Antarctic Krill Oil Ameliorates Monosodium Iodoacetate-Induced Irregularities in Articular Cartilage and Inflammatory Response in the Rat Models of Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Extract
2.2. Animal Treatment and MIA Induced OA in Rat
2.3. Histologic Staining and Micro-Computed Tomography (μCT) Image Scan
2.4. Measurement of Serum PGE2 and Cytokines Levles
2.5. mRNA Expression in Rat Cartilage
2.6. Statistical Analysis
3. Results
3.1. Histological Analysis of the Articular Cartilage
3.2. FJH-KO Supplemenatation Improved Mineralization Parameters
3.3. FJH-KO Supplementation Reduced Serum PGE2 and Pro-Inflammatory Cytokines Levels
3.4. FJH-KO Supplementation Ameliorated mRNA Expression of Anabolic and Catabolic Factors in the Articular Cartilage
3.5. FJH-KO Supplementation Ameliorated the mRNA Expression of Inflammatory Factors in the Articular Cartilage
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Felson, D.T. Clinical practice. Osteoarthritis of the knee. N. Engl. J. Med. 2006, 354, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Sniekers, Y.H.; Intema, F.; Lafeber, F.P.; van Osch, G.J.; van Leeuwen, J.P.; Weinans, H.; Mastbergen, S.C. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord. 2009, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houard, X.; Goldring, M.B.; Berenbaum, F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr. Rheumatol. Rep. 2013, 15, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, J.C.; Martel-Pelletier, J.; Pelletier, J.P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 2002, 39, 237–246. [Google Scholar]
- Thalhamer, T.; McGrath, M.A.; Harnett, M.M. MAPKs and their relevance to arthritis and inflammation. Rheumatology 2008, 47, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.J. Pharmacologic therapy for osteoarthritis—The era of disease modification. Nat. Rev. Rheumatol. 2011, 7, 13–22. [Google Scholar] [CrossRef]
- Barnes, E.V.; Edwards, N.L. Treatment of osteoarthritis. South. Med. J. 2005, 98, 205–209. [Google Scholar] [CrossRef]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI recommendations for the management of hip and knee osteoarthritis, part І: Critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthr. Cartil. 2007, 15, 981–1000. [Google Scholar] [CrossRef] [Green Version]
- Crofford, L.J. Use of NSAIDs in treating patients with arthritis. Arthrritis Res. Ther. 2013, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Castrogiovanni, P.; Trovato, F.M.; Loreto, C.; Nsir, H.; Szychlinska, M.A.; Musumeci, G. Natraceutical supplements in the management and prevention of osteoarthritis. Int. J. Mol. Sci. 2016, 17, 2042. [Google Scholar] [CrossRef]
- Little, C.V.; Parsons, T. Herbal therapy for treating osteoarthritis. Cochrane Database Syst. Rev. 2001, CD002947. [Google Scholar]
- Monograph, K.O. Krill oil monograph. Altern. Med. Rev. 2010, 15, 84–86. [Google Scholar]
- Wendell, S.G.; Baffi, C.; Holguin, F. Fatty acids, inflammation, and asthma. J. Allergy Clin. Immunol. 2014, 13, 1255–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H.; Johnston, S.A. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Aigner, T.; McKenna, L. Molecular pathology and pathobiology of osteoarthritic cartilage. Cell. Mol. Life Sci. 2002, 59, 5–18. [Google Scholar] [CrossRef]
- Guzman, R.E.; Evans, M.G.; Bove, S.; Morenko, B.; Kilgore, K. Mono-idoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joint: An animal model of osteoarthritis. Toxicol. Pathol. 2003, 31, 619–624. [Google Scholar] [CrossRef]
- Park, M.H.; Jung, J.C.; Hill, S.; Cartwright, E.; Dohnalek, M.H.; Yu, M.; Jun, H.J.; Han, S.B.; Hong, J.T.; Son, D.J. FlexPro MD, a Combination of Krill Oil, Astaxanthin and Hyaluronic Acid, Reduces Pain Behavior and Inhibits Inflammatory Response in Monosodium Iodoacetate-Induced Osteoarthritis in Rats. Nutrients 2020, 12, 956. [Google Scholar] [CrossRef] [Green Version]
- El-Seweidy, M.M.; Ali, S.I.; Elsweify, S.E.; Ali, A.A.; Mashhour, M.M. Omega 3 faaty acids intake versus diclofenac in osteoarthritis induced in experimental rats. Funct. Foods Health Dis. 2017, 7, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Knott, L.; Avery, N.C.; Hollander, A.P.; Tarlton, J.F. Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in naturally occurring model of disease. Osetoarthritis Cartil. 2011, 19, 1150–1157. [Google Scholar] [CrossRef] [Green Version]
- Chervalier, X.; Eymard, F.; Richette, P. Biologic agents in osteoarthritis: Hopes and disappointments. Nat. Rev. Rheumatol. 2013, 9, 400–441. [Google Scholar] [CrossRef]
- Zadeh-Ardabili, P.M.; Rad, S.K. Anti-pain and anti-inflammation like effects of Neptune krill oil and fish oil against carrageenan induced inflammation in mice models: Current statues and pilot study. Biotechnol. Rep. 2019, 22, e00341. [Google Scholar] [CrossRef] [PubMed]
- Ierna, M.; Kerr, A.; Scales, H.; Berge, K.; Griinari, M. Supplementation of diet with krill oil protects against experimental rheumatoid arthritis. BMC Musculoskelet. Disord. 2010, 11, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabiri, Y.; Li, L.P. Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee. Med. Eng. Phys. 2013, 35, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Radons, J.; Bosserhoff, A.K.; Grässel, S.; Falk, W.; Schubert, T.E.O. p38MAPK mediates IL-1-induced down-regulation of agrrecan gene expression in human chondrocytes. Int. J. Mol. Med. 2006, 17, 661–668. [Google Scholar]
- Nam, J.; Perera, P.; Liu, J.; Rath, B.; Deschner, J.; Gassner, R.; Butterfield, T.A.; Agarwal, S. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis. PLoS ONE 2011, 6, e24320. [Google Scholar] [CrossRef] [PubMed]
- Pearle, A.D.; Warren, R.F.; Rodeo, S.A. Basic science of articular cartilage and osteoarthritis. Clin. Sports Med. 2005, 24, 1–12. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Boileau, C.; Pelletier, J.; Roughley, P.J. Cartilage in normal and osteoarthritis conditions. Best. Pract. Res. Clin. Rheumatol. 2008, 22, 351–384. [Google Scholar] [CrossRef]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Hembry, R.M.; Bagga, M.R.; Reynolds, J.J.; Hamblen, D.L. Immunolocalisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis. Ann. Rheum. Dis. 1995, 54, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Liacini, A.; Sylvester, J.; Li, W.Q.; Huang, W.; Dehnade, F.; Ahmad, M.; Zafarullah, M. Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated MAPKinases, AP-1, and NF-κB transcription factors in articular chondrocytes. Exp. Cell Res. 2003, 288, 208–217. [Google Scholar] [CrossRef]
- Wang, K.; Han, L.; Zhu, Y.; Liu, Y.; Wang, J.; Xue, C. Antarctic Krill Oil improves articular cartilage degeneration via activating chondrocyte autophagy and inhibiting apoptosis in osteoarthritis mice. J. Funct. Foods 2018, 46, 413–422. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Dai, Y.; Han, L.; Zhu, Y.; Xue, C.; Wang, P.; Wang, J. Peptides from Antarctic Krill (Euphausia superba) Improve Osteoarthritis via Inhibiting HIF-2alpha-Mediated Death Receptor Apoptosis and Metabolism Regulation in Osteoarthritic Mice. J. Agric. Food Chem. 2019, 67, 3125–3133. [Google Scholar] [CrossRef] [PubMed]
Sequence Name | Sequence Number | Primer Sequences |
---|---|---|
GAPDH (rats) | NM_017008 | F 5′-TGG CCT CCA AGG AGT AAG AAA C-3′ R 5′-CAG CAA CTG AGG GCC TCT CT-3′ |
Aggrecan (rats) | NM_022190 | F 5′-GAA GTG TCC AAA CCA A-3′ R 5′-CGT TCC ATT CAC CCC TCT CA-3′ |
Col I (rats) | NM_000088 | F 5′-GAG CGG AGA GTA CTG GAT CGA-3′ R 5′-CTG ACC TGT CTC CAT GTT GCA-3′ |
Col II (rat) | L48440.1 | F 5′-GCA ACA GCA GGT TCA CGT ACA-3′ R 5′-TCG GTA CTC GAT GAT GGT CTT G-3′ |
Col X (rats) | XM_001053056 | F 5′-TTC AGG GAG CGC GAT CAT-3′ R 5′-GAG GAG TAG AGG CCG TTC GAT-3′ |
TIMP-1 (rats) | NM_053819 | F 5′-AAG GGC TAC CAG AGC GAT CA-3′ R 5′-ATC GAG ACC CCA AGG TAT TGC-3′ |
TIMP-3 (rats) | RNU27201 | F 5′-GAC CGA CAT GCT TC CAA TTT C-3′ R 5′-GCT GCA GTA GCC ACC CTT CT-3′ |
MMP-3 (rats) | NM_133523 | F 5′-GAG TGT GGA TTC TGC CAT TGA G-3′ R 5′-TTA CAG CCT CTC CTT CAG AGA-3′ |
MMP-7 (rats) | NM_012864 | F 5′-ACT CTA GGC CAT GCC TTT GC-3′ R 5′-CCA TCC GTC CAG TAC TCA TCC-3′ |
MMP-13 (rats) | NM_133530.1 | F 5′-ACG TTC AAG GAA TCC AGT CTC-3′ R 5′-GGA TAG GGC TGG GTC ACA CTT-3′ |
COX-2 (rats) | S67722 | F 5′-AGA GAA AGA AAT GGC TGC AGA GTT-3′ R 5′-AGC AGG GCG GGA TAC AGT-3′ |
IL-1β (rats) | NM_031512 | F 5′-GGC TTC GAG ATG AAC AAC AAA AA-3′ R 5′-GTC CAT TGA GGT GGA GAG CTT T-3′ |
TNF-α (rats) | AJ002278 | F 5′-ACA AGG CTG CCC CGA CTA T-3′ R 5′-CTC CTG GTA TGA AGT GGC AAA TC-3′ |
NF-κB (rats) | NM_001276711 | F 5′-GCA CCA AGA CCG AAG CAA TT-3′ R 5′-GAA ACC CCA CAT CCT CCT CT T-3′ |
Measurements | NC 1 | Induced Arthritis | ||||
---|---|---|---|---|---|---|
C | PC | FJH-KO 50 | FJH-KO 100 | FJH-KO 150 | ||
BMD 2 | 796.1 ± 17.3 a | 620.0 ± 25.4 b | 700.3 ± 13.1 b | 621.5 ± 16.0 b | 639.6 ± 6.6 b | 675.8 ± 66.8 b |
BV/TV | 0.30 ± 0.03 a | 0.14 ± 0.04 c | 0.26 ± 0.05 ab | 0.20 ± 0.07 bc | 0.22 ± 0.04 ab | 0.23 ± 0.03 ab |
Th.N | 1.44 ± 0.02 a | 1.13 ± 0.04 b | 1.33 ± 0.04 ab | 1.21 ± 0.20 b | 1.22 ± 0.09 b | 1.32 ± 0.01 ab |
Tb.Th | 0.25 ± 0.00 a | 0.11 ± 0.01 c | 0.19 ± 0.00 ab | 0.16 ± 0.03 b | 0.17 ± 0.02 b | 0.18 ± 0.02 b |
Tb.Sp | 0.52 ± 0.02 b | 0.64 ± 0.02 a | 0.54 ± 0.08 b | 0.60 ± 0.09 ab | 0.58 ± 0.00 ab | 0.56 ± 0.01 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Kim, D.; Park, S.-J.; Yun, J.m.; Oh, D.H.; Lee, J. Antarctic Krill Oil Ameliorates Monosodium Iodoacetate-Induced Irregularities in Articular Cartilage and Inflammatory Response in the Rat Models of Osteoarthritis. Nutrients 2020, 12, 3550. https://doi.org/10.3390/nu12113550
Lee M, Kim D, Park S-J, Yun Jm, Oh DH, Lee J. Antarctic Krill Oil Ameliorates Monosodium Iodoacetate-Induced Irregularities in Articular Cartilage and Inflammatory Response in the Rat Models of Osteoarthritis. Nutrients. 2020; 12(11):3550. https://doi.org/10.3390/nu12113550
Chicago/Turabian StyleLee, Minhee, Dakyung Kim, Soo-Jeung Park, Jeong moon Yun, Dong Hwan Oh, and Jeongmin Lee. 2020. "Antarctic Krill Oil Ameliorates Monosodium Iodoacetate-Induced Irregularities in Articular Cartilage and Inflammatory Response in the Rat Models of Osteoarthritis" Nutrients 12, no. 11: 3550. https://doi.org/10.3390/nu12113550
APA StyleLee, M., Kim, D., Park, S.-J., Yun, J. m., Oh, D. H., & Lee, J. (2020). Antarctic Krill Oil Ameliorates Monosodium Iodoacetate-Induced Irregularities in Articular Cartilage and Inflammatory Response in the Rat Models of Osteoarthritis. Nutrients, 12(11), 3550. https://doi.org/10.3390/nu12113550