An Enhanced Approach for Economic Evaluation of Long-Term Benefits of School-Based Health Promotion Programs
Abstract
:1. Introduction
2. Methods
2.1. Proposed Approach
2.2. A Model to Incorporate Program Effects on Weight Status, Physical Activity, and Fruit and Vegetables Consumption Levels
2.3. Model Inputs
2.3.1. Program Effects
2.3.2. Joint Transition Probabilities of Weight Status, Physical Activity, and Fruit and Vegetable Consumption Levels
2.3.3. Conditional Probability of Dying Given Weight Status, Physical Activity Level, Fruit Consumption, Vegetable Consumption, and Chronic Disease Status
2.4. Outcomes
2.5. Health Care Costs Attributable to Chronic Disease
2.6. Discounting
2.7. Simulated Hypothetical Program
2.8. Sensitivity Analysis
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Preventing Chronic Diseases: A Vital Investment. 2005. Available online: http://www.who.int/chp/chronic_disease_report/media/CANADA.pdf (accessed on 23 April 2015).
- Mirolla, M. The Cost of Chronic Disease in Canada. 2004. Available online: http://www.gpiatlantic.org/pdf/health/chroniccanada.pdf (accessed on 1 May 2016).
- World Health Organization. Preventing Chronic Diseases: A Vital Investment. 2005. Available online: http://www.who.int/chp/chronic_disease_report/en/ (accessed on 23 April 2015).
- Black, J.L.; Billette, J.-M. Do Canadians meet Canada’s Food Guide’s recommendations for fruits and vegetables? Appl. Physiol. Nutr. Metab. 2013, 38, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colley, R.C.; Garriguet, D.; Janssen, I.; Craig, C.L.; Clarke, J.; Tremblay, M.S. Physical activity of Canadian adults: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22, 7–14. [Google Scholar] [PubMed]
- Statistics Canada. Health Fact Sheets (82-625-X). 2016. Available online: http://www.statcan.gc.ca/pub/82-625-x/2014001/article/14104-eng.htm (accessed on 1 March 2016).
- Garriguet, D. Canadians’ eating habits. Health Rep. 2007, 18, 17–32. [Google Scholar] [PubMed]
- Colley, R.C.; Garriguet, D.; Janssen, I.; Craig, C.L.; Clarke, J.; Tremblay, M.S. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22, 15–23. [Google Scholar]
- Bayer, O.; Kruger, H.; von Kries, R.; Toschke, A.M. Factors associated with tracking of BMI: A meta-regression analysis on BMI tracking. Obesity (Silver Spring) 2011, 19, 1069–1076. [Google Scholar] [CrossRef]
- Juhola, J.; Magnussen, C.G.; Viikari, J.S.; Kahonen, M.; Hutri-Kahonen, N.; Jula, A.; Lehtimaki, T.; Akerblom, H.K.; Pietikainen, M.; Laitinen, T.; et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: The Cardiovascular Risk in Young Finns Study. J. Pediatr. 2011, 159, 584–590. [Google Scholar] [CrossRef]
- Must, A.; Strauss, R.S. Risks and consequences of childhood and adolescent obesity. Int. J. Obes. Relat. Metab. Disord. 1999, 23, S2–S11. [Google Scholar] [CrossRef]
- Craigie, A.M.; Lake, A.A.; Kelly, S.A.; Adamson, A.J.; Mathers, J.C. Tracking of obesity-related behaviours from childhood to adulthood: A systematic review. Maturitas 2011, 70, 266–284. [Google Scholar] [CrossRef] [Green Version]
- Fung, C.; Kuhle, S.; Lu, C.; Purcell, M.; Schwartz, M.; Storey, K.; Veugelers, P.J. From “best practice” to “next practice”: The effectiveness of school-based health promotion in improving healthy eating and physical activity and preventing childhood obesity. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Haby, M.M.; Vos, T.; Carter, R.; Moodie, M.; Markwick, A.; Magnus, A.; Tay-Teo, K.S.; Swinburn, B. A new approach to assessing the health benefit from obesity interventions in children and adolescents: The assessing cost-effectiveness in obesity project. Int. J. Obes. (Lond.) 2006, 30, 1463–1475. [Google Scholar] [CrossRef] [Green Version]
- Cecchini, M.; Sassi, F.; Lauer, J.A.; Lee, Y.Y.; Guajardo-Barron, V.; Chisholm, D. Tackling of unhealthy diets, physical inactivity, and obesity: Health effects and cost-effectiveness. Lancet 2010, 376, 1775–1784. [Google Scholar] [CrossRef]
- Trueman, P.; Haynes, S.M.; Felicity Lyons, G.; Louise McCombie, E.; McQuigg, M.S.; Mongia, S.; Noble, P.A.; Quinn, M.F.; Ross, H.M.; Thompson, F.; et al. Long-term cost-effectiveness of weight management in primary care. Int. J. Clin. Pract. 2010, 64, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Ekwaru, J.P.; Ohinmaa, A.; Tran, B.X.; Setayeshgar, S.; Johnson, J.A.; Veugelers, P.J. Cost-effectiveness of a school-based health promotion program in Canada: A life-course modeling approach. PLoS ONE 2017, 12, e0177848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, H.S.; Perez, A.; Li, Y.P.; Hoelscher, D.M.; Kelder, S.H.; Rivera, R. The cost-effectiveness of a school-based overweight program. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.Y.; Yang, Q.; Lowry, R.; Wechsler, H. Economic analysis of a school-based obesity prevention program. Obes. Res. 2003, 11, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Roux, L.; Pratt, M.; Tengs, T.O.; Yore, M.M.; Yanagawa, T.L.; Van Den Bos, J.; Rutt, C.; Brownson, R.C.; Powell, K.E.; Health, G.; et al. Cost effectiveness of community-based physical activity interventions. Am. J. Prev. Med. 2008, 35, 578–588. [Google Scholar] [CrossRef]
- Bemelmans, W.; van Baal, P.; Wendel-Vos, W.; Schuit, J.; Feskens, E.; Ament, A.; Hoogenveen, R. The costs, effects and cost-effectiveness of counteracting overweight on a population level. A scientific base for policy targets for the Dutch national plan for action. Prev. Med. 2008, 46, 127–132. [Google Scholar] [CrossRef]
- Global Burden of Disease risk factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–4422. [Google Scholar] [CrossRef] [Green Version]
- Statistics Canada. Canadian Community Health Survey 2014. Available online: http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=164081 (accessed on 1 March 2016).
- Tambay, J.L.; Catlin, G. Sample design of the national population health survey. Health Rep. 1995, 7, 29–38. [Google Scholar]
- Westfall, P.; Hoffman, J.J.; Jun, X. Joint Analysis of Multiple Categorical Dependent Variables in Organizational Research. Organ. Res. Methods 2007, 10, 673–688. [Google Scholar] [CrossRef]
- Statistics Canada. Table 053-0003—Elements of the Life Table, Canada, Provinces and Territories, Annual (2009/20011), CANSIM (Database). 2015. Available online: http://www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=0530003&&pattern=&stByVal=1&p1=1&p2=1&tabMode=dataTable&csid= (accessed on 17 July 2015).
- Preis, S.R.; Hwang, S.J.; Coady, S.; Pencina, M.J.; D’Agostino, R.B.; Savage, P.J.; Levy, D.; Fox, C.S. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 2009, 119, 1728–1735. [Google Scholar] [CrossRef] [Green Version]
- Robitaille, C.; Dai, S.; Waters, C.; Loukine, L.; Bancej, C.; Quach, S.; Ellison, J.; Campbell, N.; Tu, K.; Reimer, K.; et al. Diagnosed hypertension in Canada: Incidence, prevalence and associated mortality. CMAJ 2012, 184, E49–E56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandentorren, S.; Baldi, I.; Annesi Maesano, I.; Charpin, D.; Neukirch, F.; Filleul, L.; Cantagrel, A.; Tessier, J.F. Long-term mortality among adults with or without asthma in the PAARC study. Eur. Respir. J. 2003, 21, 462–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronnum-Hansen, H.; Davidsen, M.; Thorvaldsen, P.; Danish, M.S.G. Long-term survival and causes of death after stroke. Stroke 2001, 32, 2131–2136. [Google Scholar] [CrossRef] [PubMed]
- Gibertoni, D.; Mandreoli, M.; Rucci, P.; Fantini, M.P.; Rigotti, A.; Scarpioni, R.; Santoro, A. Excess mortality attributable to chronic kidney disease. Results from the PIRP project. J. Nephrol. 2016, 29, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Canadian Cancer Society’s Advisory Committee on Cancer Statistics. In Canadian Cancer Statistics 2015; Canadian Cancer Society: Toronto, ON, Canada, 2015.
- Nuesch, E.; Dieppe, P.; Reichenbach, S.; Williams, S.; Iff, S.; Juni, P. All cause and disease specific mortality in patients with knee or hip osteoarthritis: Population based cohort study. BMJ 2011, 342, d1165. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 2007, 116, 894–900. [Google Scholar] [CrossRef]
- Fernandez, M.; Boyle, E.; Hartvigsen, J.; Ferreira, M.L.; Refshauge, K.M.; Maher, C.G.; Christensen, K.; Hopper, J.L.; Ferreira, P.H. Is this back pain killing me? All-cause and cardiovascular-specific mortality in older Danish twins with spinal pain. Eur. J. Pain 2017, 21, 938–948. [Google Scholar] [CrossRef]
- Khanna, R.C.; Murthy, G.V.; Giridhar, P.; Krishnaiah, S.; Pant, H.B.; Palamaner Subash Shantha, G.; Charkabati, S.; Gilbert, C.; Rao, G.N. Cataract, visual impairment and long-term mortality in a rural cohort in India: The Andhra Pradesh Eye Disease Study. PLoS ONE 2013, 8, e78002. [Google Scholar] [CrossRef]
- Ruhl, C.E.; Everhart, J.E. Gallstone disease is associated with increased mortality in the United States. Gastroenterology 2011, 140, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Andersson, T.; Magnuson, A.; Bryngelsson, I.L.; Frobert, O.; Henriksson, K.M.; Edvardsson, N.; Poçi, D. All-cause mortality in 272,186 patients hospitalized with incident atrial fibrillation 1995-2008: A Swedish nationwide long-term case-control study. Eur. Heart J. 2013, 34, 1061–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguli, M.; Dodge, H.H.; Shen, C.; Pandav, R.S.; DeKosky, S.T. Alzheimer disease and mortality: A 15-year epidemiological study. Arch. Neurol. 2005, 62, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Statistics Canada. Cancer Survival Statistics 1992 to 2003. Catalogue No. 82-226-X 2012. Available online: https://www150.statcan.gc.ca/n1/en/catalogue/82-226-X2012001 (accessed on 1 March 2016).
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2016 (GBD 2016) Results Seattle, United States: Institute for Health Metrics and Evaluation (IHME). 2017. Available online: http://ghdx.healthdata.org/gbd-results-tool (accessed on 28 September 2018).
- Podgor, M.J.; Leske, M.C. Estimating incidence from age-specific prevalence for irreversible diseases with differential mortality. Stat. Med. 1986, 5, 573–578. [Google Scholar] [CrossRef]
- Galantai, A. The theory of Newton’s method. J. Comput. Appl. Math. 2000, 124, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Schultz, S.E.; Kopec, J.A. Impact of chronic conditions. Health Rep. 2003, 14, 41–53. [Google Scholar] [PubMed]
- Jia, H.; Lubetkin, E.I. The impact of obesity on health-related quality-of-life in the general adult US population. J. Public Health (Oxf.) 2005, 27, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Canadian Institute for Health Information. National Health Expenditure Trends, 1975 to 2017: Open Data. 2018. Available online: https://www.cihi.ca/en/national-health-expenditure-trends-1975-to-2017-open-data (accessed on 1 October 2018).
- Public Health Agency of Canada. Economic Burden of Illness in Canada (EBIC) Online Tool. Available online: http://ebic-femc.phac-aspc.gc.ca/index.php (accessed on 28 September 2018).
- Statistics Canada. Table 17-10-0005-01 Population Estimates on July 1st, by Age and Sex. 2018. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710000501 (accessed on 28 September 2018).
- Weinstein, M.C.; Siegel, J.E.; Gold, M.R.; Kamlet, M.S.; Russell, L.B. Recommendations of the Panel on Cost-effectiveness in Health and Medicine. JAMA 1996, 276, 1253–1258. [Google Scholar] [CrossRef]
- Doubilet, P.; Begg, C.B.; Weinstein, M.C.; Braun, P.; McNeil, B.J. Probabilistic sensitivity analysis using Monte Carlo simulation. A practical approach. Med. Decis. Mak. 1985, 5, 157–177. [Google Scholar] [CrossRef]
- SAS Institute Inc. Base SAS ® 9.4 Procedures Guide; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- TreeAge Software. TreeAge Pro 2020. Williamstown, MA. 2020. Available online: https://www.treeage.com (accessed on 1 January 2020).
- Jeon, C.Y.; Lokken, R.P.; Hu, F.B.; van Dam, R.M. Physical activity of moderate intensity and risk of type 2 diabetes: A systematic review. Diabetes Care 2007, 30, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Dauchet, L.; Amouyel, P.; Hercberg, S.; Dallongeville, J. Fruit and vegetable consumption and risk of coronary heart disease: A meta-analysis of cohort studies. J. Nutr. 2006, 136, 2588–2593. [Google Scholar] [CrossRef] [Green Version]
- Lieffers, J.R.L.; Ekwaru, J.P.; Ohinmaa, A.; Veugelers, P.J. The economic burden of not meeting food recommendations in Canada: The cost of doing nothing. PLoS ONE 2018, 13, e0196333. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Janssen, I. The economic costs associated with physical inactivity and obesity in Canada: An update. Can. J. Appl. Physiol. 2004, 29, 90–115. [Google Scholar] [CrossRef] [PubMed]
- Hillman, D.; Mitchell, S.; Streatfeild, J.; Burns, C.; Bruck, D.; Pezzullo, L. The economic cost of inadequate sleep. Sleep 2018, 41. [Google Scholar] [CrossRef] [PubMed]
- Rittenhouse, B. Uses of Models in Economic Evaluations of Medicines and Other Health Technologies; Office of Health Economics: London, UK, 1996. [Google Scholar]
Risk Factor | ||||
---|---|---|---|---|
Chronic Disease | Weight Status | Physical Activity | Fruit Consumption | Vegetable Consumption |
Diabetes | X | X | X | |
Hypertensive heart disease | X | |||
Asthma | X | |||
Ischemic heart disease | X | X | X | X |
Ischemic stroke | X | X | X | X |
Hemorrhagic stroke | X | X | X | |
Chronic kidney disease | X | |||
Leukemia | X | |||
Osteoarthritis | X | |||
Gout | X | |||
Low back pain | X | |||
Cataract | X | |||
Gallbladder and biliary diseases | X | |||
Atrial fibrillation and flutter | X | |||
Alzheimer’s disease and other dementias | X | |||
Breast cancer | X | X | ||
Colon and rectum cancer | X | X | ||
Esophageal cancer | X | X | ||
Gallbladder and biliary tract cancer | X | |||
Kidney cancer | X | |||
Larynx cancer | X | |||
Lip and oral cavity cancer | X | |||
Liver cancer | X | |||
Multiple myeloma | X | |||
Nasopharynx cancer | X | |||
Other pharynx cancer | X | |||
Non-Hodgkin’s lymphoma | X | |||
Ovarian cancer | X | |||
Pancreatic cancer | X | |||
Thyroid cancer | X | |||
Tracheal bronchus and lung cancer | X | |||
Uterine cancer | X |
Program Effect on | Considering only Weight Status | Considering All 4 Risk Factors | Ratio (ICER1/ICER2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overweight (α1) | Obesity (α2) | Physical Activity (ψ1) | Fruit (λ1) | Vegetables (τ1) | Cost | Incremental Effect | ICER1 | 95% CI | Incremental Effect | ICER2 | 95% CI | Ratio | 95% CI |
1.0 | 0.7 | 1.0 | 1.0 | 1.0 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0066 | 15,040 | 14,174–15,919 | 1.000 | 1.000–1.000 |
1.0 | 0.7 | 1.0 | 1.0 | 1.1 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0067 | 14,915 | 14,054–15,785 | 1.008 | 1.007–1.010 |
1.0 | 0.7 | 1.0 | 1.1 | 1.0 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0067 | 14,860 | 14,001–15,726 | 1.012 | 1.010–1.015 |
1.0 | 0.7 | 1.0 | 1.1 | 1.1 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0067 | 14,738 | 13,882–15,600 | 1.021 | 1.017–1.025 |
1.0 | 0.7 | 1.1 | 1.0 | 1.0 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0069 | 14,483 | 13,655–15,320 | 1.038 | 1.037–1.040 |
1.0 | 0.7 | 1.1 | 1.0 | 1.1 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0069 | 14,367 | 13,543–15,192 | 1.047 | 1.045–1.050 |
1.0 | 0.7 | 1.1 | 1.1 | 1.0 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0069 | 14,316 | 13,492–15,141 | 1.051 | 1.048–1.055 |
1.0 | 0.7 | 1.1 | 1.1 | 1.1 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0070 | 14,202 | 13,386–15,022 | 1.059 | 1.055–1.065 |
1.0 | 0.7 | 1.9 | 1.9 | 1.9 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0092 | 10,768 | 10,115–11,400 | 1.397 | 1.368–1.434 |
1.0 | 0.7 | 1.9 | 1.9 | 2.0 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0093 | 10,719 | 10,066–11,350 | 1.403 | 1.374–1.441 |
1.0 | 0.7 | 1.9 | 2.0 | 1.9 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0093 | 10,716 | 10,059–11,348 | 1.403 | 1.374–1.442 |
1.0 | 0.7 | 1.9 | 2.0 | 2.0 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0093 | 10,668 | 10,012–11,298 | 1.410 | 1.380–1.450 |
1.0 | 0.7 | 2.0 | 1.9 | 1.9 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0093 | 10,632 | 9988–11,255 | 1.415 | 1.386–1.453 |
1.0 | 0.7 | 2.0 | 1.9 | 2.0 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0094 | 10,585 | 9942–11,206 | 1.421 | 1.391–1.460 |
1.0 | 0.7 | 2.0 | 2.0 | 1.9 | 99.26 | 0.0066 | 15,040 | 14,174–15,919 | 0.0094 | 10,582 | 9935–11,204 | 1.421 | 1.391–1.461 |
1.0 | 0.7 | 2.0 | 2.0 | 2.0 | 99.26 | 0.0066 | 15,040 | 14,174-15,919 | 0.0094 | 10,535 | 9888–11,156 | 1.428 | 1.397–1.468 |
Program Effect on | Considering only Weight Status | Considering all 4 Risk Factors | Ratio (ICER1/ICER2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overweight (α1) | Obesity (α2) | Physical Activity (ψ1) | Fruit (λ1) | Vegetables (τ1) | Cost | Incremental Effect | ICER1 | 95% CI | Incremental Effect | ICER2 | 95% CI | Ratio | 95% CI |
1.0 | 0.7 | 1.0 | 1.0 | 1.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02642 | 3757 | 3169–4328 | 1.000 | 1.000–1.000 |
1.0 | 0.7 | 1.0 | 1.0 | 1.1 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02655 | 3738 | 3154–4303 | 1.005 | 1.004–1.007 |
1.0 | 0.7 | 1.0 | 1.1 | 1.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02659 | 3733 | 3152–4296 | 1.006 | 1.005–1.009 |
1.0 | 0.7 | 1.0 | 1.1 | 1.1 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02672 | 3714 | 3138–4275 | 1.012 | 1.009–1.015 |
1.0 | 0.7 | 1.1 | 1.0 | 1.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02705 | 3670 | 3101–4223 | 1.024 | 1.021–1.026 |
1.0 | 0.7 | 1.1 | 1.0 | 1.1 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02718 | 3652 | 3087–4203 | 1.029 | 1.025–1.033 |
1.0 | 0.7 | 1.1 | 1.1 | 1.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02721 | 3647 | 3085–4195 | 1.030 | 1.026–1.034 |
1.0 | 0.7 | 1.1 | 1.1 | 1.1 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.02735 | 3629 | 3072–4175 | 1.035 | 1.030–1.041 |
1.0 | 0.7 | 1.9 | 1.9 | 1.9 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03270 | 3035 | 2598–3474 | 1.238 | 1.200–1.275 |
1.0 | 0.7 | 1.9 | 1.9 | 2.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03280 | 3026 | 2590–3461 | 1.242 | 1.203–1.280 |
1.0 | 0.7 | 1.9 | 2.0 | 1.9 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03280 | 3027 | 2591–3463 | 1.241 | 1.203–1.280 |
1.0 | 0.7 | 1.9 | 2.0 | 2.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03290 | 3017 | 2583–3451 | 1.245 | 1.206–1.284 |
1.0 | 0.7 | 2.0 | 1.9 | 1.9 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03300 | 3008 | 2576–3440 | 1.249 | 1.210–1.287 |
1.0 | 0.7 | 2.0 | 1.9 | 2.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03310 | 2999 | 2569–3429 | 1.253 | 1.213–1.292 |
1.0 | 0.7 | 2.0 | 2.0 | 1.9 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03309 | 3000 | 2569–3430 | 1.253 | 1.212–1.292 |
1.0 | 0.7 | 2.0 | 2.0 | 2.0 | 99.26 | −0.02642 | 3757 | 3169–4328 | −0.03319 | 2990 | 2562–3419 | 1.256 | 1.215–1.297 |
Program Effect on | Considering only Weight Status | Considering All 4 Risk Factors | Ratio (ROI1/ROI2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overweight (α1) | Obesity (α2) | Physical Activity (ψ1) | Fruit (λ1) | Vegetables (τ1) | Cost | Cost Savings † | ROI1 (%) | 95% CI | Cost Savings † | ROI2 (%) | 95% CI | Ratio | 95% CI |
1.0 | 0.7 | 1.0 | 1.0 | 1.0 | 99.26 | 321.615 | 324% | 281–384% | 321.615 | 324% | 281–384% | 1.000 | 1.000–1.000 |
1.0 | 0.7 | 1.0 | 1.0 | 1.1 | 99.26 | 321.615 | 324% | 281–384% | 323.273 | 326% | 283–386% | 0.995 | 0.993–0.996 |
1.0 | 0.7 | 1.0 | 1.1 | 1.0 | 99.26 | 321.615 | 324% | 281–384% | 323.668 | 326% | 283–386% | 0.994 | 0.991–0.995 |
1.0 | 0.7 | 1.0 | 1.1 | 1.1 | 99.26 | 321.615 | 324% | 281–384% | 325.326 | 328% | 285–388% | 0.989 | 0.985–0.991 |
1.0 | 0.7 | 1.1 | 1.0 | 1.0 | 99.26 | 321.615 | 324% | 281–384% | 329.250 | 332% | 288–393% | 0.977 | 0.974–0.980 |
1.0 | 0.7 | 1.1 | 1.0 | 1.1 | 99.26 | 321.615 | 324% | 281–384% | 330.911 | 333% | 290–394% | 0.972 | 0.968–0.976 |
1.0 | 0.7 | 1.1 | 1.1 | 1.0 | 99.26 | 321.615 | 324% | 281–384% | 331.304 | 334% | 290–395% | 0.971 | 0.967–0.975 |
1.0 | 0.7 | 1.1 | 1.1 | 1.1 | 99.26 | 321.615 | 324% | 281–384% | 332.965 | 335% | 292–396% | 0.966 | 0.961–0.971 |
1.0 | 0.7 | 1.9 | 1.9 | 1.9 | 99.26 | 321.615 | 324% | 281–384% | 398.108 | 401% | 350–469% | 0.808 | 0.784–0.833 |
1.0 | 0.7 | 1.9 | 1.9 | 2.0 | 99.26 | 321.615 | 324% | 281–384% | 399.362 | 402% | 352–470% | 0.805 | 0.781–0.831 |
1.0 | 0.7 | 1.9 | 2.0 | 1.9 | 99.26 | 321.615 | 324% | 281–384% | 399.254 | 402% | 352–470% | 0.806 | 0.781–0.832 |
1.0 | 0.7 | 1.9 | 2.0 | 2.0 | 99.26 | 321.615 | 324% | 281–384% | 400.510 | 403% | 353–471% | 0.803 | 0.779–0.829 |
1.0 | 0.7 | 2.0 | 1.9 | 1.9 | 99.26 | 321.615 | 324% | 281–384% | 401.698 | 405% | 354–473% | 0.801 | 0.777–0.827 |
1.0 | 0.7 | 2.0 | 1.9 | 2.0 | 99.26 | 321.615 | 324% | 281–384% | 402.954 | 406% | 355–474% | 0.798 | 0.774–0.825 |
1.0 | 0.7 | 2.0 | 2.0 | 1.9 | 99.26 | 321.615 | 324% | 281–384% | 402.845 | 406% | 355–474% | 0.798 | 0.774–0.825 |
1.0 | 0.7 | 2.0 | 2.0 | 2.0 | 99.26 | 321.615 | 324% | 281–384% | 404.101 | 407% | 356–475% | 0.796 | 0.771–0.823 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekwaru, J.P.; Ohinmaa, A.; Veugelers, P.J. An Enhanced Approach for Economic Evaluation of Long-Term Benefits of School-Based Health Promotion Programs. Nutrients 2020, 12, 1101. https://doi.org/10.3390/nu12041101
Ekwaru JP, Ohinmaa A, Veugelers PJ. An Enhanced Approach for Economic Evaluation of Long-Term Benefits of School-Based Health Promotion Programs. Nutrients. 2020; 12(4):1101. https://doi.org/10.3390/nu12041101
Chicago/Turabian StyleEkwaru, John Paul, Arto Ohinmaa, and Paul J. Veugelers. 2020. "An Enhanced Approach for Economic Evaluation of Long-Term Benefits of School-Based Health Promotion Programs" Nutrients 12, no. 4: 1101. https://doi.org/10.3390/nu12041101
APA StyleEkwaru, J. P., Ohinmaa, A., & Veugelers, P. J. (2020). An Enhanced Approach for Economic Evaluation of Long-Term Benefits of School-Based Health Promotion Programs. Nutrients, 12(4), 1101. https://doi.org/10.3390/nu12041101