The “Fortilat” Randomized Clinical Trial Follow-Up: Auxological Outcome at 18 Months of Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Trial and Intervention
2.2. The Fortilat Follow-Up
2.3. Subjects and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Corchia, C.; Orzalesi, M. Geographic variations in outcome of very low birth weight infants in Italy. Acta Paediatr. 2007, 96, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Dinerstein, A.; Nieto, R.M.; Solana, C.L.; Perez, G.P.; Otheguy, L.E.; Larguia, A.M. Early and aggressive nutritional strategy (parenteral and enteral) decreases postnatal growth failure in very low birth weight infants. J. Perinatol. 2006, 26, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, A.Y.; Lee, Y.W.; Chang, M.Y. Modification of nutrition strategy for improvement of postnatal growth in very low birth weight infants. Korean J. Pediatr. 2016, 59, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arslanoglu, S.; Boquien, C.Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front Pediatr. 2019, 7, 76. [Google Scholar] [CrossRef]
- Moro, G.E.; Arslanoglu, S.; Bertino, E.; Corvaglia, L.; Montirosso, R.; Picaud, J.; Polberger, S.; Schanler, R.J.; Steel, C.; van Goudoever, J.; et al. XII. Human Milk in Feeding Premature Infants: Consensus Statement. J. Pediatr. Gastroenterol. Nutr. 2015, 61, S16–S19. [Google Scholar] [CrossRef]
- Ong, K.K.; Kennedy, K.; Castañeda-Gutiérrez, E.; Forsyth, S.; Godfrey, K.M.; Koletzko, B.; Latulippe, M.E.; Ozanne, S.E.; Rueda, R.; Schoemaker, M.H.; et al. Postnatal growth in preterm infants and later health outcomes: A systematic review. Acta Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef] [Green Version]
- Maggio, L.; Cota, F.; Gallini, F. Effect of high versus standard early protein intake on growth of extremely low birth weight infants. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 124–129. [Google Scholar] [CrossRef]
- Cormack, B.E.; Bloomfield, F.H. Increased protein intake decreases postnatal growthbfaltering in ELBW babies. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F399–F404. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [Green Version]
- Cooke, R.W. Are there critical periods for brain growth in children born preterm? Arch. Dis. Child. Fetal Neonatal Ed. 2006, 91, F17–F20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Eleni dit Trolli, S.; Kermorvant-Duchemin, E.; Huon, C. Early lipid supply and neurological development at one year in very low birth weight preterm infants. Early Hum. Dev. 2012, 88, S25–S29. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, S.; Ichiba, H.; Tanaka, Y.; Harada, S.; Matsumura, H.; Kan, A.; Asada, Y.; Shintaku, H. Early and Intensive Nutritional Strategy Combining Parenteral and Enteral Feeding Promotes Neurodevelopment and Growth at 18months of Corrected Age and 3years of Age in Extremely Low Birth Weight Infants. Early Hum. Dev. 2016, 100, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Breastfeeding, S.O. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embleton, N.D. Optimal protein and energy intakes in preterm infants. Early Hum. Dev. 2007, 83, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Singh, B.; Chessell, L.; Wilson, J.; Janes, M.; McDonald, K.; Shahid, S.; Gardner, V.A.; Hjartarson, A.; Purcha, M.; et al. Guidelines for feeding very low birth weight infants. Nutrients 2015, 7, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.V.; Embleton, N.D.; Harding, J.E.; McGuire, W. Multi-nutrient fortification of human milk for preterm infants. Cochrane Database Syst. Rev. 2016, 5, CD000343. [Google Scholar] [CrossRef] [Green Version]
- Mimouni, F.B.; Nathan, N.; Ziegler, E.E.; Lubetzky, R.; Mandel, D. The Use of Multinutrient Human Milk Fortifiers in Preterm Infants: A Systematic Review of Unanswered Questions. Clin. Perinatol. 2017, 44, 173–178. [Google Scholar] [CrossRef]
- Ziegler, E.E. Meeting the nutritional needs of the low-birth-weight infant. Ann. Nutr. Metab. 2011, 58, 8–18. [Google Scholar] [CrossRef]
- Radmacher, P.G.; Adamkin, D.H. Fortification of human milk for preterm infants. Semin. Fetal Neonatal Med. 2017, 22, 30–35. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Moro, G.E.; Ziegler, E.E. The Wapm Working Group On Nutrition. Optimization of human milk fortification for preterm infants: New concepts and recommendations. J. Perinat. Med. 2010, 38, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Polberger, S. III. Individualized Fortification of Human Milk: Targeted Fortification. J. Pediatr. Gastroenterol. Nutr. 2015, 61, S3–S4. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, S. IV. Individualized Fortification of Human Milk: Adjustable Fortification. J. Pediatr. Gastroenterol. Nutr. 2015, 61, S4–S5. [Google Scholar] [CrossRef] [PubMed]
- Bertino, E.; Cavallarin, L.; Cresi, F.; Tonetto, P.; Peila, C.; Ansaldi, G.; Raia, M.; Varalda, A.; Giribaldi, M.; Conti, A.; et al. A Novel Donkey Milk-derived Human Milk Fortifier in Feeding Preterm Infants: A Randomized Controlled Trial. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coscia, A.; Bertino, E.; Tonetto, P.; Peila, C.; Cresi, F.; Arslanoglu, S.; Moro, G.E.; Spada, E.; Milani, S.; Giribaldi, M.; et al. Nutritional adequacy of a novel human milk fortifier from donkey milk in feeding preterm infants: Study protocol of a randomized controlled clinical trial. Nutr. J. 2018, 17, 6. [Google Scholar] [CrossRef] [Green Version]
- Bertino, E.; Gastaldi, D.; Monti, G.; Baro, C.; Fortunato, D.; Garoffo, L.P.; Coscia, A.; Fabris, C.; Mussap, M.; Conti, A. Detailed proteomic analysis on DM: Insight into its hypoallergenicity. Front. Biosci. 2010, 2, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Cresi, F.; Maggiora, E.; Pirra, A.; Tonetto, P.; Rubino, C.; Cavallarin, L.; Giribaldi, M.; Moro, G.E.; Peila, C.; Coscia, A. Effects on Gastroesophageal Reflux of Donkey Milk-Derived Human Milk Fortifier Versus Standard Fortifier in Preterm Newborns: Additional Data from the FortiLat Study. Nutrients 2020, 12, 2142. [Google Scholar] [CrossRef]
- Giribaldi, M.; Peila, C.; Coscia, A.; Cavallarin, L.; Antoniazzi, S.; Corbu, S.; Maiocco, G.; Sottemano, S.; Cresi, F.; Moro, G.E.; et al. Urinary Metabolomic Profile of Preterm Infants Receiving Human Milk with Either Bovine or Donkey Milk-Based Fortifiers. Nutrients 2020, 12, 2247. [Google Scholar] [CrossRef]
- Cheikh Ismail, L.; Knight, H.; Bhutta, Z.; Chumlea, W.C.; for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). Anthropometric protocols for the construction of new international fetal and newborn growth standards: The INTERGROWTH-21st Project. BJOG 2013, 120 (Suppl. 2), 42–47. [Google Scholar] [CrossRef] [Green Version]
- de Onis, M.; Onyango, A.W.; Van den Broeck, J.; Chumlea, W.C.; Martorell, R. Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr. Bull. 2004, 25, S27–S36. [Google Scholar] [CrossRef]
- Intergowth 21st. Available online: https://intergrowth21.tghn.org/standards-tools/ (accessed on 1 November 2020).
- INES Chart. Available online: http://www.inescharts.com/ (accessed on 1 November 2020).
- Gastaldi, D.; Bertino, E.; Monti, G.; Baro, C.; Fabris, C.; Lezo, A.; Medana, C.; Baiocchi, C.; Mussa, M.; Galvano, F.; et al. Donkey’s milk detailed lipid composition. Front. Biosci. (Elite Ed.) 2010, 2, 537–546. [Google Scholar] [PubMed] [Green Version]
- Trinchese, G.; Cavaliere, G.; De Filippo, C.; Aceto, S.; Prisco, M.; Chun, J.T.; Penna, E.; Negri, R.; Muredda, L.; Demurtas, A.; et al. Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate Glucose and Lipid Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat Skeletal Muscle. Front. Physiol. 2018, 9, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertino, E.; Coscia, A.; Mombro, M.; Boni, L.; Rossetti, G.; Fabris, C.; Spada, E.; Milani, S. Postnatal weight increase and growth velocity of very low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 2006, 91, F349–F356. [Google Scholar] [CrossRef] [Green Version]
- Bertino, E.; Coscia, A.; Boni, L.; Rossi, C.; Martano, C.; Giuliani, F.; Fabris, C.; Spada, E.; Zolin, A.; Milani, S. Weight growth velocity of very low birth weight infants: Role of gender, gestational age and major morbidities. Early Hum. Dev. 2009, 85, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Statnikov, Y.; Santhakumaran, S.; Pan, H.; Modi, N. On behalf of the Neonatal Data Analysis Unit and the Preterm Growth Investigator Group. Birth weight and longitudinal growth in infants born below 32 weeks’ gestation: A UK population study. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F34–F40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prader, A.; Tanner, J.M.; von Harnack, G. Catch-up growth following illness or starvation. An example of developmental canalization in man. J. Pediatr. 1963, 62, 646–659. [Google Scholar] [CrossRef]
- Healy, M.J.R.; Goldstein, H. Regression to the mean. Ann. Hum. Biol. 1978, 5, 277–280. [Google Scholar] [CrossRef]
- Cameron, N.; Preece, M.A.; Cole, T.J. Catch-up Growth or Regression to the Mean? Recovery from Stunting Revisited. Am. J. Hum. Biol. 2005, 17, 412–417. [Google Scholar] [CrossRef]
BF-Arm n = 62 | DF-Arm n = 60 | ||
---|---|---|---|
Boys | n (%) | 29 (46.8) | 30 (50.0) |
GA < 32 weeks | n (%) | 52 (83.9) | 42 (70.0) |
GA (days) | median [IQR] (min–max) | 209 (193–217] (153−238) | 217 [206–225.5] (168−255) |
Birth head circumference * | |||
cm | mean (SD) (min–max) | 26.3 (2.3) (21.5–30.8) | 27.0 (2.1) (20.0–30.1) |
z-score Int21s | mean (SD) (min–max) | −0.52 (0.99) (−3.30–+1.49) | −0.91 (1.16) (−2.98–+1.34) |
<10th centile Int21st | n (%) | 15 (28.3) | 21 (40.4) |
>90th centile Int21st | n (%) | 1 (1.9) | 1 (1.9) |
z-score INeS | mean (SD) (min–max) | −0.32 (1.06) (−3.27–+1.88) | −0.79 (1.28) (−3.24–+1.74) |
<10th centile INeS | n (%) | 11 (20.4) | 20 (38.5) |
>90th centile INeS | n (%) | 4 (7.4) | 3 (5.8) |
Birth length ** | |||
cm | mean (SD) (min–max) | 36.7 (3.1) (30.4–43.4) | 37.8 (2.9) (31.0–45.9) |
z-score Int21s | mean (SD) (min–max) | −0.98 (0.89) (−2.89–+0.88) | −1.33 (1.35) (−4.04–+2.01) |
<10th centile Int21st | n (%) | 15 (34.9) | 22 (50.0) |
>90th centile Int21st | n (%) | 0 (0.0) | 1 (2.3) |
z-score INeS | mean (SD) (min–max) | −0.56 (0.99) (−2.68–+1.60) | −0.97 (1.42) (−3.47–+2.33) |
<10th centile INeS | n (%) | 11 (25.0) | 19 (43.2) |
>90th centile INeS | n (%) | 1 (2.3) | 3 (6.8) |
Birth weight | |||
g | mean (SD) (min–max) | 1129 (321) (570–2040) | 1196 (304) (520–1900) |
z-score Int21s | mean (SD) (min–max) | −0.67 (1.17) (−2.90–+1.56) | −1.12 (1.20) (−3.89–+1.36) |
<10th centile Int21st (SGA) | n (%) | 21 (35.0) | 28 (46.7) |
>90th centile Int21st (LGA) | n (%) | 2 (3.3) | 1 (1.7) |
z-score INeS | mean (SD) (min–max) | −0.31 (1.12) (−2.36–+1.93) | −0.80 (1.16) (−3.15–+1.19) |
<10th centile INeS (SGA) | n (%) | 14 (23.0) | 23 (38.3) |
>90th centile INeS (LGA) | n (%) | 4 (6.6) | 0 (0.0) |
BF-Arm | DF-Arm | DF-BF | ||||
---|---|---|---|---|---|---|
n | Mean [CI(95%)] | n | Mean [CI(95%)] | Mean [CI(95%)] | p | |
Head circumference | 61 | −0.066 [−0.372; +0.239] | 59 | −0.132 [−0.434; +0.169] | −0.066 [−0.491; +0.359] | 0.758 |
Length | 58 | −1.530 [−1.843; −1.216] | 58 | −1.604 [−1.900; −1.309] | −0.075 [−0.501; +0.351] | 0.729 |
Weight | 60 | −0.955 [−1.230; −0.681] | 60 | −0.997 [−1.228; −0.716] | −0.041 [−0.430; +0.348] | 0.833 |
BF-Arm | DF-Arm | DF-BF | p | |
---|---|---|---|---|
Head circumference | ||||
Int21st | −0.101 [−0.412; +0.210] | −0.104 [−0.430; +0.221] | −0.003 [−0.326; +0.319] | 0.986 |
INeS | −0.136 [−0.437; +0.165] | −0.132 [−0.449; +0.184] | +0.004 [−0.311; +0.319] | 0.985 |
Length/Height | ||||
Int21st | −1.786 [−2.141; −1.431] | −1.658 [−2.016; −1.300] | +0.128 [−0.230; +0.478] | 0.565 |
INeS | −1.846 [−2.192; −1.500] | −1.722 [−2.072; −1.372] | +0.124 [−0.224; +0.481] | 0.551 |
Weight | ||||
Int21st | −1.050 [−1.349; −0.751] | −0.983 [−1.289; −0.677] | +0.067 [−0.237; +0.372] | 0.716 |
INeS | −1.057 [−1.360; −0.755] | −0.995 [−1.310; −0.679] | +0.063 [−0.246; +0.372] | 0.738 |
Head Circumference | Length | Weight | |
---|---|---|---|
BW at birth | |||
Intergrowth21st | +0.597 [+0.422; +0.771] | +0.537 [+0.330; +0.744] | +0.449 [+0.298; +0.601] |
INeS | +0.568 [+0.414; +0.723] | +0.521 [+0.336; +0.706] | +0.461 [+0.288; +0.633] |
GA at birth | |||
Intergrowth21st | +0.021 [−0.068; +0.109] | +0.176 [+0.076; +0.277] | +0.116 [+0.033; +0.198] |
INeS | +0.049 [−0.035; +0.132] | +0.218 [+0.123; +0.314] | +0.139 [+0.057; +0.220] |
POP: <32 weeks vs. ≥32 weeks | |||
Intergrowth21st | −0.102 [−0.647; +0.442] | +0.058 [−0.566; +0.683] | +0.163 [−0.352; +0.679] |
INeS | +0.009 [−0.506; +0.525] | +0.206 [−0.385; +0.796] | +0.157 [−0.375; +0.690] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peila, C.; Spada, E.; Bertino, E.; Deantoni, S.; Percivati, F.; Moro, G.E.; Giribaldi, M.; Cavallarin, L.; Cresi, F.; Coscia, A. The “Fortilat” Randomized Clinical Trial Follow-Up: Auxological Outcome at 18 Months of Age. Nutrients 2020, 12, 3730. https://doi.org/10.3390/nu12123730
Peila C, Spada E, Bertino E, Deantoni S, Percivati F, Moro GE, Giribaldi M, Cavallarin L, Cresi F, Coscia A. The “Fortilat” Randomized Clinical Trial Follow-Up: Auxological Outcome at 18 Months of Age. Nutrients. 2020; 12(12):3730. https://doi.org/10.3390/nu12123730
Chicago/Turabian StylePeila, Chiara, Elena Spada, Enrico Bertino, Sonia Deantoni, Federica Percivati, Guido E. Moro, Marzia Giribaldi, Laura Cavallarin, Francesco Cresi, and Alessandra Coscia. 2020. "The “Fortilat” Randomized Clinical Trial Follow-Up: Auxological Outcome at 18 Months of Age" Nutrients 12, no. 12: 3730. https://doi.org/10.3390/nu12123730
APA StylePeila, C., Spada, E., Bertino, E., Deantoni, S., Percivati, F., Moro, G. E., Giribaldi, M., Cavallarin, L., Cresi, F., & Coscia, A. (2020). The “Fortilat” Randomized Clinical Trial Follow-Up: Auxological Outcome at 18 Months of Age. Nutrients, 12(12), 3730. https://doi.org/10.3390/nu12123730