Caffeine-Containing, Adaptogenic-Rich Drink Modulates the Effects of Caffeine on Mental Performance and Cognitive Parameters: A Double-Blinded, Placebo-Controlled, Randomized Trial
Abstract
:1. Background
2. Methodology
2.1. Design and Study Products
2.2. Screening
2.3. Participants
2.4. Salivary Caffeine Collection
2.5. Salivary Caffeine Analysis
2.6. Mental Performance Tests and Physiological Measures
- (1)
- Serial Three and Serial Seven subtraction tasks: Participants were asked to silently subtract backwards in three’s or seven’s from a random starting number between 800 and 999 that was presented on the computer screen. Participants were instructed to type their answer as quickly and as accurately as possible. The number was cleared after entry of the response and participants continued to subtract three or seven from their answer. The task was scored for the number of correct and incorrect responses and the total attempts. In the case of incorrect responses, subsequent responses were scored as correct if they were correct in relation to the new number. Participants were given an opportunity to complete as many attempts as possible in two minutes [36,37,38].
- (2)
- Continuous Performance Task (CPT): Participants monitored a continuous series of letters (A–Z; Tahoma Regular font, size 20 pt) presented on the screen for 1000 ms. Participants were told to respond to the detection of the letter “X” only when it was preceded by the letter “A” by striking the left key on the key pad. The task was scored for percentage of target strings correctly detected, errors of omission (missed targets), average reaction time for correct detections, and the number of false alarms. The task lasted for two minutes and 48 targets were randomly presented [21,37].
- (3)
- Rapid Visual Input Processing (RVIP) task: Participants were required to monitor a continuous series of digits (1–9; Tahoma Regular font, size 20 pt). Each individual digit was presented for 1000 ms and the participant was given a primary, secondary, and tertiary task. The participant’s primary and secondary tasks were to detect the presentation of three successive odd and even digits that were all different (e.g., 9-3-7, 2-6-8), and the tertiary task involved the identification of a specific number (i.e., 6). The participants pressed the right key for primary and secondary responses and the left key for tertiary responses. The task was scored for the number of primary, secondary, and tertiary targets correctly detected, the average reaction time for correct detection of each target, the number of false alarms for each task, and errors of omission (missed targets). There were 16 primary target, 16 secondary targets and 96 tertiary targets. The task lasted 16 min and a total of 960 stimuli were presented during that time [36,38,39].
- (4)
- Motivation to perform cognitive tasks: Participants rated the intensity of their current motivation to perform mental tasks using a scale supported by validity evidence [21,38]. The 0–10 categorical scale ranges from “No motivation” (left end, scored as 0) to “Highest motivation imaginable” (right end, scored as a 10).
- (5)
- Profile of Mood Survey-Short Form (POMS-SF): The 30-item POMS-SF was used to assess current mood states using a five-point scale ranging from “Not at all” (scored as 0) to “Extremely” (scored as 4). The tension/anxiety, depression, anger, fatigue and vigor are scored as a sum of five variables (i.e., tension = tense + shaky + uneasy + nervous + anxious) and can range from 0 to 20. Confusion has a variable subtracted from it (i.e., confusion = confused + muddled + bewildered + forgetful − efficient) and can range from −4 to 16 [40]. Among healthy participants, the Cronbach’s alpha, a measure of internal consistency, has been reported as 0.90 for the POMS-SF [41]. The Cronbach’s alpha for this current study was between 0.364 and 0.922 (vigor = 0.922, fatigue = 0.863, depression = 0.598, tension = 0.364, anger = 0.519, and confusion = 0.419).
- (6)
- Mental and Physical State and Trait Energy and Fatigue Scales: Participants rated their current feelings of mental and physical energy, and fatigue, using a three-part scale supported by validity evidence [21,38,42,43]. The states scale is a 12-item measure of the intensity of current mental energy, mental fatigue, physical energy, and physical fatigue moods. For each state, responses to three items were summed to provide a measure of mental and physical energy or fatigue [44]. The scales require the use of a 0–100-point visual analog scale (VAS) however, due to limitations in data collection techniques, the scale was modified to a 0–10 Likert scale anchored by “absence of feelings” (left end, scored as 0) and the “strongest intensity of feelings” (right end, scored as 10). This modification is the same as Boolani et al. previously cited [21,43]. Among healthy adults the Cronbach’s Alpha was reported to be between 0.89 and 0.91 [44]. The Cronbach’s alpha for this current study was between 0.707 and 0.874 (state physical energy = 0.785, state physical fatigue = 0.837, state mental energy = 0.707, and state mental fatigue = 0.874).
- (7)
- (8)
- Heart Rate: Heart rate was measured using a pulse oximeter (Veridian Deluxe; model 11-50D, Veridian Healthcare, Gurnee, IL, USA) on the participant’s right index finger.
- (9)
- Nine-hole peg test: The validated nine-hole peg test of finger dexterity was used to measure fine motor control [47,48]. The 12 cm × 12 cm wooden pegboard contained nine holes and was placed on the desktop in front of the seated participant. There were nine 0.64 cm wide cylindrical pegs, were placed on the desktop outside of the container on the right side of the board and on the left side of the board for when the participant’s right hand and left hand were tested, respectively. Participants were instructed to place one peg at a time into the pegboard holes until they were filled, and then remove each peg one at a time onto the desktop as fast as they could, first with their dominant hand and next with their non-dominant hand. Each test was performed twice.
2.7. Procedure
2.8. Data Treatment and Statistics
2.8.1. Preliminary Analyses
2.8.2. Primary Analyses
3. Results
3.1. Salivary Analysis
3.2. Placebo vs. Active Comparator
3.2.1. e+ Shot vs. Placebo
3.2.2. e+ Shot vs. Active Comparator
3.2.3. Correlation between Changes in Caffeine and Changes in Mood and Cognition
4. Discussion
4.1. Active Comparator vs. Placebo
4.1.1. e+ Shot vs. Placebo
4.1.2. e+ Shot vs. Active Comparator
4.2. Possible Mechanisms
4.3. Limitations
5. Conclusions
6. Declarations
Ethics Approval and Consent to Participate
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Clinical Registration
References
- Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef]
- Drewnowski, A.; Rehm, C.D. Sources of Caffeine in Diets of US Children and Adults: Trends by Beverage Type and Purchase Location. Nutrients 2016, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Ruxton, C.H.S. The impact of caffeine on mood, cognitive function, performance, and hydration: A review of benefits and risks. Nutr. Bull. 2008, 33, 15–25. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Nurminen, M.L.; Niittynen, L.; Korpela, R.; Vapaatalo, H. Coffee, caffeine, and blood pressure: A critical review. Eur. J. Clin. Nutr. 1999, 53, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foxe, J.J.; Morie, K.P.; Laud, P.; Rowson, M.J.; de Bruin, E.A.; Kelly, S.P. Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology 2012, 62, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, E.B.; de Groot, R.H.M.; Evers, E.; Snel, J.; Veerman, E.; Ligtenberg, A.J.M.; Jolles, J.; Veltman, D.J. The effect of caffeine on working memory load-related brain activation in middle-aged males. Neuropharmacology 2013, 64, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, C.F.; Kennedy, D.O.; Milne, A.L.; Wesnes, K.; Scholey, A. The effects of l-theanine, caffeine and their combination on cognition and mood. Boil. Psychol. 2008, 77, 113–122. [Google Scholar] [CrossRef]
- Kamimori, G.H.; McLellan, T.M.; Tate, C.M.; Voss, D.M.; Niro, P.; Lieberman, H.R. Caffeine improves reaction time, vigilance, and logical reasoning during extended periods with restricted opportunities for sleep. Psychopharmacology 2014, 232, 2031–2042. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, B.H.; Thurman-Lacey, S.R. Effect of caffeine on motor performance by caffeine-naive and-familiar subjects. Percept. Motor Skills 1992, 74, 151–157. [Google Scholar] [CrossRef]
- Marczinski, C.A.; Stamates, A.L.; Ossege, J.; Maloney, S.F.; Bardgett, M.E.; Brown, C.J. Subjective State, Blood Pressure, and Behavioral Control Changes Produced by an “Energy Shot”. J. Caffeine Res. 2014, 4, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.R.; Higgins, S.T.; Bickel, W.K.; Hunt, W.K.; Fenwick, J.W.; Gulliver, S.B.; Mireault, G. Caffeine Self-administration, Withdrawal, and Adverse Effects Among Coffee Drinkers. Arch. Gen. Psychiatry 1991, 48, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.P. Effects of caffeine on human behavior. Food Chem. Toxicol. 2002, 40, 1243–1255. [Google Scholar] [CrossRef]
- Tsuang, Y.-H.; Sun, J.-S.; Chen, L.-T.; Sun, S.C.-K.; Chen, S.-C. Direct effects of caffeine on osteoblastic cells metabolism: The possible causal effect of caffeine on the formation of osteoporosis. J. Orthop. Surg. Res. 2006, 1, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, P.J.; Dernoncourt, C. Regular caffeine consumption: A balance of adverse and beneficial effects for mood and psychomotor performance. Pharmacol. Biochem. Behav. 1998, 59, 1039–1045. [Google Scholar] [CrossRef]
- Aranda, M.; Morlock, G.E. Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine, and taurine in energy drinks by planar chromatography-multiple detection with confirmation by electrospray ionization mass spectrometry. J. Chromatogr. A 2006, 1131, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Reissig, C.J.; Strain, E.C.; Griffiths, R.R. Caffeinated energy drinks—A growing problem. Drug Alcohol Depend. 2008, 99, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Smit, H.J.; Rogers, P.J. Effects of ‘energy’ drinks on mood and mental performance: Critical methodology. Food Qual. Preference 2002, 13, 317–326. [Google Scholar] [CrossRef]
- Wesnes, K.; Barrett, M.L.; Udani, J.K. An evaluation of the cognitive and mood effects of an energy shot over a 6h period in volunteers. A randomized, double-blind, placebo controlled, cross-over study. Appetite 2013, 67, 105–113. [Google Scholar] [CrossRef]
- Hajsadeghi, S.; Mohammadpour, F.; Manteghi, M.J.; Kordshakeri, K.; Tokazebani, M.; Rahmani, E.; Hassanzadeh, M. Effects of energy drinks on blood pressure, heart rate, and electrocardiographic parameters: An experimental study on healthy young adults. Anatol. J. Cardiol. 2015, 16, 94–99. [Google Scholar] [CrossRef]
- Boolani, A.; Lindheimer, J.B.; Loy, B.D.; Crozier, S.; O’Connor, P.J. Acute effects of brewed cocoa consumption on attention, motivation to perform cognitive work and feelings of anxiety, energy and fatigue: A randomized, placebo-controlled crossover experiment. BMC Nutr. 2017, 3, 740. [Google Scholar] [CrossRef] [Green Version]
- Childs, E.; de Wit, H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology 2006, 185, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, M.; Tellier, C.; Thanassoulis, G. Review of Published Cases of Adverse Cardiovascular Events After Ingestion of Energy Drinks. Am. J. Cardiol. 2014, 113, 168–172. [Google Scholar] [CrossRef]
- Lazarev, N.V. General and specific in action of pharmacological agents. Farmacol. Toxicol. 1958, 21, 81–86. [Google Scholar]
- Brekhman, I.I.; Dardymov, I.V. New Substances of Plant Origin which Increase Nonspecific Resistance. Annu. Rev. Pharmacol. 1969, 9, 419–430. [Google Scholar] [CrossRef]
- Qi, H.; Li, L.; Ma, H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med. Res. Rev. 2017, 38, 625–654. [Google Scholar] [CrossRef]
- Panossian, A.G.; Wikman, G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity. Pharmaceuticals 2010, 3, 188–224. [Google Scholar] [CrossRef]
- Panossian, A. Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Ann. N. Y. Acad. Sci. 2017, 1401, 49–64. [Google Scholar] [CrossRef]
- McNair, D.M.; Lorr, M.; Heuchert, J.W.P.; Droppleman, L.F. Profile of Mood States-Brief Form; Multi-Health Systems: North Tonawanda, NY, USA, 2003. [Google Scholar]
- Motl, R.W.; O’Connor, P.J.; Tubandt, L.; Puetz, T.; Ely, M. Effect of Caffeine on Leg Muscle Pain during Cycling Exercise among Females. Med. Sci. Sports Exerc. 2006, 38, 598–604. [Google Scholar] [CrossRef]
- O’Connor, P.J.; Caravalho, A.L.; Freese, E.C.; Cureton, K. Grape Consumption’s Effects on Fitness, Muscle Injury, Mood, and Perceived Health. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 57–64. [Google Scholar] [CrossRef]
- D’Amico, E.J.; Neilands, T.B.; Zambarano, R. Power analysis for multivariate and repeated measures designs: A flexible approach using the SPSS MANOVA procedure. Behav. Res. Methods Inst. Comput. 2001, 33, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Assenza, S.P.; Brown, P.R. Reversed-phase liquid chromatographic investigation of UV-absorbing low-molecular-weight compounds in saliva. J. Chromatogr. B Biomed. Sci. Appl. 1982, 233, 51–60. [Google Scholar] [CrossRef]
- Ptolemy, A.S.; Tzioumis, E.; Thomke, A.; Rifai, S.; Kellogg, M.D. Quantification of theobromine and caffeine in saliva, plasma, and urine via liquid chromatography–tandem mass spectrometry: A single analytical protocol applicable to cocoa intervention studies. J. Chromatogr. B 2010, 878, 409–416. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.J. Mental energy: Developing a model for examining nutrition-related claims. Nutri. Rev. 2006, 64, S2–S6. [Google Scholar] [CrossRef] [Green Version]
- Haskell, C.F.; Kennedy, D.O.; Wesnes, K.; Scholey, A. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology 2005, 179, 813–825. [Google Scholar] [CrossRef]
- Scholey, A.; Kennedy, D.O. Cognitive and physiological effects of an? energy drink? An evaluation of the whole drink and of glucose, caffeine and herbal flavouring fractions. Psychopharmacology 2004, 176, 320–330. [Google Scholar] [CrossRef]
- Maridakis, V.; Herring, M.P.; O’Connor, P.J. Sensitivity to Change in Cognitive Performance and Mood Measures of Energy and Fatigue in Response to Differing Doses of Caffeine or Breakfast. Int. J. Neurosci. 2009, 119, 975–994. [Google Scholar] [CrossRef]
- Scholey, A.; French, S.J.; Morris, P.J.; O Kennedy, D.; Milne, A.L.; Haskell, C.F. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J. Psychopharmacol. 2009, 24, 1505–1514. [Google Scholar] [CrossRef]
- Curran, S.L.; Andrykowski, M.A.; Studts, J.L. Short form of the Profile of Mood States (POMS-SF): Psychometric information. Psychol. Assess. 1995, 7, 80. [Google Scholar] [CrossRef]
- Terry, P.; Lane, A.; Fogarty, G. Construct validity of the Profile of Mood States—Adolescents for use with adults. Psychol. Sport Exerc. 2003, 4, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Boolani, A.; Manierre, M. An exploratory multivariate study examining correlates of trait mental and physical fatigue and energy. Fatigue Biomed. Heal. Behav. 2019, 7, 29–40. [Google Scholar] [CrossRef]
- Boolani, A.; O’Connor, P.J.; Reid, J.; Ma, S.; Mondal, S. Predictors of feelings of energy differ from predictors of fatigue. Fatigue Biomed. Heal. Behav. 2018, 7, 12–28. [Google Scholar] [CrossRef]
- O’Connor, P. Mental and Physical State and Trait Energy and Fatigue Scales; University of Georgia: Athens, GA, USA, 2006. [Google Scholar]
- Belghazi, J.; el Feghali, R.N.; Moussalem, T.; Rejdych, M.; Asmar, R.G. Validation of four automatic devices for self-measurement of blood pressure according to the International Protocol of the European Society of Hypertension. Vasc. Heal. Risk Manag. 2007, 3, 389–400. [Google Scholar]
- Takahashi, H. Validation of the Omron M6W Upper Arm Blood Pressure Monitor, in Oscillometry Mode, for Self-Measurement in a General Population, According to the European Society of Hypertension International Protocol Revision 2010; dablEducational: Dublin, Ireland, 2012. [Google Scholar]
- Mathiowetz, V.; Weber, K.; Kashman, N.; Volland, G. Adult Norms for the Nine Hole Peg Test of Finger Dexterity. Occup. Ther. J. Res. 1985, 5, 24–38. [Google Scholar] [CrossRef]
- Grice, K.O.; Vogel, K.A.; Le, V.; Mitchell, A.; Muniz, S.; Vollmer, M.A. Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. Am. J. Occup. Ther. 2003, 57, 570–573. [Google Scholar] [CrossRef] [Green Version]
- Pilcher, J.J.; Huffcutt, A.I. Effects of Sleep Deprivation on Performance: A Meta-Analysis. Sleep 1996, 19, 318–326. [Google Scholar] [CrossRef]
- Maridakis, V.; O’Connor, P.J.; Tomporowski, P.D. Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to morning caffeine alone or in combination with carbohydrate. Int. J. Neurosci. 2009, 119, 1239–1258. [Google Scholar] [CrossRef]
- Althouse, A.D. Adjust for Multiple Comparisons? It is Not That Simple. Ann. Thorac. Surg. 2016, 101, 1644–1645. [Google Scholar] [CrossRef]
- Perneger, T.V. What is wrong with Bonferroni adjustments. BMJ 1998, 316, 1236–1238. [Google Scholar] [CrossRef]
- Rothman, K.J. No Adjustments Are Needed for Multiple Comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Feise, R.J. Do multiple outcome measures require p-value adjustment? BMC Med Res. Methodol. 2002, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einöther, S.J.L.; Giesbrecht, T. Caffeine as an attention enhancer: Reviewing existing assumptions. Psychopharmacology 2012, 225, 251–274. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, H.; Wurtman, R.; Emde, G.; Roberts, C.; Coviella, I. The effects of low doses of caffeine on human performance and mood. Psychopharmacology 1987, 92, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Hewlett, P.; Smith, A.P. Effects of repeated doses of caffeine on performance and alertness: New data and secondary analyses. Hum. Psychopharmacol. Clin. Exp. 2007, 22, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Karatzis, E.; Papaioannou, T.G.; Aznaouridis, K.; Karatzi, K.; Stamatelopoulos, K.; Zampelas, A.; Papamichael, C.; Lekakis, J.; Mavrikakis, M. Acute effects of caffeine on blood pressure and wave reflections in healthy subjects: Should we consider monitoring central blood pressure? Int. J. Cardiol. 2005, 98, 425–430. [Google Scholar] [CrossRef]
- James, J.E. Critical Review of Dietary Caffeine and Blood Pressure: A Relationship That Should Be Taken More Seriously. Psychosom. Med. 2004, 66, 63–71. [Google Scholar] [CrossRef]
- Myers, M.G. Effects of caffeine on blood pressure. Arch. Inter. Med. 1988, 148, 1189–1193. [Google Scholar] [CrossRef]
- Green, P.J.; Kirby, R.; Suls, J. The effects of caffeine on blood pressure and heart rate: A review. Ann. Behav. Med. 1996, 18, 201–216. [Google Scholar] [CrossRef]
- Amsterdam, J.D.; Panossian, A.G. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine 2016, 23, 770–783. [Google Scholar] [CrossRef]
- Shikov, A.H.; Pozharitskaya, O.N.; Makarov, V.G. Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen: An overview of pharmacological studies. Phytomedicine 2016, 23, 1409–1421. [Google Scholar] [CrossRef]
- Petare, A.U.; Salve, B.A.; Tripathi, R.K.; Raut, A.A.; Rege, N.N. Effect of Tinospora cordifolia on physical and cardiovascular performance induced by physical stress in healthy human volunteers. AYU 2015, 36, 265–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Mennemeier, M.; Pimple, S. Effect of Alpinia galanga on Mental Alertness and Sustained Attention with or Without Caffeine: A Randomized Placebo-Controlled Study. J. Am. Coll. Nutr. 2017, 36, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Filaretov, A.A.; Bogdanova, T.S.; Mityushov, M.I.; Podvigina, T.T.; Srailova, G.T. Effect of adaptogens on activity of the pituitary-adrenocortical system in rats. Bull. Exp. Boil. Med. 1986, 101, 627–629. [Google Scholar] [CrossRef]
- Panossian, A.; Seo, E.-J.; Efferth, T. Effects of anti-inflammatory and adaptogenic herbal extracts on gene expression of eicosanoids signaling pathways in isolated brain cells. Phytomedicine 2019, 60, 152881. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.G.; Hamm, R.; Kadioglu, O.; Wikman, G.C.; Efferth, T. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells. Front. Behav. Neurosci. 2013, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujikawa, T.; Soya, H.; Hibasami, H.; Kawashima, H.; Takeda, H.; Nishibe, S.; Nakashima, K. Effect ofAcanthopanax senticosus Harms on biogenic monoamine levels in the rat brain. Phytother. Res. 2002, 16, 474–478. [Google Scholar] [CrossRef]
- Bak, D.-H.; Kim, H.D.; Kim, Y.O.; Park, C.G.; Han, S.-Y.; Kim, J.-J. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells. Int. J. Mol. Med. 2015, 37, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.R.; Lee, M.K.; Koo, K.A.; Kim, S.H.; Sung, S.H.; Lee, N.G.; Markelonis, G.J.; Oh, T.H.; Yang, J.H.; Kim, Y.C. Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J. Neurosci. Res. 2004, 76, 397–405. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; E Zvartau, E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51. [Google Scholar]
- Graham, T.E.; Spriet, L.L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J. Appl. Physiol. 1995, 78, 867–874. [Google Scholar] [CrossRef]
- Haleem, D.J.; Yasmeen, A.; Haleem, M.; Zafar, A. 24h withdrawal following repeated administration of caffeine attenuates brain serotonin but not tryptophan in rat brain: Implications for caffeine-induced depression. Life Sci. 1995, 57, PL285–PL292. [Google Scholar] [CrossRef]
- Jin, L.; Wu, F.; Li, X.; Li, H.-Q.; Du, C.; Jiang, Q.; You, J.; Li, S.; Xu, Y. Anti-depressant Effects of Aqueous Extract from Acanthopanax senticosusin Mice. Phytotherapy Res. 2013, 27, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Solinas, M.; Ferre, S.; You, Z.-B.; Karcz-Kubicha, M.; Popoli, P.; Goldberg, S.R. Caffeine Induces Dopamine and Glutamate Release in the Shell of the Nucleus Accumbens. J. Neurosci. 2002, 22, 6321–6324. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.J.; O’Connor, W.T.; Carter, M.J.; Ungerstedt, U. Caffeine enhances acetylcholine release in the hippocampus in vivo by a selective interaction with adenosine A1 receptors. J. Pharmacol. Exp. Ther. 1995, 273. [Google Scholar]
- Palumbo, D.R.; Occhiuto, F.; Spadaro, F.; Circosta, C. Rhodiola rosea Extract Protects Human Cortical Neurons against Glutamate and Hydrogen Peroxide-induced Cell Death Through Reduction in the Accumulation of Intracellular Calcium. Phytotherapy Res. 2011, 26, 878–883. [Google Scholar] [CrossRef]
- Thorn, C.F.; Aklillu, E.; McDonagh, E.M.; Klein, T.E.; Altman, R.B. PharmGKB summary: Caffeine pathway. Pharmacogenetics Genom. 2012, 22, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.H.Y.; Singh, M.; Holloway, A.C.; Crankshaw, D. The Effects of Commercial Preparations of Herbal Supplements Commonly Used by Women on the Biotransformation of Fluorogenic Substrates by Human Cytochromes P450. Phytother. Res. 2011, 25, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Xiao, Z.; Zhang, X.; Liu, F.; Zhou, W.; Zhang, Y. The Cytochrome P450-Mediated Metabolism Alternation of Four Effective Lignans From Schisandra chinensis in Carbon Tetrachloride-Intoxicated Rats and Patients with Advanced Hepatocellular Carcinoma. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Sheriffdeen, M.M.; Alehaideb, Z.; Law, F. Caffeine/Angelica dahurica and caffeine/Salvia miltiorrhiza metabolic inhibition in humans: In vitro and in vivo studies. Complement. Ther. Med. 2019, 46, 87–94. [Google Scholar] [CrossRef]
- Aslanyan, G.; Amroyan, E.; Gabrielyan, E.; Nylander, M.; Wikman, G.; Panossian, A.G. Double-blind, placebo-controlled, randomised study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine 2010, 17, 494–499. [Google Scholar] [CrossRef]
- Schaffler, K.; Wolf, O.T.; Burkart, M. No Benefit Adding Eleutherococcus senticosus to Stress Management Training in Stress-Related Fatigue/Weakness, Impaired Work or Concentration, A Randomized Controlled Study. Pharmacopsychiatry 2013, 46, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, J.; Sawers, S.J.A. The absolute bioavailability of caffeine in man. Eur. J. Clin. Pharmacol. 1983, 24, 93–98. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Quantity(mg) |
---|---|
Eleuthero (Eleutherococcus senticosus) | 79 |
Hawthorn (Crataegus oxycantha) | 59 |
Mountain ash (Sorbus aucuparia) | 59 |
Cramp bark (Viburnum opolus) | 59 |
Leuzea (Rhaponticum carthamoides) | 40 |
Rhodiola (Rhodiola rosea) | 20 |
Japanese aralia (Aralia mandchurica) | 20 |
Licorice (Glycyrrhiza yuralensis) | 20 |
Schizandra (Schisandra chinensis) | 20 |
Chaga mushroom (Inonotus obliquus) | 20 |
Treatment | Caffeine (Mg) | Adaptogenic Herbal Blend (Mg) |
---|---|---|
Placebo | 0 | 0 |
Active Comparator (Caffeine) | 98 (synthetic) | 0 |
e+ shot | 85.4 (green tea-Camellia sinensis and yerba mate-Ilex paraguariensis leaf extract) | 2127 |
Sex (Males/Females) | 13/17 |
---|---|
Age (years) | 21.8 ± 4.4 |
Height (cm) | 169.6 ± 12.4 |
Weight (kg) | 67.6 ± 11.0 |
Body Mass Index (kg/m2) | 23.5 ± 2.5 |
Race | |
White | 21 |
Asian | 4 |
Black | 4 |
More than one race | 1 |
Amount of sleep on a typical night in the past month (h) | 7.6 ± 0.8 |
Consumption of high-flavanol foods or beverages during the past month | |
Caffeine drinks (servings) | 4.2 ± 3.8 |
Cocoa (servings) | 0.7 ± 1.3 |
Fruits (servings) | 12.3 ± 12.4 |
Vegetables (servings) | 25.1 ± 14.5 |
Beverage | e+ shot | Placebo | Active Comparator | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Measure | Pre | Post 1 | Post 2 | Post 3 | Pre | Post 1 | Post 2 | Post 3 | Pre | Post 1 | Post 2 | Post 3 |
Self-reported measures | ||||||||||||
Task motivation | 6.03 (2.31) | 6.33 (1.94) | 5.97 (2.07) | 6.42 (2.42) | 5.93 (2.26) | 6.17 (2.15) | 5.90 (2.43) | 5.97 (2.20) | 5.87 (2.30) | 6.67 (2.06) | 6.13 (2.21) | 6.11 (2.57) |
POMS Vigor | 8.80 (4.60) | 9.67 (4.03) | 9.76 (4.27) | 10.15 (4.54) | 9.07 (4.63) | 9.03 (4.17) | 9.33 (4.33) | 9.38 (4.59) | 8.93 (4.60) | 10.13 (3.91) | 9.87 (4.38) | 9.89 (5.22) |
POMS Fatigue | 8.00 (2.89) | 7.07 (2.48) | 7.66 (3.27) | 7.77 (3.15) | 8.03 (2.94) | 8.13 (2.98) | 8.23 (2.62) | 7.72 (2.55) | 8.17 (2.81) | 7.67 (2.94) | 7.57 (2.81) | 8.07 (3.22) |
POMS Depression | 5.50 (1.41) | 5.50 (1.20) | 5.45 (1.27) | 5.31 (1.01) | 5.37 (1.07) | 5.43 (1.04) | 5.30 (0.84) | 5.28 (0.65) | 5.30 (0.65) | 5.23 (0.63) | 5.20 (0.61) | 5.25 (0.59) |
POMS Tension | 5.63 (1.16) | 5.73 (1.34) | 5.66 (1.52) | 5.62 (1.10) | 5.43 (0.73) | 5.40 (0.77) | 5.40 (0.72) | 5.52 (0.91) | 5.60 (1.30) | 5.77 (1.28) | 5.87 (1.25) | 5.64 (1.03) |
POMS Confusion | 2.73 (1.57) | 2.33 (1.45) | 2.59 (1.57) | 2.58 (1.60) | 2.50 (1.25) | 2.57 (1.17) | 2.50 (1.04) | 2.34 (1.05) | 2.70 (1.54) | 2.17 (1.21) | 2.43 (1.43) | 2.29 (1.56) |
POMS Anger | 5.47 (1.38) | 5.33 (0.71) | 5.41 (1.35) | 5.27 (0.53) | 5.27 (0.79) | 5.30 (0.65) | 5.60 (1.04) | 5.31 (0.85) | 5.90 (1.27) | 5.53 (1.31) | 5.47 (0.94) | 5.57 (1.20) |
Total Mood Disturbance | 18.53 (9.39) | 16.30 (8.42) | 17.00 (9.15) | 16.38 (8.83) | 17.53 (8.75) | 17.80 (7.67) | 17.70 (7.60) | 16.79 (8.16) | 18.73 (8.39) | 16.23 (7.52) | 16.67 (8.08) | 16.93 (9.28) |
State Physical Energy | 9.50 (6.55) | 7.93 (6.11) | 8.62 (6.38) | 8.27 (5.84) | 9.13 (5.87) | 8.43 (5.55) | 8.63 (5.37) | 8.31 (5.55) | 8.67 (6.14) | 8.67 (6.23) | 8.83 (6.05) | 8.84 (6.58 |
State Physical Fatigue | 14.63 (6.45) | 15.97 (6.83) | 15.31 (6.56) | 15.31 (6.63) | 13.87 (6.34) | 14.23 (6.35) | 14.57 (6.36) | 14.69 (6.89) | 16.40 (6.89) | 16.40 (7.38) | 16.38 (7.27) | 16.92 (7.24) |
State Mental Energy | 10.27 (6.26) | 8.70 (6.51) | 9.17 (6.66) | 9.73 (6.75) | 9.93 (6.01) | 9.23 (6.30) | 9.90 (6.38) | 8.83 (5.42) | 10.13 (7.39) | 9.43 (7.23) | 9.52 (7.16) | 10.16 (7.71) |
State Mental Fatigue | 13.40 (6.75) | 14.60 (7.12) | 14.07 (7.10) | 14.46 (7.12) | 13.27 (6.59) | 13.30 (6.20) | 13.67 (6.77) | 13.90 (7.39) | 15.13 (6.58) | 15.60 (7.31) | 15.34 (7.49) | 16.44 (8.30) |
Physiologic measures | ||||||||||||
Systolic Blood Pressure | 111.00 (16.18) | 113.60 (13.74) | 114.57 (16.45) | 114.67 (14.21) | 111.80 (12.22) | 109.53 (12.62) | 111.30 (15.50) | 112.30 (13.37) | 109.63 (12.99) | 114.93 (16.41) | 113.40 (15.07) | 112.80 (15.04) |
Diastolic Blood Pressure | 71.50 (9.44) | 72.30 (7.91) | 74.80 (17.78) | 72.03 (10.32) | 71.00 (8.51) | 71.30 (8.12) | 73.60 (12.14) | 72.57 (8.02) | 68.97 (9.04) | 74.07 (7.70) | 74.37 (8.20) | 73.17 (8.45) |
Heart Rate | 70.13 (13.84) | 65.23 (11.31) | 67.90 (14.51) | 64.47 (13.64) | 72.50 (13.86) | 70.10 (13.98) | 68.00 (13.86) | 66.83 (14.18) | 69.80 (13.99) | 67.37 (12.35) | 67.10 (13.33) | 63.83 (12.36) |
Non-dominant Hand (Avg.) | 19.27 (2.65) | 18.88(2.83) | 18.58 (2.55) | 18.17 (2.93) | 19.42 (2.94) | 18.80 (2.45) | 18.70 (2.76) | 18.54 (2.94) | 19.31 (3.40) | 18.73 (3.23) | 18.78 (3.38) | 18.44 (3.37) |
Dominant Hand (Avg.) | 18.60 (2.45) | 17.93 (2.09) | 17.68 (2.07) | 17.50 (2.20) | 18.87 (2.64) | 18.21 (2.50) | 18.22 (2.86) | 17.86 (2.75) | 18.65 (2.93) | 17.95 (2.79) | 18.02 (2.95) | 17.56 (2.84) |
Objective cognitive task measures | ||||||||||||
Serial Subtract 3 # Correct | 46.27 (14.70) | 48.70 (16.08) | 51.37 (15.54) | 54.59 (16.90) | 44.80 (16.24) | 51.17 (15.57) | 52.63 (16.26) | 53.38 (16.15) | 44.23 (17.08) | 52.97 (16.16) | 51.82 (16.91) | 52.17 (17.85) |
Serial Subtraction 3 % Correct | 95.69 (4.23) | 95.76 (3.96) | 95.57 (3.38) | 93.96 (8.89) | 96.35 (3.98) | 96.98 (3.07) | 96.21 (3.18) | 95.09 (4.48) | 94.43 (6.85) | 96.22 (3.88) | 92.78 (7.83) | 93.79 (6.63) |
Serial Subtract 3 # Attempted | 48.20 (14.59) | 50.63 (15.90) | 53.50 (15.36) | 57.21 (15.98) | 46.23 (16.18) | 52.77 (15.84) | 54.47 (16.11) | 56.10 (16.01) | 46.27 (16.45) | 54.86 (15.92) | 54.34 (16.32) | 55.33 (16.60) |
Serial Subtract 7 # Correct | 26.17 (10.30) | 29.03 (10.81) | 31.27 (11.59) | 33.48 (11.96) | 24.73 (10.70) | 27.83 (10.70) | 28.83 (11.81) | 30.43 (11.43) | 27.00 (11.23) | 30.20 (10.95) | 30.41 (11.84) | 31.60 (13.15) |
Serial Subtraction 7 % Correct | 92.78 (7.99) | 93.59 (8.08) | 93.80 (6.60) | 93.17 (6.07) | 92.53 (8.80) | 94.36 (4.98) | 92.92 (8.42) | 91.21 (8.74) | 92.72 (11.29) | 91.65 (8.13) | 91.44 (7.21) | 90.60 (9.18) |
Serial Subtract 7 # Attempted | 27.90 (10.13) | 30.80 (11.25) | 33.07 (11.38) | 35.69 (12.02) | 26.53 (10.19) | 29.38 (10.71) | 31.57 (12.09) | 33.90 (12.11) | 28.77 (11.04) | 32.60 (10.99) | 33.47 (11.60) | 34.27 (13.02) |
CPT Percent Correct | 80.46 (29.50) | 78.18 (27.49) | 82.95 (27.88) | 86.40 (16.47) | 83.92 (25.53) | 77.79 (25.49) | 79.07 (23.83) | 79.09 (24.73) | 84.93 (17.69) | 83.32 (21.01) | 85.26 (22.34) | 85.56 (14.23) |
CPT % Incorrect | 0.49 (0.79) | 0.59 (0.80) | 0.51 (1.13) | 0.41 (0.58) | 0.44 (0.51) | 0.48 (0.48) | 0.37 (0.82) | 0.48 (0.74) | 0.44 (0.58) | 0.45 (0.71) | 0.56 (0.78) | 0.37 (0.63) |
CPT % Omitted | 19.54 (29.50) | 21.81 (27.49) | 17.05 (27.88) | 13.60 (16.47) | 16.08 (25.53) | 22.21 (24.49) | 20.21 (23.72) | 20.91 (24.73) | 14.97 (17.36) | 16.68 (21.01) | 14.73 (22.34) | 14.44 (14.23) |
CPT Reaction Time (ms) | 1475.20 (76.56) | 1527.81 (158.49) | 1506.42 (91.91) | 1525.09 (82.97) | 1441.63 (304.19) | 1515.54 (95.82) | 1516.12 (111.05) | 1498.28 (72.03) | 1499.64 (102.770 | 1495.55 (85.770 | 1527.74 (122.18) | 1474.22 (75.06) |
RVIP Primary % Correct | 60.78 (26.18) | 67.16 (23.99) | 70.27 (24.57) | 64.65 (20.36) | 59.45 (24.98) | 61.79 (25.86) | 65.18 (20.86) | 62.52 (26.73) | 57.18 (27.66) | 64.70 (25.18) | 67.13 (24.75) | 71.38 (19.06) |
RVIP Primary % Incorrect | 9.40 (9.64) | 6.58 (8.34) | 6.47 (8.96) | 7.27 (5.79) | 8.70 (9.57) | 9.55 (8.72) | 7.33 (8.27) | 6.75 (8.72) | 8.65 (10.28) | 6.50 (7.30) | 9.88 (10.50) | 7.54 (7.88) |
RVIP Primary % Omitted | 29.82 (20.67) | 39.62 (25.39) | 22.82 (20.58) | 27.90 (19.70) | 31.85 (22.01) | 28.65 (24.00) | 27.43 (19.29) | 30.73 (26.00) | 34.13 (24.30) | 28.85 (25.07) | 20.51 (16.77) | 20.69 (17.00) |
RVIP Primary Reaction Time (ms) | 782.84 (99.82) | 774.57 (71.210) | 752.33 (85.85) | 736.22 (49.30) | 777.76 (93.09) | 761.51 (74.29) | 791.83 (55.05) | 770.84 (71.41) | 786.74 (121.13) | 773.95 (75.76) | 733.10 (76.58) | 727.96 (79.60) |
RVIP Secondary % Correct | 55.24 (23.10) | 59.98 (25.75) | 57.05 (30.08) | 61.56 (23.46) | 58.75 (21.45) | 54.75 (19.69) | 54.32 (24.46) | 61.11 (24.75) | 55.28 (24.23) | 58.93 (27.25) | 58.56 (28.20) | 63.98 (24.26) |
RVIP Secondary % Incorrect | 2.64 (5.37) | 0.00 (0.00) | 0.83 (2.56) | 1.04 (2.85) | 1.36 (3.19) | 0.42 (1.86) | 0.46 (1.96) | 0.52 (2.08) | 1.09 (3.81) | 0.00 (0.00) | 0.36 (1.71) | 0.38 (1.78) |
RVIP Secondary % Omitted | 42.08 (22.55) | 39.62 (25.39) | 0.42 (29.88) | 37.35 (22.83) | 39.85 (20.24) | 44.42 (19.59) | 45.17 (24.55) | 38.28 (24.45) | 43.64 (24.28) | 41.07 (27.25) | 41.07 (28.36) | 35.63 (24.38) |
RVIP Secondary Reaction Time (ms) | 646.66 (98.86) | 601.89 (76.14) | 634.83 (102.15) | 633.80 (67.24) | 610.31 (124.82) | 627.79 (59.08) | 628.47 (108.98) | 649.46 (90.90) | 612.76 (65.11) | 604.52 (87.25) | 621.75 (129.66) | 598.90 (92.00) |
RVIP Tertiary % Correct | 88.89 (12.38) | 88.21 (14.81) | 87.77 (16.48) | 88.73 (14.23) | 83.76 (19.05) | 84.05 (15.79) | 85.57 (13.61) | 88.09 (12.85) | 86.45 (11.74) | 90.61 (8.10) | 85.90 (16.46) | 89.59 (10.67) |
RVIP Tertiary % Incorrect | 3.10 (5.36) | 1.81 (4.35) | 1.62 (3.42) | 1.94 (3.61) | 4.68 (7.09) | 2.57 (3.97) | 3.05 (7.95) | 2.92 (5.03) | 2.40 (4.55) | 2.98 (8.17) | 3.07 (4.89) | 1.52 (4.18) |
RVIP Tertiary % Omitted | 9.55 (11.72) | 10.30 (14.14) | 11.40 (16.71) | 8.42 (13.00) | 12.56 (16.49) | 15.32 (15.85) | 11.47 (11.41) | 10.16 (13.55) | 11.18 (10.17) | 9.20 (11.32) | 12.43 (15.63) | 9.41 (10.60) |
RVIP Tertiary Reaction Time (ms) | 761.78 (60.50) | 731.21 (44.10) | 728.52 (46.69) | 737.23 (49.38) | 749.10 (56.08) | 745.10 (61.01) | 738.66 (56.00) | 717.86 (40.95) | 752.61 (61.42) | 746.90 (53.46) | 751.04 (55.61) | 739.53 (58.21) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boolani, A.; Fuller, D.T.; Mondal, S.; Wilkinson, T.; Darie, C.C.; Gumpricht, E. Caffeine-Containing, Adaptogenic-Rich Drink Modulates the Effects of Caffeine on Mental Performance and Cognitive Parameters: A Double-Blinded, Placebo-Controlled, Randomized Trial. Nutrients 2020, 12, 1922. https://doi.org/10.3390/nu12071922
Boolani A, Fuller DT, Mondal S, Wilkinson T, Darie CC, Gumpricht E. Caffeine-Containing, Adaptogenic-Rich Drink Modulates the Effects of Caffeine on Mental Performance and Cognitive Parameters: A Double-Blinded, Placebo-Controlled, Randomized Trial. Nutrients. 2020; 12(7):1922. https://doi.org/10.3390/nu12071922
Chicago/Turabian StyleBoolani, Ali, Daniel T. Fuller, Sumona Mondal, Tyler Wilkinson, Costel C. Darie, and Eric Gumpricht. 2020. "Caffeine-Containing, Adaptogenic-Rich Drink Modulates the Effects of Caffeine on Mental Performance and Cognitive Parameters: A Double-Blinded, Placebo-Controlled, Randomized Trial" Nutrients 12, no. 7: 1922. https://doi.org/10.3390/nu12071922