | 1.2 (−0.3–2.7), 0.121 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellström, A.; Hellström, W.; Hellgren, G.; E. H. Smith, L.; Puttonen, H.; Fyhr, I.-M.; Sävman, K.; Nilsson, A.K.; Klevebro, S. Docosahexaenoic Acid and Arachidonic Acid Levels Are Associated with Early Systemic Inflammation in Extremely Preterm Infants. Nutrients 2020, 12, 1996. https://doi.org/10.3390/nu12071996
Hellström A, Hellström W, Hellgren G, E. H. Smith L, Puttonen H, Fyhr I-M, Sävman K, Nilsson AK, Klevebro S. Docosahexaenoic Acid and Arachidonic Acid Levels Are Associated with Early Systemic Inflammation in Extremely Preterm Infants. Nutrients. 2020; 12(7):1996. https://doi.org/10.3390/nu12071996
Chicago/Turabian StyleHellström, Ann, William Hellström, Gunnel Hellgren, Lois E. H. Smith, Henri Puttonen, Ing-Marie Fyhr, Karin Sävman, Anders K. Nilsson, and Susanna Klevebro. 2020. "Docosahexaenoic Acid and Arachidonic Acid Levels Are Associated with Early Systemic Inflammation in Extremely Preterm Infants" Nutrients 12, no. 7: 1996. https://doi.org/10.3390/nu12071996
APA StyleHellström, A., Hellström, W., Hellgren, G., E. H. Smith, L., Puttonen, H., Fyhr, I.-M., Sävman, K., Nilsson, A. K., & Klevebro, S. (2020). Docosahexaenoic Acid and Arachidonic Acid Levels Are Associated with Early Systemic Inflammation in Extremely Preterm Infants. Nutrients, 12(7), 1996. https://doi.org/10.3390/nu12071996