The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy
Abstract
1. Introduction
2. What is Alcoholic Cardiomyopathy
2.1. The Natural Course of ACM
2.2. Is ethanol the Real Cause of ACM
2.3. Ethanol or Acetaldehyde
2.4. The dose-Related Effect of Ethanol and Beverage Types on the Heart
2.5. The effects of Moderate Consumption of Ethanol and Binge-drinking
2.6. The Effect of Low-dose Ethanol on ACM
2.7. Gender Differences in ACM
3. Pathological Aspects of ACM
3.1. Oxidative and Energy Disturbances in ACM
3.2. Ethanol-induced Myocyte Apoptosis and Autophagy
3.3. Ethanol-induced Heart Fibrosis
3.4. Ethanol Disruption of [Ca2+] Transients and SR Activation
3.5. Sarcomere Damage and Dysfunction in ACM
3.6. Cardiac Hypertrophy and Remodeling in ACM
3.7. End-stage ACM
4. Prognosis of ACM
5. Treatment of ACM
6. Discussion and Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Klatsky, A.L. Alcohol and cardiovascular diseases: A historical overview. Ann. N. Y. Acad. Sci. 2002, 957, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Pozniak, V.; Rekve, D. (Eds.) Global Strategy to Reduce Harmful Use of Alcohol; WHO Reports; WHO: Geneve, Switzerland, 2010; pp. 1–44. Available online: https://www.who.int/substance_abuse/publications/global_strategy_reduce_harmful_use_alcohol/en/ (accessed on 20 February 2020).
- Moure-Rodríguez, L. Trends in alcohol use among young people according to the pattern of consumption on starting university: A 9-year folow-up study. PLoS ONE 2018, 13, e0193741. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.E. The Burden of Alcohol Use: Focus on Children and Preadolescents. Alcohol Res. Curr. Rev. 2013, 35, 1–4. [Google Scholar]
- Rehm, J.; Mathers, C.; Povova, S.; Thavorncharoensap, M.; Teerawattananon, Y.; Patra, J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009, 373, 2223–2233. [Google Scholar] [CrossRef]
- Fernández-Solà, J.; Estruch, R. Alcoholic Cardiomyopathy: Old and New insights. Alcohol Drug Dep. 2017, 1, 5–6. [Google Scholar] [CrossRef]
- Heinz, A.; Beck, A.; Halil, M.G.; Pilhatsch, M.; Smolka, M.N.; Liu, S. Addiction as Learned Behavior Patterns. J. Clin. Med. 2019, 8, 1086. [Google Scholar] [CrossRef]
- Vallance, K.; Stockwell, T.; Pauly, B.; Chow, C.; Gray, E.; Krysowaty, B.; Perkin, K.; Zhao, J. Do managed alcohol programs change patterns of alcohol consumption and reduce related harm? A pilot study. Harm Reduct. J. 2016, 13, 13. [Google Scholar] [CrossRef]
- Albanesi Filho, F.M.; Castier, M.B.; Boghossian, S.H.; da Silva, T.T. Significance of alcohol abstinence in alcoholic cardiomyopathy with moderate left ventricular dysfunction. Arq. Bras. Cardiol. 1998, 71, 781–785, [Article in Portuguese]. [Google Scholar]
- Dguzeh, U.; Haddad, N.C.; Smith, K.T.S.; Johnson, J.O.; Doye, A.A.; Gwathmey, J.K.; Haddad, G.H. Alcoholism: A Multi-Systemic Cellular Insult to Organs. Int. J. Environ. Res. Public Health 2018, 15, 1083. [Google Scholar] [CrossRef]
- Szabo, G.; Lippai, D. Converging actions of alcohol on liver and brain immune signaling. Int. Rev. Neurobiol. 2014, 118, 359–380. [Google Scholar]
- National Institute on Alcohol Abuse and Alcoholism (NIAAA). Health risks and benefits of alcohol consumption. Alcohol Res. Health 2000, 24, 5–11. [Google Scholar]
- Yan, S.; Khambu, B.; Hong, H.; Liu, G.; Huda, N.; Yin, X.M. Autophagy, Metabolism, and Alcohol-Related Liver Disease: Novel Modulators and Functions. Int. J. Mol. Sci. 2019, 20, 5029. [Google Scholar] [CrossRef] [PubMed]
- González-Reimers, E.; Santolaria-Fernández, F.; Martín-González, M.C.; Fernández-Rodríguez, C.M.; Quintero-Platt, G. Alcoholism: A systemic proinflammatory condition. World J. Gastroenterol. 2014, 20, 14660–14671. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.C.; Wilson, L.F. The fractions of cancer attributable to modifiable factors: A global review. Cancer Epidemiol. 2016, 44, 203–221. [Google Scholar] [CrossRef]
- Ratna, A.; Mandrekar, P. Alcohol and Cancer: Mechanisms and Therapies. Biomolecules 2017, 7, 61. [Google Scholar] [CrossRef]
- Szabo, G.; Saha, B. Alcohol’s Effect on Host Defense. Alcohol Res. 2015, 37, 159–170. [Google Scholar]
- Piano, M.R.; Phillips, S.A. Alcoholic cardiomyopathy: Pathophysiologic insights. Cardiovasc. Toxicol. 2014, 14, 291–308. [Google Scholar] [CrossRef]
- Fernández-Solà, J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat. Rev. Cardiol. 2015, 12, 576–587. [Google Scholar] [CrossRef]
- Ren, J.; Wold, L.E. Mechanisms of alcoholic heart disease. Adv. Cardiovasc. Dis. 2008, 2, 497–506. [Google Scholar] [CrossRef]
- Seth, D.; D’Souza El-Guindy, N.B.; Apte, M.; Mari, M.; Dooley, S.; Neuman, M.; Haber, P.S.; Kundu, G.C.; Darwanto, A.; de Villiers, W.J.; et al. Alcohol, signaling, and ECM turnover. Alcohol Clin. Exp. Res. 2010, 34, 4–18. [Google Scholar] [CrossRef]
- Chan, L.N.; Anderson, G.D. Pharmacokinetic and pharmacodynamic drug interaction with ethanol (alcohol). Clin Pharm. 2014, 53, 1115–1136. [Google Scholar] [CrossRef] [PubMed]
- Obad, A.; Peeran, A.; Little, J.I.; Haddad, G.E.; Tarzami, S.T. Alcohol-Mediated Organ Damages: Heart and Brain. Front. Pharm. 2018, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Cotticelli, G.; Festi, D.-; Schiumerini, R.; Addolorato, G.; Ferrulli, A.; Merli, M.; Lucidi, C.; Milani, S.; Panella, C.; et al. The effects of alcohol on gastrointestinal tract, liver and pancreas: Evidence-based suggestions for clinical management. Eur. Rev. Med. Pharm. Sci. 2015, 19, 1922–1940. [Google Scholar]
- Gika, H.G.; Wilson, I.D. Global metabolic profiling for the study of alcohol-related disorders. Bioanalysis 2014, 6, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. Oxidative and Non-Oxidative Metabolomics of Ethanol. Curr Drug Metab. 2016, 17, 327–335. [Google Scholar] [CrossRef]
- Moiseev, V.S. Alcoholic cardiomyopathy. Existence of cofactors of development: Alcohol sensitivity and genetic factors). Kardiologiia 2003, 43, 4–8. [Google Scholar]
- Chartier, K.G.; Vaeth, P.A.; Caetano, R. Focus on: Ethnicity and the social and health harms from drinking. Alcohol Res. 2013, 35, 229–237. [Google Scholar]
- Molina, P.E.; Gardner, J.D.; Souza-Smith, F.M.; Whitaker, A.M. Alcohol abuse: Critical pathophysiological processes and contribution to disease burden. Physiology (Bethesda) 2014, 29, 203–215. [Google Scholar] [CrossRef]
- Mirijello, A.; Tarli, C.; Vassallo, G.A.; Sestito, L.; Antonelli, M.; d’Angelo, C.; Ferrulli, A.; De Cosmo, S.; Gasbarrini, A.; Addolorato, G.l. Alcoholic cardiomyopathy: What is known and what is not known. Eur. J. Intern. Med. 2017, 43, 1–5. [Google Scholar] [CrossRef]
- Rodrigues, P.; Santos-Ribeiro, S.; Teodoro, T.; Gomes, F.V.; Leal, I.; Reis, J.P.; Goff, D.C.; Gonçalves, A.; Lima, J.A.C. Association Between Alcohol Intake and Cardiac Remodeling. J. Am. Coll. Cardiol. 2018, 72, 1452–1462. [Google Scholar] [CrossRef]
- Maisch, B. Alcoholic cardiomyopathy: Alcoholic cardiomyopathy. The result of dosage and individual predisposition. Herz 2016, 41, 484–493. [Google Scholar] [CrossRef]
- Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of alcohol consumption with selected cardiovascular disease outcomes: A systematic review and meta-analysis. BMJ 2011, 342, d671. [Google Scholar] [CrossRef] [PubMed]
- Glymour, M.M. Alcohol and cardiovascular disease. BMJ 2014, 349, g4334. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, I.; Sotoda, Y. Alcohol drinking and peripheral arterial disease of lower extremity. Nihon Arukoru Yakubutsu Igakkai Zasshi 2014, 49, 13–27. (In Japanese) [Google Scholar] [PubMed]
- Huang, Y.; Li, Y.; Zheng, S.; Yang, X.; Wang, T.; Zeng, J. Moderate alcohol consumption and atherosclerosis: Meta-analysis of effects on lipids and inflammation. Wien Klin. Wochenschr. 2017, 129, 835–843. [Google Scholar] [CrossRef]
- Puddey, I.B.; Mori, T.A.; Barden, A.E.; Beilin, L.J. Alcohol and Hypertension-New Insights and Lingering Controversies. Curr. Hypertens. Rep. 2019, 21, 79. [Google Scholar] [CrossRef]
- Urbano-Márquez, A.; Estruch, R.; Navarro-López, F.; Grau, J.M.; Mont, L.; Rubin, E. The effects of alcoholism on skeletal and cardiac muscle. N. Engl. J. Med. 1989, 320, 409–415. [Google Scholar] [CrossRef]
- Iacovoni, A.; De Maria, R.; Gavazzi, A. Alcoholic cardiomyopathy. J. Cardiovasc. Med. (Hagerstown) 2010, 11, 884–892. [Google Scholar] [CrossRef]
- Guzzo-Merello, G.; Cobo-Marcos, M.; Gallego-Delgado, M.; García-Pavía, P. Alcoholic cardiomyopathy. World J. Cardiol. 2014, 6, 771–781. [Google Scholar] [CrossRef]
- Day, E.; Rudd, J.H.F. Alcohol use disorders and the heart. Addiction 2019, 114, 1670–1678. [Google Scholar] [CrossRef]
- George, A.; Figueredo, V.M. Alcoholic cardiomyopathy: A review. J. Card Fail. 2011, 17, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, D.; Jurisch, D.; Neef, M.; Hagendorff, A. Alcohol and arrhythmias. Herz 2016, 41, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Mukamal, K.J.; Chiuve, S.E.; Rimm, E.B. Alcohol consumption and risk for coronary heart disease in men with healthy lifestyles. Arch. Intern. Med. 2006, 166, 2145–2150. [Google Scholar] [CrossRef]
- Bagnardi, V.; Sorini, E.; Disalvatore, D.; Assi, V.; Corrao, G.; De Stefani, R. Collaborative: Alcohol less is better group: Outcomes of an Italian community-based prevention programme on reducing per-capita alcohol consumption. Addiction 2011, 106, 102–110. [Google Scholar] [CrossRef]
- Urbano-Márquez, A.; Estruch, R.; Fernández-Solà, J.; Nicolás, J.M.; Paré, J.C.; Rubin, E. The greater risk of alcoholic cardiomyopathy and myopathy in women compared with men. JAMA 1995, 274, 149–154. [Google Scholar] [CrossRef]
- Fernández-Solà, J. Management of extrahepatic manifestations in alcoholic liver disease. Clin. Liver Dis. (Hoboken) 2013, 2, 89–91. [Google Scholar] [CrossRef]
- Singal, A.K.; Bataller, R.; Ahn, J.; Kamath, P.S.; Shah, V.H. ACG Clinical Guideline: Alcoholic Liver Disease. Am. J. Gastroenterol. 2018, 113, 175–194. [Google Scholar] [CrossRef]
- Papadakis, J.A.; Ganotakis, E.S.; Mikhailidis, D.P. Beneficial effect of moderate alcohol consumption on vascular disease: Myth or reality? J. R. Soc. Promot. Health 2000, 120, 11–15. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Bhatti, S.K.; Bajwa, A.; DiNicolantonio, J.J.; Lavie, C.J. Alcohol and cardiovascular health: The dose makes the poison…or the remedy. Mayo Clin. Proc. 2014, 89, 382–393. [Google Scholar] [CrossRef]
- Huynh, K. Risk factors. Reducing alcohol intake improves heart health. Nat. Rev. Cardiol. 2014, 11, 495. [Google Scholar] [CrossRef]
- Urbano-Márquez, A.; Fernández-Solà, J. Effects of alcohol on skeletal and cardiac muscle. Muscle Nerve 2004, 30, 689–707. [Google Scholar] [CrossRef] [PubMed]
- McKenna, W.J.; Maron, B.J.; Thiene, G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ. Res. 2017, 121, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Fauchier, L.; Babuty, D.; Poret, P.; Casset-Senon, D.; Autret, M.L.; Cosnay, P.; Fauchier, J.P. Comparison of long-term outcome of alcoholic and idiopathic dilated cardiomyopathy. Eur. Heart J. 2000, 21, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Ram, P.; Lo, K.B.; Shah, M.; Patel, B.; Rangaswami, J.; Figueredo, V.M. National trends in hospitalizations and outcomes in patients with alcoholic cardiomyopathy. Clin. Cardiol. 2018, 41, 1423–1429. [Google Scholar] [CrossRef]
- Guzzo-Merello, G.; Segovia, J.; Domínguez, F.; Cobo-Marcos, M.; Gómez-Bueno, M.; Avellana, P.; Millán, I.; Alonso-Pulpón, L.; García-Pavía, P. Natural history and prognostic factors in alcoholic cardiomyopathy. JACC Heart Fail. 2015, 3, 78–86. [Google Scholar] [CrossRef]
- Fernández-Solà, J.; Nicolás, J.M.; Paré, J.C.; Sacanella, E.; Fatjó, F.; Cofán, M.; Estruch, R. Diastolic function impairment in alcoholics. Alcohol Clin. Exp. Res. 2000, 24, 1830–1835. [Google Scholar] [CrossRef]
- Piano, M.R. Alcoholic cardiomyopathy: Incidence, clinical characteristics, and pathophysiology. Chest 2002, 121, 1638–1650. [Google Scholar] [CrossRef]
- Shaaban, A.; Vindhyal, M.R. Alcoholic Cardiomyopathy. StatPearls Publishing. Pub. Treasure Island (FL) USA. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513322/ (accessed on 20 February 2020).
- Larsson, S.C.; Drca, N.; Wolk, A. Alcohol consumption and risk of atrial fibrillation: A prospective study and dose-response meta-analysis. J. Am. Coll. Cardiol. 2014, 64, 281–289. [Google Scholar] [CrossRef]
- Guzzo-Merello, G.; Dominguez, F.; González-López, E.; Cobo-Marcos, M.; Gómez-Bueno, M.; Fernández-Lozano, I.; Millán, I.; Segovia, J.; Alonso-Pulpon, L.; Garcia-Pavia, P. Malignant ventricular arrhythmias in alcoholic cardiomyopathy. Int. J. Cardiol. 2015, 199, 99–105. [Google Scholar] [CrossRef]
- Van de Wiel, A.; de Lange, D.W. Cardiovascular risk is more related to drinking pattern than to the type of alcohol drinks. Neth. J. Med. 2008, 66, 467–473. [Google Scholar]
- Estruch, R.; Fernández-Solá, J.; Sacanella, E.; Paré, C.; Rubin, E.; Urbano-Márquez, A. Relationship between cardiomyopathy and liver disease in chronic alcoholism. Hepatology 1995, 22, 532–538. [Google Scholar] [PubMed]
- Fernández-Solà, J.; Estruch, R.; Grau, J.M.; Paré, J.C.; Rubin, E.; Urbano-Márquez, A. The relation of alcoholic myopathy to cardiomyopathy. Ann. Intern. Med. 1994, 120, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Manthey, J.; Rehm, J. Mortality from Alcoholic Cardiomyopathy: Exploring the Gap between Estimated and Civil Registry Data. J. Clin Med. 2019, 8, 1137. [Google Scholar] [CrossRef]
- Rehm, J.; Hasan, O.S.M.; Imtiaz, S.; Neufeld, M. Quantifying the contribution of alcohol to cardiomyopathy: A systematic review. Alcohol 2017, 61, 9–15. [Google Scholar] [CrossRef]
- Estruch, R.; Nicolás, J.M.; Villegas, E.; Junqué, A.; Urbano-Márquez, A. Relationship between ethanol-related diseases and nutritional status in chronically alcoholic men. Alcohol Alcohol 1993, 28, 543–550. [Google Scholar]
- Betrosian, A.P.; Thireos, E.; Toutouzas, K.; Zabaras, P.; Papadimitriou, K.; Sevastos, N. Occidental beriberi and sudden death. Am. J. Med. Sci. 2004, 327, 250–252. [Google Scholar] [CrossRef]
- Helali, J.; Park, S.; Ziaeian, B.; Han, J.K.; Lankarani-Fard, A. Thiamine and Heart Failure: Challenging Cases of Modern-Day Cardiac Beriberi. Mayo Clin. Proc. Innov. Qual. Outcomes 2019, 3, 221–225. [Google Scholar] [CrossRef]
- Johnson, R.A.; Baker, S.S.M.; Fallon, J.T.; Maynard, E.P.; Ruskin, J.N.; Wen, Z.; Ge, K.; Cohen, H.J. An occidental case of cardiomyopathy and selenium deficiency. N. Engl. J. Med. 1981, 04, 1210–1212. [Google Scholar] [CrossRef]
- Sullivan, J.; Parker, M.; Carson, S.B. Tissue cobalt content in “beer drinkers’ myocardiopathy”. J. Lab. Clin Med. 1968, 71, 893–911. [Google Scholar]
- Awtry, E.H.; Philippides, G.J. Alcoholic and cocaine-associated cardiomyopathies. Prog. Cardiovasc. Dis. 2010, 52, 289–299. [Google Scholar] [CrossRef]
- Ren, J. Acetaldehyde and alcoholic cardiomyopathy: Lessons from the ADH and ALDH2 transgenic models. Novartis Found. Symp. 2007, 285, 69–76. [Google Scholar] [PubMed]
- Brandt, M.; Wenzel, P. Alcohol puts the heart under pressure: Acetaldehyde activates a localized renin angiotensin aldosterone system within the myocardium in alcoholic cardiomyopathy. Int. J. Cardiol. 2018, 257, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Carlson, E.C.; Borgerding, A.J.; Epstein, P.N. A transgenic model of acetaldehyde overproduction accelerates alcohol cardiomyopathy. J. Pharm. Exp. 1999, 291, 766–772. [Google Scholar]
- Aberle, N.S.; Ren, J. Experimental Assessment of the Role of Acetaldehyde in Alcoholic Cardiomyopathy. Biol. Proced. Online 2003, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Oba, T.; Maeno, Y.; Ishida, K. Differential contribution of clinical amounts of acetaldehyde to skeletal and cardiac muscle dysfunction in alcoholic myopathy. Curr. Pharm Des. 2005, 11, 791–800. [Google Scholar] [CrossRef]
- Leibing, E.; Meyer, T. Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy. Herz 2016, 41, 478–483. [Google Scholar] [CrossRef]
- Wu, J.M.; Hsieh, T.C. Resveratrol: A cardioprotective substance. Ann. N. Y. Acad. Sci. 2011, 1215, 16–21. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Arranz, S.; Lamuela-Raventos, R.M.; Estruch, R. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: Evidences from human studies. Alcohol Alcohol 2013, 48, 270–277. [Google Scholar] [CrossRef]
- Fernández-Sola, J. Reversibility of Alcohol Dilated Cardiomyopathy. Rev. Esp. Cardiol. (Engl. Ed.) 2018, 71, 603–605. [Google Scholar]
- Nicolás, J.M.; Fernández-Solà, J.; Estruch, R.; Paré, J.C.; Sacanella, E.; Urbano-Márquez, A.; Rubin, E. The effect of controlled drinking in alcoholic cardiomyopathy. Ann. Intern. Med. 2002, 136, 192–200. [Google Scholar] [CrossRef]
- Kuntsche, E.; Kuntsche, S.; Thrul, J.; Gmel, G. Binge drinking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 976–1017. [Google Scholar] [CrossRef] [PubMed]
- Fillmore, M.T.; Jude, R. Defining “binge” drinking as five drinks per occasion or drinking to a .08% BAC: Which is more sensitive to risk? Am. J. Addict. 2011, 20, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, T.; Lakatta, E.G. Mechanisms of myocardial contractile depression by clinical concentration of ethanol; study in ferret papillary muscles. J. Clin. Invest. 1990, 85, 1462–1467. [Google Scholar] [CrossRef]
- Thomas, A.P.; Rozanski, D.J.; Renard, D.C.; Rubin, E. Effects of ethanol on the contractile function of the heart: A review. Alcohol Clin. Exp. Res. 1994, 18, 121–131. [Google Scholar] [CrossRef]
- Walsh, C.R.; Larson, M.G.; Evans, J.C.; Djousse, L.; Ellison, R.C.; Vasan, R.S.; Levy, D. Alcohol consumption and risk for congestive heart failure in the Framingham Heart Study. Ann. Intern. Med. 2002, 136, 181–191. [Google Scholar] [CrossRef]
- Mahmoud, S.; Beauchesne, L.M.; Davis, D.R.; Glover, C. Acute reversible left ventricular dysfunction secondary to alcohol. Can. J. Cardiol. 2007, 23, 475–477. [Google Scholar] [CrossRef]
- Zhao, J.; Stockwell, T.; Roemer, A.; Naimi, T.; Chikritzhs, T. Alcohol Consumption and Mortality from Coronary Heart Disease: An Updated Meta-Analysis of Cohort Studies. J. Stud. Alcohol Drugs 2017, 78, 375–386. [Google Scholar] [CrossRef]
- Manolis, T.A.; Manolis, A.A.; Manolis, A.S. Cardiovascular effects of alcohol: A double-edged sword / how to remain at the nadir point of the J-Curve? Alcohol 2019, 76, 117–129. [Google Scholar] [CrossRef]
- Fernández-Solà, J.; Nicolás, J.M.; Oriola, J.; Sacanella, E.; Estruch, R.; Rubin, E.; Urbano-Márquez, A. Angiotensin-converting enzyme gene polymorphism is associated with vulnerability to alcoholic cardiomyopathy. Ann. Intern. Med. 2002, 137, 321–326. [Google Scholar] [CrossRef]
- Ware, J.S.; Cook, S.A. Role of titin in cardiomyopathy: From DNA variants to patient stratification. Nat. Rev. Cardiol. 2018, 15, 241–252. [Google Scholar] [CrossRef]
- Fernández-Solà, J.; Nicolás-Arfelis, J.M. Gender differences in alcoholic cardiomyopathy. J. Gend. Specif. Med. 2002, 5, 41–47. [Google Scholar] [PubMed]
- Mogos, M.F.; Salemi, J.L.; Phillips, S.A.; Piano, M.R. Contemporary Appraisal of Sex Differences in Prevalence, Correlates, and Outcomes of Alcoholic Cardiomyopathy. Alcohol Alcohol 2019, 54, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Solà, J.; Estruch, R.; Nicolás, J.M.; Sacanella, E.; Antúnez, E.; Urbano-Márquez, A. Comparison of alcoholic cardiomyopathy in women versus men. Am. J. Cardiol. 1997, 80, 481–485. [Google Scholar] [CrossRef]
- Fogle, R.L.; Hollenbeak, C.S.; Stanley, B.A.; Vary, T.C.; Kimball, S.R.; Lynch, C.J. Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy. Physiol. Genom. 2011, 43, 346–356. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wen, Z.; Yu, D.; Zhang, W.; Fan, C.; Hu, L.; Feng, Y.; Yang, L.; Wu, Z.; Chen, R.; Yin, K.J.; et al. Association between alcohol consumption during pregnancy and risks of congenital heart defects in offspring: Meta-analysis of epidemiological observational studies. Ital. J. Pediatrics 2016, 42, 12. [Google Scholar] [CrossRef]
- Laurent, D.; Edwards, J.G. Alcoholic Cardiomyopathy: Multigenic Changes Underlie Cardiovascular Dysfunction. J. Cardiol. Clin. Res. 2014, 2, 1022. [Google Scholar]
- Oliveira, G.; Beezer, A.E.; Hadgraft, J.; Lane, M.E. Alcohol enhanced permeation in model membranes. Part I. Thermodynamic and kinetic analyses of membrane permeation. Int. J. Pharm. 2010, 393, 61–67. [Google Scholar] [CrossRef]
- Preedy, V.R.; Patel, V.B.; Reilly, M.E.; Richardson, P.J.; Falkous, G.; Mantle, D. Oxidants, antioxidants and alcohol: Implications for skeletal and cardiac muscle. Front. BioSci. 1999, 4, e58–e66. [Google Scholar]
- Fernández-Solà, J.; Fatjó, F.; Sacanella, E.; Estruch, R.; Bosch, X.; Urbano-Márquez, A.; Nicolás, J.M. Evidence of apoptosis in alcoholic cardiomyopathy. Hum. Pathol. 2006, 37, 1100–1110. [Google Scholar] [CrossRef]
- Nicolás, J.M.; Rubin, E.; Thomas, A.P. Ethanol and cocaine cause additive inhibitory effects on the calcium transients and contraction in single cardiomyocytes. Alcohol Clin. Exp. Res. 1996, 20, 1077–1082. [Google Scholar] [CrossRef]
- Fatjó, F.; Sancho-Bru, P.; Fernández-Solà, J.; Sacanella, E.; Estruch, R.; Bataller, R.; Nicolás, J.M. Up-regulation of myocardial L-type Ca2+ channel in chronic alcoholic subjects without cardiomyopathy. Alcohol Clin. Exp. Res. 2007, 31, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Corbett, J.M.; Richardson, P.J.; Dunn, M.J.; Preedy, V.R. Chronic effects of alcohol upon protein profiling in ventricular tissue. Biochem. Soc. Trans. 1995, 23, 461S. [Google Scholar] [CrossRef] [PubMed]
- Noritake, K.; Aki, T.; Funakoshi, T.; Unuma, K.; Uemura, K. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes. PLos ONE 2015, 10, e0136952. [Google Scholar] [CrossRef]
- Maiuolo, J.; Maretta, A.; Gliozzi, M.; Musolino, V.; Carresi, C.; Bosco, F.; Mollace, R.; Scarano, F.; Palma, E.; Scicchitano, M.; et al. Ethanol-induced cardiomyocyte toxicity implicit autophagy and NFkB transcription factor. Pharm. Res. 2018, 133, 141–150. [Google Scholar] [CrossRef]
- Tsiplenkova, V.G.; Vikhert, A.M.; Cherpachenko, N.M. Ultrastructural and histochemical observations in human and experimental alcoholic cardiomyopathy. J. Am. Coll. Cardiol. 1986, 8, 22A–32A. [Google Scholar] [CrossRef][Green Version]
- Sudarikova, I.V.; Bakeeva, L.E.; Tsyplenkova, V.G. Destructive changes in the mitochondria of human cardiomyocytes in alcoholic heart lesion. Arkh. Patol. 1998, 60, 19–23. [Google Scholar]
- Steiner, J.L.; Lang, C.H. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int. J. Biochem. Cell. Biol. 2017, 89, 125–135. [Google Scholar] [CrossRef]
- Matyas, C.; Varga, Z.V.; Mukhopadhyay, P.; Paloczi, J.; Lajtos, T.; Erdelyi, K.; Nemeth, B.T.; Nan, M.; Hasko, G.; Gao, B.; et al. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H1658–H1670. [Google Scholar] [CrossRef]
- Hajnóczky, G.; Buzas, C.J.; Pacher, P.; Hoek, J.B.; Rubin, E. Alcohol and mitochondria in cardiac apoptosis: Mechanisms and visualization. Alcohol Clin. Exp. Res. 2005, 29, 693–701. [Google Scholar] [CrossRef]
- Fernández-Solà, J.; Planavila Porta, A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int. J. Mol. Sci. 2016, 17, 1651. [Google Scholar] [CrossRef]
- Yaoita, H.; Maruyama, Y. Intervention for apoptosis in cardiomyopathy. Heart Fail. Rev. 2008, 13, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Marunouchi, T.; Tanonaka, K. Cell Death in the Cardiac Myocyte. Biol. Pharm. Bull. 2015, 38, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol. Rev. 2019, 99, 1765–1817. [Google Scholar] [CrossRef] [PubMed]
- Movassagh, M.; Foo, R.S. Simplified apoptotic cascades. Heart Fail. Rev. 2008, 13, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Solà, J.; Lluis, M.; Sacanella, E.; Estruch, R.; Antúnez, E.; Urbano-Márquez, A. Increased myostatin activity and decreased myocyte proliferation in chronic alcoholic cardiomyopathy. Alcohol Clin. Exp. Res. 2011, 35, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Borrisser-Pairó, F.; Antúnez, E.; Tobías, E.; Fernández-Solà, J. Insulin-like growth factor myocardial expression decreases in chronic alcohol consumption. Regen. Med. Res. 2013, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Planavila, A.; Fernández-Solà, J.; Villarroya, F. Cardiokines as Modulators of Stress-Induced Cardiac Disorders. Adv. Protein Chem. Struct. Biol. 2017, 108, 227–256. [Google Scholar]
- Wang, A.; Song, J.; Zhang, L.; Huang, S.; Bao, L.; Chen, F.; Zhao, X. Increased expression of microRNA-378a-5p in acute ethanol exposure of rat cardiomyocytes. Cell Stress Chaperones 2017, 22, 245–252. [Google Scholar] [CrossRef]
- Wang, S.; Ren, J. Role of autophagy and regulatory mechanisms in alcoholic cardiomyopathy. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864 Pt A, 2003–2009. [Google Scholar] [CrossRef]
- Bae, K.Y.; Kim, S.H.; Shin, J.M.; Kim, I.S.; Shin, S.J.; Kim, J.K.; Kim, J.S.; Yoon, J.S. The acute effects of ethanol and acetaldehyde on physiological responses after ethanol ingestion in young healthy men with different ALDH2 genotypes. Clin. Toxicol. (Phila.) 2012, 50, 242–249. [Google Scholar] [CrossRef]
- Kawai, S.; Okada, E.A. Histological study of dilated cardiomyopathy. With special reference to clinical and pathological comparison on the degeneration predominant type and fibrosis predominant. Jpn Circ. J. 1987, 51, 654–660. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vaideeswar, P.; Chaudhari, C.; Rane, S.; Gondhalekar, J.; Dandekar, S. Cardiac pathology in chronic alcoholics: A preliminary study. J. Postgrad. Med. 2014, 60, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Nie, Y.; Lian, H.; Hu, S. Histopathologic features of alcoholic cardiomyopathy compared with idiopathic dilated cardiomyopathy. Go Med. (Baltimore) 2018, 97, e12259. [Google Scholar] [CrossRef]
- Lluís, M.; Fernández-Solà, J.; Castellví-Bel, S.; Sacanella, E.; Estruch, R.; Urbano-Márquez, A. Evaluation of myocyte proliferation in alcoholic cardiomyopathy: Telomerase enzyme activity (TERT) compared with Ki-67 expression. Alcohol Alcohol 2011, 46, 534–541. [Google Scholar] [CrossRef]
- Solem, M.; Almas, J.; Rubin, E.; Thomas, A. Changes in activity and regulation of the cardiac Ca2+ channel (L-type) by protein kinase C in chronic alcohol-exposed rats. Alcohol Clin. Exp. Res. 2000, 24, 1145–1155. [Google Scholar] [CrossRef]
- Richardson, P.J.; Patel, V.B.; Preedy, V.R. Alcohol and the myocardium. Novartis Found. Symp. 1998, 216, 35–45. [Google Scholar]
- Teragaki, M.; Takeuchi, K.; Takeda, T. Clinical and histologic features of alcohol drinkers with congestive heart failure. Am. Heart J. 1993, 125, 808–817. [Google Scholar] [CrossRef]
- Fernández-Sola, J.; Toll-Argudo, M.; Tobías-Baraja, E.; Moreno-Lozano, P.; Ferrer-Curriu, G.; Guitart-Mampel, M.; Planavila-Porta, A.; Garrabou-Tornos, A. Decreased Myocardial Titin Expression in Chronic Alcoholic Cardiomyopathy. J. Cardiovasc. Dis. Med. 2018, 1, 63–70. [Google Scholar]
- Urbano-Márquez, A.; Fernández-Solà, J. Alcohol consumption and heart failure. J. Card. Fail. 2005, 11, 329–332. [Google Scholar] [CrossRef]
- Hill, J.A.; Olson, E.N. Cardiac plasticity. N. Engl. J. Med. 2008, 358, 1370–1380. [Google Scholar] [CrossRef]
- Wu, Y.S.; Zhu, B.; Luo, A.L.; Yang, L.; Yang, C. The role of Cardiokines in Heart Diseases: Beneficial or Detrimental? Biomed. Res. Int. 2018, 2018, 8207058. [Google Scholar] [CrossRef] [PubMed]
- Moushmoush, B.; Abi-Mansour, P. Alcohol and the heart. The long-term effects of alcohol on the cardiovascular system. Arch. Intern. Med. 1991, 151, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Guillo, P.; Mansourati, J.; Maheu, B.; Etienne, Y.; Provost, K.; Simon, O.; Blanc, J.J. Long-term prognosis in patients with alcoholic cardiomyopathy and severe heart failure after total abstinence. Am. J. Cardiol. 1997, 79, 1276–1278. [Google Scholar] [CrossRef]
- Hietanen, S.; Herajärvi, J.; Junttila, J.; Pakanen, L.; Huikuri, H.V.; Liisanantti, J. Characteristics of subjects with alcoholic cardiomyopathy and sudden cardiac death. Heart 2019. [Google Scholar] [CrossRef]
- Fang, W.; Luo, R.; Tang, Y.; Hua, W.; Fu, M.; Chen, W.; Lai, L.; Li, X. The Prognostic Factors of Alcoholic Cardiomyopathy: A single-center cohort study. Medicine 2018, 97, e11744. [Google Scholar] [CrossRef]
- Muckle, W.; Muckle, J.; Welch, V.; Tugwell, P. Managed alcohol as a harm reduction intervention for alcohol addiction in populations at high risk for substance abuse. Cochrane Database Syst. Rev. 2012, 12, CD006747. [Google Scholar] [CrossRef]
- Tønnesen, H. Alcohol abuse and postoperative morbidity. Dan Med. Bull. 2003, 50, 139–160. [Google Scholar]
- Pierson, A.; James, G.; Norman, A. Perioperative detection of alcoholic cardiomyopathy: Cases and recommendations. Br. J. Oral. Maxillofac. Surg. 2017, 55, 333. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracía, E.; Ruíz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. For the PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.H.; Chew, D. Re-feeding syndrome and alcoholic cardiomyopathy: A case of interacting diagnoses. J. Cardiol. Cases 2016, 14, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Singla, V.; Singh, B.; Rajendran, R.; Khandenahally, R.S.; Manjunath, C.N. Quadri-chamber cardiac thrombi in alcoholic cardiomyopathy: A rare though ominous finding. Postgrad. Med. J. 2013, 89, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Coignard, E.; Blanchard, B.; Jault, F.; Dorent, R.; Vaissier, E.; Nataf, P.; Fontanel, M.; Gandjbakhch, I. Alcoholic cardiomyopathy and heart transplantation. Arch. Mal. Coeur Vaiss. 1998, 91, 45–51. [Google Scholar]
- Behfar, A.; Crespo-Diaz, R.; Terzic, A.; Gerhrs, B.J. Cell therapy for cardiac Repair. Lessons from clinical trials. Nat. Rev. Cardiol. 2014, 11, 232–246. [Google Scholar] [CrossRef]
- Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell Cardiol. 2016, 97, 245–262. [Google Scholar] [CrossRef]
- Stempien-Otero, A.; Kim, D.H.; Davis, J. Molecular networks underlying myofibroblast fate and fibrosis. J. Mol. Cell Cardiol. 2016, 97, 153–161. [Google Scholar] [CrossRef]
- Bloomekatz, J.; Galvez-Santisteban, M.; Chi, N.C. Myocardial plasticity: Cardiac development, regeneration and disease. Curr. Opin. Genet. Dev. 2016, 4, 120–130. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, J.; Li, Q.; Zhan, C.; He, Y.; Liu, J.; Wen, Z.; Wang, D.W. Pharmacological Inhibition of soluble epoxide hydrolase ameliorates chronic etanol-induced cardiac fibrosis byrestoring autophagic flux. Alcohol Clin. Exp. Res. 2018, 42, 1970–1978. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Sen, D. Mesenchymal stem cells in cardiac regeneration: A detailed progress report of the last 6 years (2010–2015). Stem Cell Res. 2016, 7, 82. [Google Scholar] [CrossRef]
- Piano, M.R. Alcoholic Cardiomyopathy: Is it Time for Genetic Testing? J. Am. Coll. Cardiol. 2018, 71, 2303–2305. [Google Scholar] [CrossRef] [PubMed]
Mechanisms | Effectors |
---|---|
Interference with cell signaling and calcium transients | MAPK, TGF-β, PKC, PPARγ, MMPs, NF-κβ, PAI-1 |
Decrease in excitation–contraction coupling mechanisms | intracellular [Ca]2+ transients, L-type Ca2+ channel |
Induction of oxidative damage | ROS, SOD, acetaldehyde |
Pro-inflammatory effect | IL-2, TNF-α, NF-κβ |
Induction of apoptosis | FAS, TNF-α, TGF-β, Bax-Bcl-2, caspases 3,6 |
Induction of fibrosis | TLR-4, TGF-β |
Protein-adduct formation | protein–ethanol adducts |
malondialdehyde–DNA adducts | |
Disruption in protein synthesis | decrease in ribosomal protein synthesis, actin, myosin, troponin, titin |
Increased glycogen deposition | glycogen synthase kinase-3β, PARP |
Renin–angiotensin–aldosterone activation | renin, angiotensin, aldosterone, p38 MAPK/Smad |
Interference in hormone-growth factors | myostatin, ghrelin, leptin, IGF-1 |
Interference in regulatory cardiomyokines | FGF21 |
Decrease in myocyte regeneration | myostatin, IGF-1 |
Impairment of extracellular matrix turnover | cytoskeletal structure, connexin channel, desmosome contacts |
Imbalance between cardiac lesions/repair mechanisms | cell apoptosis and necrosis increased myocardial fibrosis and decreased myocyte regeneration |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Solà, J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients 2020, 12, 572. https://doi.org/10.3390/nu12020572
Fernández-Solà J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients. 2020; 12(2):572. https://doi.org/10.3390/nu12020572
Chicago/Turabian StyleFernández-Solà, Joaquim. 2020. "The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy" Nutrients 12, no. 2: 572. https://doi.org/10.3390/nu12020572
APA StyleFernández-Solà, J. (2020). The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients, 12(2), 572. https://doi.org/10.3390/nu12020572