Plasma Adipokines Profile in Prepubertal Children with a History of Prematurity or Extrauterine Growth Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Clinical History and Physical Examination
2.3. Biochemical and Adipokine Analysis
2.4. Dietary Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2272. [Google Scholar] [CrossRef] [Green Version]
- Barfield, W.D. Public Health Implications of Very Preterm Birth. Clin. Perinatol. 2018, 45, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Luu, T.M.; Katz, S.L.; Leeson, P.; Thébaud, B.; Nuyt, A.M. Preterm birth: Risk factor for early-onset chronic diseases. CMAJ 2016, 188, 736–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopec, G.; Shekhawat, P.S.; Mhanna, M.J. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab. Syndr. Obes. 2017, 10, 285–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, T.C.; Drake, A.J. Preterm birth in evolutionary context: A predictive adaptive response? Philos. Trans. R. Soc. Lond B Biol. Sci. 2019, 374, 20180121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carolan-Olah, M.; Duarte-Gardea, M.; Lechuga, J. A critical review: Early life nutrition and prenatal programming for adult disease. J. Clin. Nurs. 2015, 24, 3716–3729. [Google Scholar] [CrossRef] [PubMed]
- Zozaya, C.; Díaz, C.; Saenz de Pipaón, M. How Should We Define Postnatal Growth Restriction in Preterm Infants? Neonatology 2018, 114, 177–180. [Google Scholar] [CrossRef]
- Izquierdo Renau, M.; Aldecoa-Bilbao, V.; Balcells Esponera, C.; del Rey Hurtado de Mendoza, B.; Iriondo Sanz, M.; Iglesias-Platas, I. Applying Methods for Postnatal Growth Assessment in the Clinical Setting: Evaluation in a Longitudinal Cohort of Very Preterm Infants. Nutrients 2019, 11, 2772. [Google Scholar] [CrossRef] [Green Version]
- Figueras-Aloy, J.; Palet-Trujols, C.; Matas-Barceló, I.; botet-Mussons, F.; Carbonell-Estrany, X. Extrauterine growth restriction in very preterm infant: Etiology, diagnosis, and 2-year follow-up. Eur. J. Pediatr. 2020, 1–11. [Google Scholar] [CrossRef]
- Martínez-Jiménez, M.D.; Gómez-García, F.J.; Gil-Campos, M.; Pérez-Navero, J.L. Comorbidities in Childhood Associated With Extrauterine Growth Restriction in Preterm Infants: A Scoping Review. Eur. J. Pediatr. 2020. [Google Scholar] [CrossRef]
- Ong, K.K.; Kennedy, K.; Castañeda-Gutiérrez, E.; Forsyth, S.; Godfrey, K.M.; Koletzko, B.; Latulippe, M.E.; Ozanne, S.E.; Rueda, R.; Schoemaker, M.H.; et al. Postnatal growth in preterm infants and later health outcomes: A systematic review. Acta Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancuso, P. The role of adipokines in chronic inflammation. Immunotargets Ther. 2016, 23, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [Green Version]
- Frithioff-Bøjsøe, C.; Lund, M.A.V.; Lausten-Thomsen, U.; Hedley, P.L.; Pedersen, O.; Christiansen, M.; Baker, J.L.; Hansen, T.; Holm, J.C. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Diabetes 2020, 21, 194–202. [Google Scholar] [CrossRef]
- Moreno-Mendez, E.; Quintero-Fabian, S.; Fernandez-Mejia, C.; Lazo-de-la-Vega-Monroy, M.L. Early-life programming of adipose tissue. Nutr. Res. Rev. 2020, 2, 1–16. [Google Scholar] [CrossRef]
- Sidiropoulou, E.J.; Paltoglou, G.; Valsamakis, G.; Margeli, A.; Mantzou, A.; Papassotiriou, I.; Hassiakos, D.; Iacovidou, N.; Mastorakos, G. Biochemistry, hormones and adipocytokines in prepubertal children born with IUGR evoke metabolic, hepatic and renal derangements. Sci. Rep. 2018, 8, 15691. [Google Scholar] [CrossRef]
- Kesavan, K.; Devaskar, S.U. Intrauterine Growth Restriction: Postnatal Monitoring and Outcomes. Pediatr. Clin. N. Am. 2019, 66, 403–423. [Google Scholar] [CrossRef]
- Ortiz-Espejo, M.; Pérez-Navero, J.L.; Olza, J.; Muñoz-Villanueva, M.C.; Aguilera, C.M.; Gil-Campos, M. Changes in plasma adipokines in prepubertal children with a history of extrauterine growth restriction. Nutrition 2013, 29, 1321–1325. [Google Scholar] [CrossRef]
- Duncan, A.F.; Frankfurt, J.A.; Heyne, R.J.; Rosenfeld, C.R. Biomarkers of adiposity are elevated in preterm very-low-birth-weight infants at 1, 2, and 3 y of age. Pediatr. Res. 2017, 81, 780–786. [Google Scholar] [CrossRef]
- Carrascosa, A.L.; Ferrández, A.L.; Yeste, D.F.; García-Dihinx, J.V.; Romo, A.M.; Copil, A.C.; Baguer, L.M. Spanish cross-sectional growth study 2008. Part I: Weight and height values in newborns of 26–42 weeks of gestational age. An. Pediatr. 2008, 68, 544–551. [Google Scholar] [CrossRef] [Green Version]
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet. Gynecol. 2019, 133, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Yudkin, P.L.; Aboualfa, M.; Eyre, J.A.; Redman, C.W.G.; Wilkinson, A.R. New birthweight and head circumference centiles for gestational ages 24 to 42 weeks. Early Hum. Dev. 1987, 15, 45–52. [Google Scholar] [CrossRef]
- Munoz, P.G.; Lopez, L.G.; Costa, C.M.; Villares, J.M.; Giner, C.P.; Maristany, C.P.; del Río, M.T. Consensus on Paediatric Parenteral Nutrition: A Document Approved by SENPE/SEGHNP/SEFH. Nutr. Hosp. 2007, 22, 710–719. [Google Scholar] [PubMed]
- Hernández, M.; Castellet, J.; Narvaiza, J.L.; Rincón, J.M.; Ruiz, I.; Sánchez, E.; Sobradillo, B.; Zurimendi, A. Growth Curves and Tables; IICD, Instituto de Investigación Sobre Crecimiento y Desarrollo, Fundación Faustino Orbegozo: Bilbao, Spain, 1988; pp. 1–29. [Google Scholar]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Gil Hernández, A. Chapter 2, Ingestas Dietéticas de Referencia, Objetivos Nutricionales y Guías; Chapter 9, Nutrición del Niño de 1–3 Años, Preescolar y Escolar; Tratado de Nutrición, Tomo 3, Nutrición Humana en el Estado de Salud, 3rd ed.; Panamericana: Madrid, Spain, 2017. [Google Scholar]
- Francisco, V.; Pino, J.; Gonzalez-Gay, M.A.; Mera, A.; Lago, F.; Gómez, R.; Mobasheri, A.; Gualillo, O. Adipokines and inflammation: Is it a question of weight? Br. J. Pharmacol. 2018, 175, 1569–1579. [Google Scholar] [CrossRef]
- Fietta, P.; Delsante, G. Focus on adipokines. Theor. Biol. Forum. 2013, 106, 103–129. [Google Scholar]
- Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity, kidney dysfunction and hypertension: Mechanistic links. Nat. Rev. Nephrol. 2019, 15, 367–385. [Google Scholar] [CrossRef]
- Mamdouh, M.; Shaban, S.; Ibrahim, A.; Zaki, M.M.; Ahmed, O.M.; Abdel-Daim, M.M. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity. J. Diabetes Res. 2017, 8095926. [Google Scholar] [CrossRef]
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olza, J.; Aguilera, C.M.; Gil-Campos, M.; Leis, R.; Bueno, G.; Valle, M.; Cañete, R.; Tojo, R.; Moreno, L.; Gil, A. A Continuous Metabolic Syndrome Score Is Associated with Specific Biomarkers of Inflammation and CVD Risk in Prepubertal Children. Ann. Nutr. Metab. 2015, 66, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, K.; Deckelbaum, R.J.; Saito, I.; Likitmaskul, S.; Morandi, A.; Pinelli, L.; Ishii, E.; Kida, K.; Abdalla, M. Adiponectin/resistin levels and insulin resistance in children: A four country comparison study. Int. J. Pediatr. Endocrinol. 2015, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedmeier, J.E.; Joss-Moore, L.A.; Lane, R.H.; Neu, J. Early postnatal nutrition and programming of the preterm neonate. Nutr. Rev. 2010, 69, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Aeberli, I.; Spinas, G.A.; Lehmann, R.; l’Allemand, D.; Molinari, L.; Zimmermann, M.B. Diet Determines Features of the Metabolic Syndrome in 6- To 14-year-old Children. Int. J. Vitam. Nutr. Res. 2009, 79, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Nier, A.; Brandt, A.; Baumann, A.; Conzelmann, I.B.; Özel, Y.; Bergheim, I. Metabolic Abnormalities in Normal Weight Children Are Associated with Increased Visceral Fat Accumulation, Elevated Plasma Endotoxin Levels and a Higher Monosaccharide Intake. Nutrients 2019, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Embleton, N.; Korada, M.; Wood, C.L.; Pearce, M.S.; Swamy, R.; Cheetham, T.D. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch Dis. Child. 2016, 101, 1026–1031. [Google Scholar] [CrossRef]
- Erhardt, E.; Foraita, R.; Pigeot, I.; Barba, G.; Veidebaum, T.; Tornaritis, M.; Michels, N.; Eiben, G.; Ahrens, W.; Moreno, L.A.; et al. Reference Values for Leptin and Adiponectin in Children Below the Age of 10 Based on the IDEFICS Cohort. Int. J. Obes. 2014, 38, S32–S38. [Google Scholar] [CrossRef] [Green Version]
- Perng, W.; Rifas-Shiman, S.L.; Hivert, M.F.; Chavarro, J.E.; Sordillo, J.; Oken, E. Metabolic Trajectories Across Early Adolescence: Differences by Sex, Weight, Pubertal Status and Race/Ethnicity. Ann. Hum. Biol. 2019, 1–10. [Google Scholar] [CrossRef]
- Fichna, M.; Fichna, P.; Gryczyńska, M.; Czarnywojtek, A.; Żurawek, M. Steroid Replacement in Primary Adrenal Failure Does Not Appear to Affect Circulating Adipokines. Endocrine 2015, 48, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Arabi, Y.M.; Jawdat, D.; Al-Dorzi, H.M.; Tamim, H.; Tamimi, W.; Bouchama, A.; Sadat, M.; Afesh, L.; Abdulla, M.L.; Mashaqbeh, W.; et al. Leptin, Ghrelin, and Leptin/Ghrelin Ratio in Critically Ill Patients. Nutrients 2020, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, E.H.; McLain, A.C.; Anderson, N.; Lawrence, D.; Boghossian, N.S.; Druschel, C.; Bell, E. Newborn Adipokines and Birth Outcomes. Paediatr. Perinat. Epidemiol. 2015, 29, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemet, R.; Shulman, Y.; Hemi, R.; Brandt, B.; Sivan, E.; Kanety, H.; Mazaki-Tovi, S. Disparity in fetal growth between twin and singleton gestation: The role of adipokines. J. Perinatol. 2018, 38, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Veselá, P.K.; Kaniok, R.; Bayer, M. Markers of bone metabolism, serum leptin levels and bone mineral density in preterm babies. J. Pediatr. Endocrinol. Metab. 2016, 29, 27–32. [Google Scholar] [CrossRef]
- Nakano, Y.; Itabashi, K.; Dobashi, K.; Mizuno, K. Longitudinal changes in adiponectin multimer levels in preterm infants. Early Hum. Dev. 2016, 95, 29–33. [Google Scholar] [CrossRef]
- Martos-Moreno, G.; Barrios, V.; Sáenz de Pipaón, M.; Pozo, J.; Dorronsoro, I.; Martínez-Biarge, M.; Quero, J.; Argente, J. Influence of prematurity and growth restriction on the adipokine profile, IGF1, and ghrelin levels in cord blood: Relationship with glucose metabolism. Eur. J. Endocrinol. 2009, 161, 381–389. [Google Scholar] [CrossRef]
- Palchevska, S.; Krstevska, M.; Shukarova, E.; Aluloska, N.; Jakimoska, M.; Kocevski, D.; Kocova, M. Comparing preterm and term newborns serum adiponectin and leptin concentrations and their correlations with anthropometric parameters. Maced. J. Med. Sci. 2012, 5, 317–323. [Google Scholar]
- Stawerska, R.; Szałapska, M.; Hilczer, M.; Lewiński, A. Ghrelin, insulin-like growth factor I and adipocytokines concentrations in born small for gestational age prepubertal children after the catch-up growth. J. Pediatr. Endocrinol. Metab. 2016, 29, 939–945. [Google Scholar] [CrossRef]
- Blakstad, E.W.; Moltu, S.J.; Nakstad, B.; Veierød, M.B.; Strømmen, K.; Júlíusson, P.B.; Almaas, A.N.; Rønnestad, A.E.; Brække, K.; Drevon, C.A.; et al. Enhanced nutrition improves growth and increases blood adiponectin concentrations in very low birth weight infants. Food Nutr. Res. 2016, 60, 33171. [Google Scholar] [CrossRef] [Green Version]
- Flexeder, C.; Thiering, E.; Kratzsch, J.; Klümper, C.; Koletzko, B.; Müller, M.J.; Koletzko, S.; Heinrich, J.; GINIplus and LISAplus Study Group. Is a child’s growth pattern early in life related to serum adipokines at the age of 10 years? Eur. J. Clin. Nutr. 2014, 68, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Suursalmi, P.; Korhonen, P.; Kopeli, T.; Nieminen, R.; Luukkaala, T.; Moilanen, E.; Tammela, O. Severe Bronchopulmonary Dysplasia, Growth, Nutrition, and Adipokines at School Age. Glob. Pediatr. Health 2016, 3, 2333794X16637290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Poelje, M.W.; van de Lagemaat, M.; Lafeber, H.N.; Van Weissenbruch, M.M.; Rotteveel, J. Relationship between fat mass measured by dual-energy X-ray absorptiometry and leptin in preterm infants between term age and 6 months’ corrected age. Horm. Res. Paediatr. 2014, 82, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.I.; Rossel, K.; Peña, V.; Garcia, M.; Cavada, G.; Avila, A.; Iñiguez, G.; Mericq, V. Patterns of Infancy Growth and Metabolic Hormonal Profile Are Different in Very-Low-Birth-Weight Preterm Infants Born Small for Gestational Age Compared to Those Born Appropriate for Gestational Age. Horm. Res. Paediatr. 2018, 89, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Toprak, D.; Gökalp, A.S.; Hatun, S.; Zengin, E.; Engin Arisoy, A.; Yumuk, Z. Serum leptin levels of premature and full-term newborns in early infancy: Metabolic catch-up of premature babies. Turk. J. Pediatr. 2004, 46, 232–238. [Google Scholar]
- Kawamata, R.; Suzuki, Y.; Yada, Y.; Koike, Y.; Kono, Y.; Yada, T.; Takahashi, N. Gut hormone profiles in preterm and term infants during the first 2 months of life. J. Pediatr. Endocrinol. Metab. 2014, 27, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Kistner, A.; Vanpée, M.; Hall, K. Leptin may enhance hepatic insulin sensitivity in children and women born small for gestational age. Endocr. Connect. 2013, 2, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Sipola-Leppänen, M.; Vääräsmäki, M.; Tikanmäki, M.; Matinolli, H.M.; Miettola, S.; Hovi, P.; Wehkalampi, K.; Ruokonen, A.; Sundvall, J.; Pouta, A.; et al. Cardiometabolic risk factors in young adults who were born preterm. Am. J. Epidemiol. 2015, 181, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Ng, P.C.; Lee, C.H.; Lam, C.W.; Chan, I.H.; Wong, E.; Fok, T.F. Resistin in preterm and term newborns: Relation to anthropometry, leptin, and insulin. Pediatr. Res. 2005, 58, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Gursoy, T.; Aliefendioglu, D.; Caglayan, O.; Aktas, A.; FOvali, F. Resistin levels in preterms: Are they influenced by fetal inflammatory course? J. Perinatol. 2011, 31, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korhonen, P.H.; Suursalmi, P.H.; Kopeli, T.; Nieminen, R.; Lehtimäki, L.; Luukkaala, T.; Korppi, M.; Saari, A.; Moilanen, E.; Tammela, O.K.T. Inflammatory activity at school age in very low birth weight bronchopulmonary dysplasia survivors. Pediatr. Pulmonol. 2015, 50, 683–690. [Google Scholar] [CrossRef]
- Kojima-Ishii, K.; Toda, N.; Okubo, K.; Tocan, V.; Ohyama, N.; Makimura, M.; Matsuo, T.; Ochiai, M.; Ohga, S.; Ihara, K. Metabolic and immunological assessment of small-for-gestational-age children during one-year treatment with growth hormone: The clinical impact of apolipoproteins. Endocr. J. 2018, 65, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giapros, V.; Vavva, E.; Siomou, E.; Kolios, G.; Tsabouri, S.; Cholevas, V.; Bairaktari, E.; Tzoufi, M.; Challa, A. Low-birth-weight, but not catch-up growth, correlates with insulin resistance and resistin level in SGA infants at 12 months. J. Matern. Fetal Neonatal Med. 2017, 30, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Del-Río-Navarro, B.E.; Pérez-Ontiveros, J.A.; Ruiz-Bedolla, E.; Josué Saucedo-Ramírez, O.J.; Villafaña, S.; Bravo, G.; Mailloux-Salinas, P.; Hong, E. Effect of six-month lifestyle intervention on adiponectin, resistin and soluble tumor necrosis factor-a receptors in obese adolescents. Endocr. J. 2014, 61, 921–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkholy, U.M.; Ahmed, I.A.; Karam, N.A.; Fathy Ali, Y.; Yosry, A. Assessment of left ventricular mass index could predict metabolic syndrome in obese children. J. Saudi Heart Assoc. 2016, 28, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo Turoni, C.; Chaila, Z.; Chahla, R.; Bazán de Casella, M.C.; Peral de Bruno, M. Vascular Function in Children with Low Birthweight and Its Relationship with Early Markers of Cardiovascular Risk. Horm. Res. Paediatr. 2016, 85, 396–405. [Google Scholar] [CrossRef]
- Nagasaki, H.; Takao Ohta, T. Extrauterine growth and adipocytokines in appropriate-for-gestational-age preterm infants. Pediatr. Int. 2016, 58, 584–588. [Google Scholar] [CrossRef]
- Kistner, A.; Deschmann, E.; Legnevall, L.; Vanpee, M. Preterm born 9-year-olds have elevated IGF-1 and low prolactin, but levels vary with behavioural and eating disorders. Acta Paediatr. 2014, 103, 1198–1205. [Google Scholar] [CrossRef]
- Blüher, S.; Panagiotou, G.; Petroff, D.; Markert, J.; Wagner, A.; Klemm, T.; Filippaios, A.; Keller, A.; Mantzoros, C.S. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity 2014, 22, 1701–1718. [Google Scholar] [CrossRef]
- Lau, C.H.; Muniandy, S. Novel adiponectin-resistin (AR) and insulin resistance (IRAR) indexes are useful integrated diagnostic biomarkers for insulin resistance, type 2 diabetes and metabolic syndrome: A case control study. Cardiovasc. Diabetol. 2011, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambroszkiewicz, J.; Chełchowska, M.; Rowicka, G.; Klemarczyk, W.; Strucińska, M.; Gajewska, J. Anti-Inflammatory and Pro-Inflammatory Adipokine Profiles in Children on Vegetarian and Omnivorous Diets. Nutrients 2018, 10, 1241. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.J.; Wootton, S.A.; Leaf, A.A.; Jackson, A.A. Preterm birth and body composition at term equivalent age: A systematic review and meta-analysis. Pediatrics 2012, 130, e640–e649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Perinatal Data | EUGR Group (n 38) | PREM Group (n 50) | p-Value |
---|---|---|---|
Gestational age (weeks) | 29.5 (25.0, 32.0) | 29.0 (25.0, 32.0) | 0.645 * |
Birth weight (g) | 1100.0 (660.0, 1707.0) | 1290 (796,1510) | 0.041 * |
Multiple pregnancy (%) | 31.6 | 42.9 | 0.543 ‡ |
Prenatal corticosteroids (%) | 81.3 | 57.9 | 0.003 ‡ |
Cesarean delivery (%) | 65.8 | 56.0 | 0.619 ‡ |
Apgar test score at minute 1 | 5.3 ± 2.8 | 6.5 ± 1.7 | 0.101 † |
Apgar test score at minute 5 | 7.6 ± 2.1 | 7.7 ± 2.3 | 0.988 † |
Hyaline membrane disease (%) | 42.1 | 36.0 | 0.707 ‡ |
Mechanical ventilation (%) | 16.8 | 64 | 0.001 ‡ |
Patent ductus arteriosus (%) | 23.7 | 12.0 | 0.147 ‡ |
Necrotizing enterocolitis (%) | 7.9 | 6.0 | 0.999 ‡ |
Bronchopulmonary displasia (%) | 23.7 | 13.0 | 0.205 ‡ |
Cerebral hemorrhage (%) | 21.1 | 12.2 | 0.52 ‡ |
Weight at 36 weeks-postmenstural age (g) | 1769.4 ± 149.6 | 2181.6 ± 213.7 | <0.001 † |
Weight at discharge (g) | 2475.0 (2245.0, 3200.0) | 2455.0 (2230.0, 3895.0) | 0.923 * |
Prepubertal Data | EUGR Group (n 38) | PREM Group (n 50) | Control Group (n 123) | p-Value |
---|---|---|---|---|
Age (years) | 9.0 a (3.0, 13.0) | 7.5 b (4.0, 12.0) | 9.0 a (6.0, 12.0) | <0.001 * |
Sex (M/F) (%) | 71.1/28.9 a | 52.0/48.0 b | 47.9/52.1 b | <0.05 ‡ |
BMI z-score § | −0.6 a (−2.3, 1.7) | −0.4 ab (−2.0, 3.5) | −0·2 b (−1.2, 0.8) | 0.012 * |
WC (cm) | 57.5 a (43.5, 83.0) | 59.0 a (46.0, 88.0) | 58.0 a (22.5, 90.0) | 0.367 * |
Obesity (%) | 0.0 a | 10.0 b | 0.0 a | <0.001 ‡ |
Delay weight-height (%) | 13.2 a | 4.0 b | 0.0 c | <0.001 ‡ |
Delay weight (%) | 21.0 a | 6.0 b | 0.0 c | <0.001 ‡ |
Delay height (%) | 24.0 a | 4.0 b | 0.0 c | <0.001 ‡ |
SBP (mmHg) | 114.0 a (86.0, 138.0) | 101.5 b (62.0, 129.0) | 90.0 c (48.0, 119.0) | <0.001 * |
DBP (mmHg) | 72.5 a (38.0, 89.0) | 58.0 b (34.0, 75.0) | 59.0 b (35.0, 84.0) | <0.001 * |
SH (%) || | 46.0 a | 10.0 b | 3.0 c | <0.001 ‡ |
DH (%) || | 37.0 a | 0.0 b | 3.0 c | <0.001 ‡ |
HDLc (mmol/L) | 1.5 a ± 0.3 | 1.4 a ± 0.3 | 1.7 b ± 0.3 | <0.001 † |
LDLc (mmol/L) | 2.4 ab ± 0.5 | 2.7 a ± 0.5 | 2. 4 b ± 0.6 | 0.01 † |
TC (mmol/L) | 4.2 a ± 0.6 | 4.4 a ± 0.6 | 4.4 a ± 0.7 | 0.314 † |
TG (mmol/L) | 0.6 a (0.3, 1.6) | 0.6 a (0.4, 2.3) | 0.6 a (0.2, 1.2) | 0.514 * |
Glucose (mmol/L) | 4.9 a (3.9, 6.3) | 4.7 b (3.8, 5.7) | 4.6 b (3.6, 5.8) | <0.05 * |
Insulin (pmol/L) | 32.9 a (11.5, 113.2) | 47.3 b (18.6, 187.7) | 35.8 a (10.7–150.4) | <0.05 * |
HOMA-IR ¶ | 1.0 ab (0.3, 3.6) | 1.3 a (0.5, 5.6) | 1.0 b (0.3–5) | 0.011 * |
Dietary Intake | DRIs | EUGR Group (n 38) | PREM Group (n 50) | Control Group (n 123) | p-Value |
---|---|---|---|---|---|
Energy (Kcal/day) | 2000 * | 1855.8 ± 546.2 a | 1755.5 ± 510.5 a | 1585.5 ± 122.5 a | 0.546 † |
Carbohydrates (%) | 45–60 | 46.8 ± 5.4 a | 58.5 ± 4.8 b | 38.7 ± 2.9 c | <0.011 ‡ |
Lipids (%) | 20–35 | 34.9 ± 6.2 a | 22.3 ± 5.4 b | 33.9 ± 3.3 a | <0.001 ‡ |
Proteins (%) | NS | 18.3 ± 3.2 a | 19.3 ± 3.5 a | 13.5 ± 2.3 b | <0.001 ‡ |
Adipokines | Parameters | Global Sample (n 211) | EUGR Group (n 38) | PREM Group (n 50) | Control Group (n 123) | ||||
---|---|---|---|---|---|---|---|---|---|
CC | p-Value | CC | p-Value | CC | p-Value | CC | p-Value | ||
Adiponectin | SBP | −0.387 | <0.001 | 0.270 | 0.106 | −0.214 | 0.135 | −0.114 | 0.220 |
DBP | −0.283 | <0.001 | −0.045 | 0.788 | −0.017 | 0.909 | −0.100 | 0.280 | |
HDL-C | 0.248 | <0.001 | 0.331 | 0.042 | 0.269 | 0.037 | −0.042 | 0.649 | |
Glucose | −0.168 | 0.015 | −0.082 | 0.626 | 0.080 | 0.579 | −0.100 | 0.272 | |
Resistin | −0.312 | <0.001 | −0.348 | 0.032 | −0.079 | 0.586 | 0.279 | 0.002 | |
Resistin | SBP | 0.441 | <0.001 | −0.109 | 0.519 | 0.106 | 0.466 | 0.060 | 0.521 |
DBP | 0.241 | <0.001 | 0.109 | 0.516 | 0.003 | 0.985 | −0.035 | 0.710 | |
HDL-C | −0.400 | <0.001 | −0.253 | 0.126 | −0.073 | 0.613 | −0.168 | 0.064 | |
LDL-C | 0.155 | 0.025 | 0.355 | 0.029 | −0.054 | 0.708 | 0.114 | 0.212 | |
Glucose | 0.155 | 0.025 | 0.012 | 0.944 | −0.059 | 0.686 | −0.014 | 0.881 | |
Leptin | BMI z-score | 0.616 | <0.001 | 0.829 | <0.001 | 0.745 | <0.001 | 0.458 | <0.001 |
WC | 0.651 | <0.001 | 0.796 | <0.001 | 0.792 | <0.001 | 0.515 | <0.001 | |
SBP | 0.262 | <0.001 | 0.203 | 0.228 | 0.410 | 0.003 | 0.078 | 0.400 | |
DBP | 0.147 | 0.035 | 0.106 | 0.526 | 0.455 | 0.001 | 0.042 | 0.650 | |
TG | 0.393 | <0.001 | 0.630 | <0.001 | 0.420 | 0.002 | 0.222 | 0.014 | |
TC | −0.040 | 0.560 | 0.321 | 0.049 | −0.035 | 0.810 | 0.016 | 0.858 | |
HDL-C | −0.277 | <0.001 | 0.038 | 0.821 | −0.538 | <0.001 | −0.274 | 0.002 | |
Glucose | 0.163 | 0.018 | 0.165 | 0.323 | −0.067 | 0.641 | 0.304 | <0.001 | |
Insulin | 0.593 | <0.001 | 0.692 | <0.001 | 0.656 | <0.001 | 0.450 | <0.001 | |
HOMA-IR | 0.572 | <0.001 | 0.690 | <0.001 | 0.612 | <0.001 | 0.454 | <0.001 | |
Resistin | 0.160 | 0.02 | 0.176 | 0.291 | −0.027 | 0.851 | 0.128 | 0.161 |
EUGR Group (n 38) | PREM Group (n 50) | |||
---|---|---|---|---|
Parameters | Adjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value |
Z-score BMI | 0.304 (0.131, 0.705) | 0.006 | 0.658 (0.371, 1.167) | 0.152 |
SBP | 1.198 (1.121, 1.279) | <0.001 | 1.075 (1.033, 1.119) | <0.001 |
HDL-C | 0.919 (0.874, 0.967) | 0.001 | 0.916 (0.882, 0.950) | <0.001 |
Adiponectin | 0.824 (0.682, 0.997) | 0.046 | 1 (0.980, 1.010) | 0.963 |
Leptin | 1.148 (0.847, 1.557) | 0.373 | 1.337 (1.128, 1.548) | 0.001 |
Resistin | 1.546 (1.186, 2.015) | 0.001 | 1.59 (1.309, 1.932) | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordóñez-Díaz, M.D.; Gil-Campos, M.; Flores-Rojas, K.; Muñoz-Villanueva, M.C.; Aguilera-García, C.M.; Torre-Aguilar, M.J.d.l.; Pérez-Navero, J.L. Plasma Adipokines Profile in Prepubertal Children with a History of Prematurity or Extrauterine Growth Restriction. Nutrients 2020, 12, 1201. https://doi.org/10.3390/nu12041201
Ordóñez-Díaz MD, Gil-Campos M, Flores-Rojas K, Muñoz-Villanueva MC, Aguilera-García CM, Torre-Aguilar MJdl, Pérez-Navero JL. Plasma Adipokines Profile in Prepubertal Children with a History of Prematurity or Extrauterine Growth Restriction. Nutrients. 2020; 12(4):1201. https://doi.org/10.3390/nu12041201
Chicago/Turabian StyleOrdóñez-Díaz, María Dolores, Mercedes Gil-Campos, Katherine Flores-Rojas, María Carmen Muñoz-Villanueva, Concepción María Aguilera-García, María Jose de la Torre-Aguilar, and Juan Luis Pérez-Navero. 2020. "Plasma Adipokines Profile in Prepubertal Children with a History of Prematurity or Extrauterine Growth Restriction" Nutrients 12, no. 4: 1201. https://doi.org/10.3390/nu12041201