Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People
Abstract
:1. Overview
2. Biological Complexity
3. Assessment
4. Modifications of Food Intake
5. Modifications in Body Composition
5.1. Obesity
5.2. Undernutrition
5.3. Sarcopenia
6. Mitochondrial Dysfunction and Fatigue
7. Nutritional Interventions
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Morley, J.E.; Vellas, B.; Van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.; Doehner, W.; Evans, J.; et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K.; Iliffe, S. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Publishing: Washington, DC, USA, 2013; 1520p. [Google Scholar]
- Avlund, K. Fatigue in older adults: An early indicator of the aging process? Aging Clin. Exp. Res. 2010, 22, 100–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengarini, E.; Ruggiero, C.; Pérez-Zepeda, M.U.; Hoogendijk, E.O.; Vellas, B.; Mecocci, P.; Cesari, M. Fatigue: Relevance and implications in the aging population. Exp. Gerontol. 2015, 70, 78–83. [Google Scholar] [CrossRef]
- Ream, E.; Richardson, A. Fatigue: A concept analysis. Int. J. Nurs. Stud. 1996, 33, 519–529. [Google Scholar] [CrossRef]
- Vestergaard, S.; Nayfield, S.G.; Patel, K.V.; Eldadah, B.; Cesari, M.; Ferrucci, L.; Ceresini, G.; Guralnik, J.M. Fatigue in a representative population of older persons and its association with functional impairment, functional limitation, and disability. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Avlund, K.; Damsgaard, M.T.; Schroll, M. Tiredness as determinant of subsequent use of health and social services among nondisabled elderly people. J. Aging Health 2001, 13, 267–286. [Google Scholar] [CrossRef]
- Schultz-Larsen, K.; Avlund, K. Tiredness in daily activities: A subjective measure for the identification of frailty among non-disabled community-living older adults. Arch. Gerontol. Geriatr. 2007, 44, 83–93. [Google Scholar] [CrossRef]
- Hardy, S.E.; Studenski, S.A. Fatigue and function over three years among older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1389–1392. [Google Scholar] [CrossRef] [Green Version]
- Treder, N.; Jodzio, K. Review article prevalence and clinical specificity of fatigue symptoms in chronic fatigue syndrome, multiple sclerosis, and myasthenia gravis. Health Psychol. Rep. 2014, 2, 83–89. [Google Scholar] [CrossRef]
- Keskindag, B. Exploring symptom expressions according to different age groups in fibromyalgia: A cross-sectional study. Health Psychol. Rep. 2018, 6, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.; Van Bokhoven, M.A.; Ter Riet, G.; Van Der Weijden, T.; Dinant, G.J.; Bindels, P.J.E. Demographic characteristics and quality of life of patients with unexplained complaints: A descriptive study in general practice. Qual. Life Res. 2007, 16, 1483–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, N.B.; Taffet, G.E.; Horne, F.M.; Eldadah, B.A.; Ferrucci, L.; Nayfield, S.; Studenski, S. Bedside-to-Bench conference: Research agenda for idiopathic fatigue and aging. J. Am. Geriatr. Soc. 2010, 58, 967–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, G.; Wessely, S. The epidemiology of fatigue: More questions than answers. J. Epidemiol. Community Health 1992, 46, 92–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beekman, A.T.F.; Deeg, D.J.H.; Braam, A.W.; Smit, J.H.; Van Tilburg, W. Consequences of major and minor depression in later life: A study of disability, well-being and service utilization. Psychol. Med. 1997, 27, 1397–1409. [Google Scholar] [CrossRef] [Green Version]
- Eggermont, L.H.P.; Leveille, S.G.; Shi, L.; Kiely, D.K.; Shmerling, R.H.; Jones, R.N.; Guralnik, J.M.; Bean, J.F. Pain characteristics associated with the onset of disability in older adults: The maintenance of balance, independent living, intellect, and zest in the elderly Boston study. J. Am. Geriatr. Soc. 2014, 62, 1007–1016. [Google Scholar] [CrossRef]
- Nelesen, R.; Dar, Y.; Thomas, K.; Dimsdale, J.E. The relationship between fatigue and cardiac functioning. Arch. Intern. Med. 2008, 168, 943–949. [Google Scholar] [CrossRef]
- Riley, M.S.; O’Brien, C.J.; McCluskey, D.R.; Bell, N.P.; Nicholls, D.P. Aerobic work capacity in patients with chronic fatigue syndrome. BMJ 1990, 301, 953–956. [Google Scholar] [CrossRef] [Green Version]
- Schroll, M.; Løvborg, B.; Munck, M.; Avlund, K.; Davidsen, M. Cardiac impairment as assessed by echocardiography related to work capacity and mobility in 75 year old Danes as part of NORA 75, Nordic research on ageing. Facts, research and intervention in geriatrics. Cardiology 1997, Issue Supplementum, 182–193. [Google Scholar]
- Poluri, A.; Mores, J.; Cook, D.B.; Findley, T.W.; Cristian, A. Fatigue in the elderly population. Phys. Med. Rehabil. Clin. N. Am. 2005, 16, 91–108. [Google Scholar] [CrossRef]
- Goldman, S.E.; Ancoli-Israel, S.; Boudreau, R.; Cauley, J.A.; Hall, M.; Stone, K.L.; Rubin, S.M.; Satterfield, S.; Simonsick, E.M.; Newman, A.B. Sleep problems and associated daytime fatigue in community-dwelling older individuals. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1069–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avlund, K.; Rantanen, T.; Schroll, M. Factors underlying tiredness in older adults. Aging Clin. Exp. Res. 2007, 19, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef]
- Resnick, H.E.; Carter, E.A.; Aloia, M.; Phillips, B. Cross-sectional relationship of reported fatigue to obesity, diet, and physical activity: Results from the third national health and nutrition examination survey. J. Clin. Sleep Med. 2006, 2, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, T.R.; Wang, X.S.; Cleeland, C.S.; Morrissey, M.; Johnson, B.; Wendt, J.K.; Huber, S.L. The rapid assessment of fatigue severity in cancer patients: Use of the brief fatigue inventory. Cancer 1999, 85, 1186–1196. [Google Scholar] [CrossRef]
- Smets, E.; Garssen, B.; Bonke, B.; De Haes, J. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef] [Green Version]
- McHorney, C.; Ware, J.; Raczek, A. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med. Care 1993, 31, 247–263. [Google Scholar] [CrossRef] [Green Version]
- McHorney, C.; Ware, J.; Lu, J.F.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Subra, J.; Platform Team; Gillette-Guyonnet, S.; Cesari, M.; Oustric, S.; Vellas, B. The integration of frailty into clinical practice: Preliminary results from the Gérontopôle. J. Nutr. Health Aging 2012, 16, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.; Hankey, C. Aging, nutritional status and health. Health 2015, 3, 648–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, J. Anorexia of aging: Physiologic and pathologic. Am. J. Clin. Nutr. 1997, 66, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of aging: Risk factors, consequences, and potential treatments. Nutrients 2016, 8, 69. [Google Scholar] [CrossRef]
- Furman, E.F. Undernutrition in older adults across the continuum of care: Nutritional assessment, barriers, and interventions. J. Gerontol. Nurs. 2006, 32, 22–27. [Google Scholar] [CrossRef]
- Westergren, A. Nutrition and its relation to mealtime preparation, eating, fatigue and mood among stroke survivors after discharge from hospital—A pilot study. Open Nurs. J. 2008, 2, 15–20. [Google Scholar] [CrossRef]
- Singh, D.K.; Manaf, Z.A.; Yusoff, N.A.M.; Muhammad, N.A.; Phan, M.F.; Shahar, S. Correlation between nutritional status and comprehensive physical performance measures among older adults with undernourishment in residential institutions. Clin. Interv. Aging 2014, 9, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Vellas, B.; Baumgartner, R.N.; Wayne, S.J.; Conceicao, J.; Lafont, C.; Albarede, J.L.; Garry, P.J. Relationship between malnutrition and falls in the elderly. Nutrients 1992, 8, 105–108. [Google Scholar]
- Newman, A.B.; Lee, J.S.; Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; A Tylavsky, F.; Nevitt, M.; Harris, T.B. Weight change and the conservation of lean mass in old age: The health, aging and body composition study. Am. J. Clin. Nutr. 2005, 82, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Youle, R.J.; Finkel, T. The mitochondrial basis of aging. Mol. Cell 2016, 61, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacourt, T.E.; Vichaya, E.G.; Chiu, G.S.; Dantzer, R.; Heijnen, C.J. The high costs of low-grade inflammation: Persistent fatigue as a consequence of reduced cellular-energy availability and non-adaptive energy expenditure. Front. Behav. Neurosci. 2018, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-K.; Borer, K.; Lin, P.-J. Low-carbohydrate-high-fat diet: Can it help exercise performance? J. Hum. Kinet. 2017, 56, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Panossian, L.A.; Veasey, S.C. Daytime sleepiness in obesity: Mechanisms beyond obstructive sleep apnea—A review. Sleep 2012, 35, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Kripke, D.F.; Naidoo, N.; Langer, R.D. Relationships among dietary nutrients and subjective sleep, objective sleep, and napping in women. Sleep Med. 2010, 11, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Wittert, G.; Taylor, A.W.; Adams, R.; Shi, Z. Associations between macronutrient intake and obstructive sleep apnoea as well as self-reported sleep symptoms: Results from a cohort of community dwelling Australian men. Nutrients 2016, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, G.A.; Belcher, B.R.; Davis, J.N.; Martinez, L.T.; Huh, J.; Antunez-Castillo, L.; Weigensberg, M.; Goran, M.I.; Spruijt-Metz, N. Effects of high-sugar and high-fiber meals on physical activity behaviors in Latino and African American adolescents. Obesity 2015, 23, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C. Effects of diet on sleep quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef]
- Handjieva-Darlenska, T.; Boyadjieva, N. The effect of high-fat diet on plasma ghrelin and leptin levels in rats. J. Physiol. Biochem. 2009, 65, 157–164. [Google Scholar] [CrossRef]
- Sakurai, T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med. Rev. 2005, 9, 231–241. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Hopper, K.; Lotsikas, A.; Lin, H.-M.; Kales, A.; Chrousos, G.P. Sleep apnea and daytime sleepiness and fatigue: Relation to visceral obesity, insulin resistance, and hypercytokinemia. J. Clin. Endocrinol. Metab. 2000, 85, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Stringer, E.A.; Baker, K.S.; Carroll, I.R.; Montoya, J.G.; Chu, L.; Maecker, H.T.; Younger, J.W. Daily cytokine fluctuations, driven by leptin, are associated with fatigue severity in chronic fatigue syndrome: Evidence of inflammatory pathology. J. Transl. Med. 2013, 11, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechanick, J.I.; Zhao, S.; Garvey, W.T. Leptin, an adipokine with central importance in the global obesity problem. Glob. Heart 2018, 13, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Elia, M. The malnutrition advisory group consensus guidelines for the detection and management of malnutrition in the community. Nutr. Bull. 2001, 26, 81–83. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrients 2010, 26, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Vgontzas, A.N.; Bixler, E.; Chrousos, G.P. Obesity-related sleepiness and fatigue: The role of the stress system and cytokines. Ann. N. Y. Acad. Sci. 2006, 1083, 329–344. [Google Scholar] [CrossRef]
- Lim, W.; Thomas, K.S.; Bardwell, W.A.; Dimsdale, J.E. Which measures of obesity are related to depressive symptoms and in whom? J. Psychosom. Res. 2008, 49, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Theorell-Haglöw, J.; Lindberg, E.; Janson, C. What are the important risk factors for daytime sleepiness and fatigue in women? Sleep 2006, 29, 751–757. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Kales, A.; Tyson, K.; Chrousos, G.P. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: Role of sleep disturbance and obesity. J. Clin. Endocrinol. Metab. 1997, 82, 4. [Google Scholar] [CrossRef]
- Valentine, R.J.; McAuley, E.; Vieira, V.J.; Baynard, T.; Hu, L.; Evans, E.M.; Woods, J.A. Sex differences in the relationship between obesity, C-reactive protein, physical activity, depression, sleep quality and fatigue in older adults. Brain Behav. Immun. 2009, 23, 643–648. [Google Scholar] [CrossRef]
- Manzel, A.; Müller, M.N.; Hafler, D.A.; Erdman, S.E.; Linker, R.A.; Kleinewietfeld, M. Role of “western diet” in inflammatory autoimmune diseases. Curr. Allergy Asthma Rep. 2014, 14, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beccuti, G.; Pannain, S. Sleep and obesity. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, P.; Bardoloi, A.; Parkash, A. Metabolic effects of obesity: A review. World J. Diabetes 2010, 1, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R. The endocrinology of obesity. Endocrinol. Metab. Clin. N. Am. 1996, 25, 921–942. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Bixler, E.O.; Chrousos, G.P.; Pejovic, S. Obesity and sleep disturbances: Meaningful sub-typing of obesity. Arch. Physiol. Biochem. 2008, 114, 224–236. [Google Scholar] [CrossRef]
- Lee, W.; Nagubadi, S.; Kryger, M.H.; Mokhlesi, B. Epidemiology of obstructive sleep apnea: A population-based perspective. Expert Rev. Respir. Med. 2008, 2, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Gasa, M.; Salord, N.; Fortuna, A.M.; Mayos, M.; Vilarrasa, N.; Dorca, J.; Montserrat, J.M.; Bonsignore, M.R.; Monasterio, C. Obstructive sleep apnoea and metabolic impairment in severe obesity. Eur. Respir. J. 2011, 38, 1089–1097. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Bixler, E.O.; Tan, T.-L.; Kantner, D.; Martin, L.F.; Kales, A. Obesity without sleep apnea is associated with daytime sleepiness. Arch. Intern. Med. 1998, 158, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Garaulet, M.; Ordovás, J.M.; Madrid, J. The chronobiology, etiology and pathophysiology of obesity. Int. J. Obes. 2010, 34, 1667–1683. [Google Scholar] [CrossRef] [Green Version]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Fine, J.T.; Colditz, G.A.; Coakley, E.H.; Moseley, G.; Manson, J.E.; Willett, W.C.; Kawachi, I. A prospective study of weight change and health-related quality of life in women. JAMA 1999, 282, 2136–2142. [Google Scholar] [CrossRef] [Green Version]
- Valentine, R.J.; Woods, J.A.; McAuley, E.; Dantzer, R.; Evans, E.M. The associations of adiposity, physical activity and inflammation with fatigue in older adults. Brain Behav. Immun. 2011, 25, 1482–1490. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Pen, J.J.; Chirumbolo, S.; Aaseth, J. Chronic Fatigue Syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed. Pharm. 2019, 109, 1000–1007. [Google Scholar] [CrossRef]
- Ney, D.M.; Weiss, J.M.; Kind, A.J.H.; Robbins, J. Senescent swallowing: Impact, strategies, and interventions. Nutr. Clin. Pract. 2009, 24, 395–413. [Google Scholar] [CrossRef] [Green Version]
- Cichero, J.A.Y. Age-related changes to eating and swallowing impact frailty: Aspiration, choking risk, modified food texture and autonomy of choice. Geriatrics 2018, 3, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossioni, A.E. The association of poor oral health parameters with malnutrition in older adults: A review considering the potential implications for cognitive impairment. Nutrients 2018, 10, 1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castrejón-Pérez, R.C.; Bernabé, E.; Villa-Romero, A.R.; Arrivé, E.; Dartigues, J.-F.; Gutiérrez-Robledo, L.M.; Jiménez-Corona, A.; Borges-Yáñez, S.A. Oral disease and 3-year incidence of frailty in Mexican older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 72, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avlund, K.; Schultz-Larsen, K.; Christiansen, N.; Holm-Pedersen, P. Number of teeth and fatigue in older adults. J. Am. Geriatr. Soc. 2011, 59, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Floyd, R.A.; Towner, R.A.; He, T.; Hensley, K.; Maples, K.R. Translational research involving oxidative stress and diseases of aging. Free Radic. Biol. Med. 2011, 51, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Doucet, J.; Trivalle, C.; Chassagne, P.; Perol, M.-B.; Vuillermet, P.; Manchon, N.-D.; Menard, J.-F.; Bercoff, E. Does age play a role in clinical presentation of hypothyroidism? J. Am. Geriatr. Soc. 1994, 42, 984–986. [Google Scholar] [CrossRef]
- Mullur, R.; Liu, Y.-Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brent, G.A. Clinical practice. Graves’ disease. N. Engl. J. Med. 2008, 358, 2594–2605. [Google Scholar] [CrossRef] [PubMed]
- Motomura, K.; Brent, G. Mechanisms of thyroid hormone action. Implications for the clinical manifestation of thyrotoxicosis. Endocrinol. Metab. Clin. N. Am. 1998, 27, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Brent, G. Hypothyroidism and thyroiditis. In Williams Textbook of Endocrinology; Melmed, S.P., Larsen, P.R., Kronenberg, H.M., Eds.; Elsevier: Philadelphia, PA, USA, 2012. [Google Scholar]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on Sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhead, L.M.; Sapienza, C.M.; Rosenbek, J.C. Strength-training exercise in dysphagia rehabilitation: Principles, procedures, and directions for future research. Dysphagia 2007, 22, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Kent-Braun, J.A. Skeletal muscle fatigue in old age: Whose advantage? Exerc. Sport Sci. Rev. 2009, 37, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, G.A.; Dalton, B.H.; Rice, C.L. Human neuromuscular structure and function in old age: A brief review. J. Sport Health Sci. 2013, 2, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Christie, A.; Snook, E.M.; Kent-Braun, J.A. Systematic review and meta-analysis of skeletal muscle fatigue in old age. Med. Sci. Sports Exerc. 2011, 43, 568–577. [Google Scholar] [CrossRef] [Green Version]
- Rolland, Y.; Czerwinski, S.; Kan, G.A.V.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 2008, 12, 433. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.H.T. Physiological analysis of skeletal muscle weakness and fatigue. Clin. Sci. Mol. Med. 1978, 54, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Aubier, M. Respiratory muscle fatigue. Intensive Care Med. 1989, 15, S17–S20. [Google Scholar] [CrossRef] [PubMed]
- Azzolino, D.; Damanti, S.; Bertagnoli, L.; Lucchi, T.; Cesari, M. Sarcopenia and swallowing disorders in older people. Aging Clin. Exp. Res. 2019, 31, 799–805. [Google Scholar] [CrossRef]
- Elliott, J.E.; Greising, S.M.; Mantilla, C.B.; Sieck, G.C. Functional impact of sarcopenia in respiratory muscles. Respir. Physiol. Neurobiol. 2016, 226, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Roussos, C.S.; Macklem, P.T. Diaphragmatic fatigue in man. J. Appl. Physiol. 1977, 43, 189–197. [Google Scholar] [CrossRef]
- Goërtz, Y.M.J.; Looijmans, M.; Prins, J.B.; A Janssen, D.J.; Thong, M.S.Y.; Peters, J.B.; Burtin, C.; Meertens-Kerris, Y.; Coors, A.; Muris, J.W.M.; et al. Fatigue in patients with chronic obstructive pulmonary disease: Protocol of the Dutch multicentre, longitudinal, observational FAntasTIGUE study. BMJ Open 2018, 8, e021745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, W.J.; Paolisso, G.; Abbatecola, A.M.; Corsonello, A.; Bustacchini, S.; Strollo, F.; Lattanzio, F. Frailty and muscle metabolism dysregulation in the elderly. Biogerontology 2010, 11, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Picca, A.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Coelho-Junior, H.; Bossola, M.; Urbani, A.; et al. A distinct pattern of circulating amino acids characterizes older persons with physical frailty and Sarcopenia: Preliminary results from the BIOSPHERE Study. Revis. Eur. Consens. Defin. Diagn. Age Ageing 2018, 48, 16–31. [Google Scholar]
- Patino-Hernandez, D.; David-Pardo, D.G.; Borda, M.G.; Pérez-Zepeda, M.U.; Cano-Gutiérrez, C. Association of fatigue with sarcopenia and its elements: A secondary analysis of SABE-Bogotá. Gerontol. Geriatr. Med. 2017, 3. [Google Scholar] [CrossRef]
- Pennisi, M.; Malaguarnera, G.; Di Bartolo, G.; Lanza, G.; Bella, R.; Chisari, E.M.; Cauli, O.; Vicari, E.; Di Bartolo, G.; Malaguarnera, G.; et al. Decrease in serum vitamin D level of older patients with fatigue. Nutrients 2019, 11, 2531. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyniak, N.R.; Joseph, A.-M.; Levin, D.G.; Gundermann, D.M.; Leeuwenburgh, C.; Sandesara, B.; Manini, T.M.; Adhihetty, P.J. Idiopathic chronic fatigue in older adults is linked to impaired mitochondrial content and biogenesis signaling in skeletal muscle. Oncotarget 2016, 7, 52695–52709. [Google Scholar] [CrossRef] [Green Version]
- Filler, K.; Lyon, D.; Bennett, J.; McCain, N.; Elswick, R.; Lukkahatai, N.; Saligan, L.N. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014, 1, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Boil. 2013, 45, 2288–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratic, A.; Larsson, N.-G. The role of mitochondria in aging. J. Clin. Investig. 2013, 123, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, D.A. Invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl. Physiol. 2001, 90, 1137–1157. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-C.; Wei, Y.-H. Mitochondria and aging. In Current Topics in Complement; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2011; Volume 942, pp. 311–327. [Google Scholar]
- López-Armada, M.J.; Riveiro-Naveira, R.R.; Vaamonde-García, C.; Valcarcel-Ares, M.N. Mitochondrial dysfunction and the inflammatory response. Mitochondrion 2013, 13, 106–118. [Google Scholar] [CrossRef]
- van Horssen, J.; van Schaik, P.; Witte, M. Inflammation and mitochondrial dysfunction: A vicious circle in neurodegenerative disorders? Neurosci. Lett. 2019, 710, 132931. [Google Scholar] [CrossRef]
- Pieczenik, S.R.; Neustadt, J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 2007, 83, 84–92. [Google Scholar] [CrossRef]
- Myhill, S.; Booth, N.E.; McLaren-Howard, J. Chronic fatigue syndrome and mitochondrial dysfunction. Int. J. Clin. Exp. Med. 2009, 1, 1–16. [Google Scholar]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE study group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.J.; Krznaric, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN expert group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzke, B.; Neubauer, O.; Cameron-Smith, D.; Wagner, K.-H. Dietary protein, muscle and physical function in the very old. Nutrients 2018, 10, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, R.; Liu, W.; Piao, M.; Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 2017, 49, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Mach, N. The crosstalk between the gut microbiota and mitochondria during exercise. Front. Physiol. 2017, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Lauretani, F.; Milani, C.; Nouvenne, A.; Tana, C.; Del Rio, D.; Maggio, M.; Ventura, M.; Meschi, T. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: Is there a gut-muscle axis? Nutrients 2017, 9, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.M.W.; De Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Lange, K.; Havinga, R.; Van Dijk, T.H.; Gerding, A.; Van Eunen, K.; Muller, M.; Groen, A.K.; Hooiveld, G.J.; Bakker, B.M.; et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Liver Physiol. 2013, 305, G900–G910. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef]
- Shapiro, H.; A Thaiss, C.; Levy, M.; Elinav, E. The cross talk between microbiota and the immune system: Metabolites take center stage. Curr. Opin. Immunol. 2014, 30, 54–62. [Google Scholar] [CrossRef]
- Werbach, M.R. Nutritional strategies for treating chronic fatigue syndrome. Altern. Med. Rev. 2000, 5, 93–108. [Google Scholar]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaguarnera, M.; Gargante, M.P.; Cristaldi, E.; Colonna, V.; Messano, M.; Koverech, A.; Neri, S.; Vacante, M.; Cammalleri, L.; Motta, M. Acetyl L-Carnitine (ALC) treatment in elderly patients with fatigue. Arch. Gerontol. Geriatr. 2008, 46, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, L.M.; Preuss, H.G.; MacDowell, A.L.; Chiazze, L.; Birkmayer, G.D.; Bellanti, J. Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann. Allergy Asthma Immunol. 1999, 82, 185–191. [Google Scholar] [CrossRef]
- Castro-Marrero, J.; Cordero, M.D.; Segundo, M.J.; Sáez-Francàs, N.; Calvo, N.; Román-Malo, L.; Aliste, L.; Fernández de Sevilla, T.; Alegre, J. Does oral coenzyme Q10 plus NADH supplementation improve fatigue and biochemical parameters in chronic fatigue syndrome? Antioxid. Redox Signal. 2015, 22, 679–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haß, U.; Herpich, C.; Norman, K. Anti-inflammatory diets and fatigue. Nutrients 2019, 11, 2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Physiological | Pathological | Psychosocial |
---|---|---|
Digestive system | Diseases | Depression |
Hormonal | Medications | Financial status |
↓ taste and smell | Neurological disorders | Anxiety |
↑ energy expenditure | Swallowing problems | Sleep disorders |
Early satiety | Poor dentition | ↓ Ability to shop or prepare meals |
Cytokines | Poor mobility | Loneliness |
Xerostomia |
References | Study Design and Sample | Aim | Fatigue Assessment | Relevant Results |
---|---|---|---|---|
Obesity/inflammation | ||||
Valentine et al., 2009 [61] | Cross-sectional study; 127 community-dwelling older adults. | Assess the contributions of adiposity, systemic inflammation, physical activity/fitness, sleep quality and depression on fatigue. | Two items taken from the Cohen-Hoberman Inventory of Physical Symptoms questionnaire. | Women reported more fatigue than men which was independently associated with inflammation, depression, physical activity and adiposity, whereas in men the only independent predictor was depression. |
Valentine et al. 2011 [73] | Cross-sectional study; 182 older people. | Evaluate the influence of weight status, physical activity and inflammation on fatigue. | Multidimensional Fatigue Inventory. | Adiposity independently explained a significant amount of the variance in general and physical fatigue. |
Resnick et al., 2006 [26] | Cross-sectional study; 3130 participants aged 20 to 59 years in the NHANES. | Examine the relationships between fatigue and BMI, waist circumference, leisure time physical activity, and macronutrient intake. | Responses to the question, “Right now would you say you are feeling energetic, fresh, average, tired or exhausted?” | Self-reported fatigue was associated with higher BMI, higher waist circumference, and a reduced likelihood of getting recommended levels of physical activity. |
Theorell-Haglöw et al. 2006 [59] | Cross-sectional study; 5508 women aged 20 to 60 years. | Analyze the relation between different risk factors and excessive daytime sleepiness and fatigue. | Participants were asked to state how severe their problems were regarding feeling physically tired. | Being overweight was independently related to fatigue and excessive daytime sleepiness. |
Lim et al., 2008 [58] | Cross-sectional study; 129 subjects aged 25 to 50 years. | Examine the link between obesity and depressive symptoms. | Short form of Profile of Mood States (POMS–SF) Fatigue/Inertia subscale. | Scores on POMS–SF Fatigue were positively associated with BMI and percent fat. |
Undernutrition/nutritional deficiencies | ||||
Singh et al., 2014 [38] | Cross-sectional study; 47 nursing home residents. | Examine the correlation between nutritional status and comprehensive physical performance measures. | Functional Ability Questionnaire. | A significant negative correlation was found between self-reported mobility tiredness and BMI. |
Westergren et al., 2008 [37] | Cross-sectional pilot study; 89 older people discharged after stroke. | Explore associations between mealtime preparation, eating, fatigue, mood and nutritional status. | Two questions taken from the 12-item Short Form Health Survey. | Having a less favourable nutritional status was significantly predicted by a lack of energy and high age. |
Pennisi et al., 2019 [101] | Cross-sectional study; 480 older adults. | Evaluate and compare vitamin D status between older individuals. | Fatigue severity scale (FSS). | Compared with controls, subjects with fatigue showed a significant decrease in vitamin D levels. |
Sarcopenia/mitochondrial dysfunction | ||||
Christie et al., 2011 [90] | Systematic Review and Meta-Analysis of 37 studies. | Compare the differences in muscle fatigue between young and older adults. | - | Older people develop less muscle fatigue than young adults, particularly during isometric contractions. However, the results also suggest that older adults develop greater fatigue during dynamic contractions, especially when the decline in power is assessed. |
Patino-Hernandez et al., 2017 [100] | Cross-sectional study; 1509 older adults. | Examine the association among sarcopenia and its elements with depression and fatigue. | Fatigue was assessed by inquiring the participants: “In the last week: how many times have you felt that everything you do is an effort?” | Sarcopenia did not display statistically significant association with either depression or fatigue. However, both abnormal gait speed and grip strenght (two of the sarcopenia-defining variables) were associated with fatigue. |
Wawrzyniak et al., 2016 [102] | 48 subjects aged 65+ categorized into idiopathic chronic fatigue (ICF) and non-fatigued (NF) groups | Determine whether skeletal muscle mitochondrial dysregulation and oxidative stress is linked to ICF in older adults. | Functional assessment of chronic illness therapy (FACIT) fatigue scale. | Vastus lateralis muscle biopsies were analyzed, showing reductions in mitochondrial content and suppression of mitochondrial regulatory proteins Sirt3, PGC-1α, NRF-1, and cytochrome C in ICF group compared to NF group. |
Filler et al., 2014 [103] | Review; 25 papers of which 20 included patients with CFS/ME, which are summarized here. | Compare associations between fatigue and outcomes of mitochondrial function. | - | Most evidence for lower serum levels of CoQ10 in patients with CFS (4/4 studies). Other findings included reduced carnitine levels (4/5 studies); decreased antioxidant levels (2/2 studies); changes in mitochondrial structure (3/4 studies); and impaired energy production (2/4 studies). |
Lacourt et al., 2018 [43] | Review; 46 papers of which 12 included CRF, 20 CFS and 14 animal models. | Compare associations between low-grade inflammation and imbalance in energy availability and expenditure. | - | Most evidence for an association between fatigue and mitochondrial functioning comes from CFS, indicating lower levels of antioxidants and possible reductions in mitochondrial ATP production. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzolino, D.; Arosio, B.; Marzetti, E.; Calvani, R.; Cesari, M. Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People. Nutrients 2020, 12, 444. https://doi.org/10.3390/nu12020444
Azzolino D, Arosio B, Marzetti E, Calvani R, Cesari M. Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People. Nutrients. 2020; 12(2):444. https://doi.org/10.3390/nu12020444
Chicago/Turabian StyleAzzolino, Domenico, Beatrice Arosio, Emanuele Marzetti, Riccardo Calvani, and Matteo Cesari. 2020. "Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People" Nutrients 12, no. 2: 444. https://doi.org/10.3390/nu12020444
APA StyleAzzolino, D., Arosio, B., Marzetti, E., Calvani, R., & Cesari, M. (2020). Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People. Nutrients, 12(2), 444. https://doi.org/10.3390/nu12020444