Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Analytical Procedures
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Clinical Chemistry and Biochemical Characteristics
3.3. Vitamins D, E and Beta-Carotene
3.4. Urinary Parameters
3.5. Nutrient Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, T.Y. Intestinal epithelial barrier dysfunction in Crohn’s disease. Proc. Soc. Exp. Biol. Med. 1997, 214, 318–327. [Google Scholar] [CrossRef] [PubMed]
- DeMeo, M.T.; Mutlu, E.A.; Keshavarzian, A.; Tobin, M.C. Intestinal permeation and gastrointestinal disease. J. Clin. Gastroenterol. 2002, 34, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Catalioto, R.M.; Maggi, C.A.; Giuliani, S. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr. Med. Chem. 2011, 18, 398–426. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 103. [Google Scholar] [CrossRef]
- Othman, M.O.; Harb, D.; Barkin, J.A. Introduction and practical approach to exocrine pancreatic insufficiency for the practicing clinician. Int. J. Clin. Pract. 2018, 72, e13066. [Google Scholar] [CrossRef]
- Chen, T.; Godebu, E.; Horgan, S.; Mirheydar, H.S.; Sur, R.L. The effect of restrictive bariatric surgery on urolithiasis. J. Endourol. 2013, 27, 242–244. [Google Scholar] [CrossRef]
- Vujasinovic, M.; Valente, R.; Thorell, A.; Rutkowski, W.; Haas, S.L.; Arnelo, U.; Martin, L.; Löhr, J.M. Pancreatic exocrine insufficiency after bariatric surgery. Nutrients 2017, 9, 1241. [Google Scholar] [CrossRef]
- Capurso, G.; Traini, M.; Piciucchi, M.; Signoretti, M.; Arcidiacono, P.G. Exocrine pancreatic insufficiency: Prevalence, diagnosis, and management. Clin. Exp. Gastroenterol. 2019, 12, 129–139. [Google Scholar] [CrossRef]
- Perbtani, Y.; Forsmark, C.E. Update on the diagnosis and management of exocrine pancreatic insufficiency. F1000Research 2019, 8. [Google Scholar] [CrossRef]
- Knudsen, L.; Marcussen, H.; Fleckenstein, P.; Pedersen, E.B.; Jarnum, S. Urolithiasis in chronic inflammatory bowel disease. Scand. J. Gastroenterol. 1978, 13, 433–436. [Google Scholar] [CrossRef]
- Pardi, D.S.; Tremaine, W.J.; Sandborn, W.J.; McCarthy, J.T. Renal and urologic complications of inflammatory bowel disease. Am. J. Gastroenterol. 1998, 93, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, S.R.; Mendonça, T.; Oliveira, P.; Oliveira, T.; Dias, J.; Lopes, T. Urolithiasis and Crohn’s disease. Urol. Ann. 2016, 8, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Hesse, A.; Brändle, E.; Wilbert, D.; Köhrmann, K.U.; Alken, P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur. Urol. 2003, 44, 709–713. [Google Scholar] [CrossRef]
- Scales, C.D.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Prevalence of kidney stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef]
- Terribile, M.; Capuano, M.; Cangiano, G.; Carnovale, V.; Ferrara, P.; Petrarulo, M.; Marangella, M. Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol. Dial. Transplant. 2006, 21, 1870–1875. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, C.L.; Jeng, L.B. Association between chronic pancreatitis and urolithiasis: A population-based cohort study. PLoS ONE 2018, 13, e0194019. [Google Scholar] [CrossRef]
- Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis 2016, 44, 33–43. [Google Scholar] [CrossRef]
- Earnest, D.L.; Johnson, G.; Williams, H.E.; Admirand, W.H. Hyperoxaluria in patients with ileal resection: An abnormality in dietary oxalate absorption. Gastroenterology 1974, 66, 1114–1122. [Google Scholar] [CrossRef]
- Dobbins, J.W.; Binder, H.J. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 1976, 70, 1096–1100. [Google Scholar] [CrossRef]
- Andersson, H.; Jagenburg, R. Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy. Gut 1974, 15, 360–366. [Google Scholar] [CrossRef]
- McDonald, G.B.; Earnest, D.L.; Admirand, W.H. Hyperoxaluria correlates with fat malabsorption in patients with sprue. Gut 1977, 18, 561–566. [Google Scholar] [CrossRef] [PubMed]
- McLeod, R.S.; Churchill, D.N. Urolithiasis complicating inflammatory bowel disease. J. Urol. 1992, 148, 974–978. [Google Scholar] [CrossRef]
- Sidhu, H.; Hoppe, B.; Hesse, A.; Tenbrock, K.; Brömme, S.; Rietschel, E.; Peck, A.B. Absence of Oxalobacter formigenes in cystic fibrosis patients: A risk factor for hyperoxaluria. Lancet 1998, 352, 1026–1029. [Google Scholar] [CrossRef]
- Fairfield, K.M.; Fletcher, R.H. Vitamins for chronic disease prevention in adults. JAMA 2002, 287, 3116–3126. [Google Scholar] [CrossRef]
- Duggan, S.N.; Smyth, N.D.; O’Sullivan, M.; Feehan, S.; Ridgway, P.F.; Conlon, K.C. The prevalence of malnutrition and fat-soluble vitamin deficiencies in chronic pancreatitis. Nutr. Clin. Pract. 2014, 29, 348–354. [Google Scholar] [CrossRef]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef]
- Martinez-Moneo, E.; Stigliano, S.; Hedström, A.; Kaczka, A.; Malvik, M.; Waldthaler, A.; Maisonneuve, P.; Simon, P.; Capurso, G. Deficiency of fat-soluble vitamins in chronic pancreatitis: A systematic review and meta-analysis. Pancreatology 2016, 16, 988–994. [Google Scholar] [CrossRef]
- Fabisiak, N.; Fabisiak, A.; Watala, C.; Fichna, J. Fat-soluble vitamin deficiencies and inflammatory bowel disease: Systematic review and meta-analysis. J. Clin. Gastroenterol. 2017, 51, 878–889. [Google Scholar] [CrossRef]
- Yokota, T.; Tsuchiya, K.; Furukawa, T.; Tsukagoshi, H.; Miyakawa, H.; Hasamura, Y. Vitamin E deficiency in acquired fat malabsorption. J. Neurol. 1990, 237, 103–106. [Google Scholar] [CrossRef]
- Duggan, S.N.; Smyth, N.D.; Murphy, A.; MacNaughton, D.; O’Keefe, S.J.D.; Conlon, K.C. High prevalence of osteoporosis in patients with chronic pancreatitis: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2014, 12, 219–228. [Google Scholar] [CrossRef]
- Mouli, V.P.; Ananthakrishnan, A.N. Review article: Vitamin D and inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2014, 39, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Kabbani, T.A.; Koutroubakis, I.E.; Schoen, R.E.; Ramos-Rivers, C.; Shah, N.; Swoger, J.; Regueiro, M.; Barrie, A.; Schwartz, M.; Hashash, J.G.; et al. Association of vitamin D level with clinical status in inflammatory bowel disease: A 5-year longitudinal study. Am. J. Gastroenterol. 2016, 111, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Alteheld, B.; Terjung, B.; Junghans, B.; Bitterlich, N.; Stehle, P.; Metzner, C. Change in the fatty acid pattern of erythrocyte membrane phospholipids after oral supplementation of specific fatty acids in patients with gastrointestinal diseases. Eur. J. Clin. Nutr. 2010, 64, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Petzold, J.; Bitterlich, N.; Alteheld, B.; Metzner, C. Determinants of urolithiasis in patients with intestinal fat malabsorption. Urology 2013, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hönow, R.; Hesse, A. Comparison of extraction methods for the determination of soluble and total oxalate in foods by HPLC-enzyme-reactor. Food Chem. 2002, 78, 511–521. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Hönow, R. Oxalate-rich foods. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Raederstorff, D.; Wyss, A.; Calder, P.C.; Weber, P.; Eggersdorfer, M. Vitamin E function and requirements in relation to PUFA. Br. J. Nutr. 2015, 114, 1113–1122. [Google Scholar] [CrossRef]
- Andersson, H.; Bosaeus, I.; Fasth, S.; Hellberg, R.; Hultén, L. Cholelithiasis and urolithiasis in Crohn’s disease. Scand. J. Gastroenterol. 1987, 22, 253–256. [Google Scholar] [CrossRef]
- Akerlund, J.E.; Bjorkhem, I.; Angelin, B.; Liljeqvist, L.; Einarsson, K. Apparent selective bile acid malabsorption as a consequence of ileal exclusion: Effects on bile acid, cholesterol, and lipoprotein metabolism. Gut 1994, 35, 1116–1120. [Google Scholar] [CrossRef][Green Version]
- Burton, G.W.; Ingold, K.U. Vitamin E as an in vitro and in vivo antioxidant. Ann. N. Y. Acad. Sci. 1989, 570, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Biesalski, H.K.; Böhles, H.; Esterbauer, H.; Fürst, P.; Gey, F.; Hundsdörfer, G.; Kasper, H.; Sies, H.; Weisburger, J. Antioxidant vitamins in prevention. Clin. Nutr. 1997, 16, 151–155. [Google Scholar] [CrossRef]
- Sikkens, E.C.M.; Cahen, D.L.; Koch, A.D.; Braat, H.; Poley, J.W.; Kuipers, E.J.; Bruno, M.J. The prevalence of fat-soluble vitamin deficiencies and a decreased bone mass in patients with chronic pancreatitis. Pancreatology 2013, 13, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.B.; Greer, P.; Sandhu, B.S.; Alkaade, S.; Wilcox, C.M.; Anderson, M.A.; Sherman, S.; Gardner, T.B.; Lewis, M.D.; Guda, N.M.; et al. Nutrition and inflammatory biomarkers in chronic pancreatitis patients. Nutr. Clin. Pract. 2019, 34, 387–399. [Google Scholar] [CrossRef]
- D’Odorico, A.; Bortolan, S.; Cardin, R.; D’Inca’, R.; Martines, D.; Ferronato, A.; Sturniolo, G.C. Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease. Scand. J. Gastroenterol. 2001, 36, 1289–1294. [Google Scholar]
- Geerling, B.J.; Badart-Smook, A.; Stockbrügger, R.W.; Brummer, R.J. Comprehensive nutritional status in patients with long-standing Crohn disease currently in remission. Am. J. Clin. Nutr. 1998, 67, 919–926. [Google Scholar] [CrossRef]
- Sampietro, G.M.; Cristaldi, M.; Cervato, G.; Maconi, G.; Danelli, P.; Cervellione, R.; Rovati, M.; Bianchi Porro, G.; Cestaro, B.; Taschieri, A.M. Oxidative stress, vitamin A and vitamin E behaviour in patients submitted to conservative surgery for complicated Crohn’s disease. Dig. Liver Dis. 2002, 34, 696–701. [Google Scholar] [CrossRef]
- Siwamogsatham, O.; Dong, W.; Binongo, J.N.; Chowdhury, R.; Alvarez, J.A.; Feinman, S.J.; Enders, J.; Tangpricha, V. Relationship between fat-soluble vitamin supplementation and blood concentrations in adolescent and adult patients with cystic fibrosis. Nutr. Clin. Pract. 2014, 29, 491–497. [Google Scholar] [CrossRef]
- Lindkvist, B.; Phillips, M.E.; Dominguez-Munoz, J.E. Clinical, anthropometric and laboratory nutritional markers of pancreatic exocrine insufficiency: Prevalence and diagnostic use. Pancreatology 2015, 15, 589–597. [Google Scholar] [CrossRef]
- Sitrin, M.D.; Lieberman, F.; Jensen, W.E.; Noronha, A.; Milburn, C.; Addington, W. Vitamin E deficiency and neurologic disease in adults with cystic fibrosis. Ann. Intern. Med. 1987, 107, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Somerset, S. Dietary intake and nutritional status of micronutrients in adults with cystic fibrosis in relation to current recommendations. Clin. Nutr. 2016, 35, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Waniek, S.; Di Giuseppe, R.; Esatbeyoglu, T.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Nöthlings, U.; Koch, M.; Schlesinger, S.; Rimbach, G.; et al. Vitamin E (α- and γ-Tocopherol) levels in the community: Distribution, clinical and biochemical correlates, and association with dietary patterns. Nutrients 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Bendich, A. ß-Carotene and the immune response. Proc. Nutr. Soc. 1991, 50, 263–274. [Google Scholar] [CrossRef]
- Wendland, B.E.; Aghdassi, E.; Tam, C.; Carrrier, J.; Steinhart, A.H.; Wolman, S.L.; Baron, D.; Allard, J.P. Lipid peroxidation and plasma antioxidant micronutrients in Crohn disease. Am. J. Clin. Nutr. 2001, 74, 259–264. [Google Scholar] [CrossRef]
- Lembcke, B.; Geibel, K.; Kirchhoff, S.; Lankisch, P.G. Serum ß-carotene: A simple static laboratory parameter for the diagnosis of steatorrhoea. Dtsch. Med. Wochenschr. 1989, 114, 243–247. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef]
- Gubatan, J.; Chou, N.D.; Nielsen, O.H.; Moss, A.C. Systematic review with meta-analysis: Association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2019, 50, 1146–1158. [Google Scholar] [CrossRef]
- Ham, N.S.; Hwang, S.W.; Oh, E.H.; Kim, J.; Lee, H.S.; Park, S.H.; Yang, D.H.; Ye, B.D.; Byeon, J.S.; Myung, S.J.; et al. Influence of severe vitamin D deficiency on the clinical course of inflammatory bowel disease. Dig. Dis. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Robberecht, E.; Vandewalle, S.; Wehlou, C.; Kaufman, J.M.; De Schepper, J. Sunlight is an important determinant of vitamin D serum concentrations in cystic fibrosis. Eur. J. Clin Nutr. 2011, 65, 574–579. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rabenberg, M.; Scheidt-Nave, C.; Busch, M.A.; Rieckmann, N.; Hintzpeter, B.; Mensink, G.B.M. Vitamin D status among adults in Germany—results from the German health interview and examination survey for adults (DEGS1). BMC Public Health 2015, 15, 641. [Google Scholar] [CrossRef] [PubMed]
- Pallav, K.; Riche, D.; May, W.L.; Sanchez, P.; Gupta, N.K. Predictors of vitamin D deficiency in inflammatory bowel disease and health: A Mississippi perspective. World J. Gastroenterol. 2017, 23, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Elkoushy, M.A.; Sabbagh, R.; Unikowsky, B.; Andonian, S. Prevalence and metabolic abnormalities of vitamin D-inadequate patients presenting with urolithiasis to a tertiary stone clinic. Urology 2012, 79, 781–785. [Google Scholar] [CrossRef]
- Ticinesi, A.; Nouvenne, A.; Ferraro, P.M.; Folesani, G.; Lauretani, F.; Allegri, F.; Guerra, A.; Cerundolo, N.; Aloe, R.; Lippi, G.; et al. Idiopathic calcium nephrolithiasis and hypovitaminosis D: A case-control study. Urology 2016, 87, 40–45. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, J.; Lu, Y.; Zhang, Z.; Qin, B.; Gao, H.; Wang, Y.; Zhu, J.; Wang, Q.; Zhu, Y.; et al. Association between circulating vitamin D level and urolithiasis: A systematic review and meta-analysis. Nutrients 2017, 9. [Google Scholar] [CrossRef]
- Malihi, Z.; Wu, Z.; Stewart, A.W.; Lawes, C.M.; Scragg, R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 104, 1039–1051. [Google Scholar] [CrossRef]
- Tungsanga, K.; Sriboonlue, P.; Futrakul, P.; Yachantha, C.; Tosukhowong, P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol. Res. 2005, 33, 65–69. [Google Scholar] [CrossRef]
- Holoch, P.A.; Tracy, C.R. Antioxidants and self-reported history of kidney stones: The national health and nutrition examination survey. J. Endourol. 2011, 25, 1903–1908. [Google Scholar] [CrossRef]
Stone Formers | Non-Stone Formers | p Value | |
---|---|---|---|
Patients (n) | 10 | 41 | |
• Men (n) | 6 (60%) | 12 (29%) | 0.138 |
• Women (n) | 4 (40%) | 29 (71%) | |
Age (years) | 56.1 ± 12.6 | 48.3 ± 14.2 | 0.136 |
Height (cm) 1 | 171.3 ± 5.9 | 170.5 ± 9.6 | 0.260 |
Weight (kg) 1 | 74.9 ± 15.0 | 70.4 ± 12.4 | 0.454 |
Body mass index (kg/m2) 1 | 25.4 ± 4.3 | 24.3 ± 4.5 | 0.436 |
Waist circumference (cm; men) 1 | 100 ± 11 | 92 ± 9 | 0.219 |
Waist circumference (cm; women) | 79 ± 5 | 83 ± 11 | 0.611 |
Systolic blood pressure (mm Hg) | 129 ± 17 | 125 ± 25 | 0.337 |
Diastolic blood pressure (mm Hg) | 86 ± 12 | 83 ± 12 | 0.469 |
Resting heart rate (1/min) | 70 ± 11 | 68 ± 9 | 0.974 |
Smokers (n) | 3 (30%) | 11 (27%) | 1.000 |
Confirmed diagnosis | 10 | 41 | 0.298 |
Exocrine pancreatic insufficiency | 6 | 15 | |
• Previous pancreatic surgery | 4 a | 2 b | |
Crohn’s disease | 2 | 13 | |
• Small bowel resection | 0 | 3 | |
• Colon resection | 0 | 1 | |
• Small bowel and colon resection | 2 | 6 | |
Cystic fibrosis | 0 | 2 | |
Celiac disease | 0 | 5 | |
Primary biliary cirrhosis | 1 | 1 | |
Liver cirrhosis | 0 | 1 | |
Short bowel syndrome | 1 | 0 | |
Idiopathic malabsorption | 0 | 4 |
SF (n = 10) | NSF (n = 41) | Total (n = 51) | SF (n = 10) | NSF (n = 41) | Total (n = 51) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Baseline | Baseline | Week 2 | Week 2 | Week 2 | |||||
Mean ± SD | Mean ± SD | Mean ± SD | p Value a | Mean ± SD | Mean ± SD | Mean ± SD | p Value a | p Value b | p Value c | |
Total protein (g/L) | 72.1 ± 4.7 | 72.2 ± 5.1 | 72.1 ± 4.9 | 0.958 | 72.3 ± 4.5 | 72.6 ± 6.4 | 72.6 ± 6.1 | 0.703 | 0.793 | 0.968 |
Albumin (g/L) 1 | 42.5 ± 4.7 | 43.0 ± 4.4 | 42.9 ± 4.4 | 0.766 | 43.3 ± 5.7 | 43.0 ± 4.7 | 43.0 ± 4.9 | 0.689 | 0.994 | 0.392 |
Creatinine (mg/dL) | 0.93 ± 0.29 | 0.81 ± 0.19 | 0.83 ± 0.22 | 0.223 | 0.87 ± 0.29 | 0.82 ± 0.26 | 0.83 ± 0.27 | 0.784 | 0.341 | 0.109 |
Total cholesterol (mg/dL) | 169 ± 53 | 206 ± 50 | 199 ± 52 | 0.036 | 166 ± 57 | 209 ± 53 | 200 ± 56 | 0.022 | 0.998 | 0.129 |
HDL cholesterol (mg/dL) | 43 ± 9 | 56 ± 15 | 54 ± 15 | 0.003 | 42 ± 11 | 56 ± 16 | 54 ± 16 | 0.004 | 0.532 | 0.686 |
LDL cholesterol (mg/dL) | 103 ± 45 | 127 ± 44 | 123 ± 45 | 0.072 | 100 ± 45 | 130 ± 46 | 124 ± 47 | 0.041 | 0.666 | 0.363 |
Triglycerides (mg/dL) | 129 ± 75 | 129 ± 114 | 129 ± 106 | 0.704 | 111 ± 51 | 120 ± 79 | 118 ± 74 | 0.967 | 0.551 | 0.237 |
AST (U/L) | 34 ± 14 | 30 ± 45 | 31 ± 40 | 0.005 | 30 ± 11 | 29 ± 40 | 29 ± 36 | 0.022 | 0.074 | 0.014 |
GGT (U/L) | 71 ± 113 | 36 ± 33 | 43 ± 58 | 0.967 | 62 ± 85 | 37 ± 39 | 42 ± 51 | 0.893 | 0.756 | 0.643 |
Uric acid (mg/dL) | 4.8 ± 0.9 | 4.7 ± 1.2 | 4.7 ± 1.1 | 0.856 | 4.5 ± 1.1 | 4.8 ± 1.2 | 4.7 ± 1.2 | 0.627 | 0.294 | 0.308 |
8-Isoprostanes (pmol/L) 1 | 28.40 ± 17.39 | 28.79 ± 28.67 | 28.71 ± 26.64 | 0.624 | 23.24 ± 13.48 | 27.15 ± 25.99 | 26.38 ± 23.99 | 0.991 | 0.249 | 0.436 |
Magnesium (mmol/L) 1 | 0.75 ± 0.11 | 0.79 ± 0.07 | 0.78 ± 0.08 | 0.369 | 0.75 ± 0.09 | 0.80 ± 0.08 | 0.79 ± 0.09 | 0.053 | 0.890 | 0.628 |
Homocysteine (µmol/L) | 10.85 ± 3.98 | 11.46 ± 5.25 | 11.34 ± 4.99 | 0.986 | 11.24 ± 4.75 | 11.62 ± 5.17 | 11.55 ± 5.05 | 0.876 | 0.617 | 0.524 |
Folic acid (ng/mL] | 8.28 ± 4.62 | 7.44 ± 5.22 | 7.61 ± 5.07 | 0.344 | 8.27 ± 4.19 | 7.15 ± 4.20 | 7.37 ± 4.18 | 0.307 | 0.950 | 0.949 |
Beta-carotene (µmol/L) | 0.27 ± 0.45 | 0.49 ± 0.41 | 0.45 ± 0.42 | 0.006 | 0.28 ± 0.42 | 0.49 ± 0.41 | 0.44 ± 0.41 | 0.011 | 0.632 | 0.752 |
Vitamin A (µmol/L) | 1.39 ± 0.85 | 1.55 ± 0.61 | 1.52 ± 0.66 | 0.447 | 1.36 ± 0.82 | 1.50 ± 0.61 | 1.47 ± 0.65 | 0.392 | 0.101 | 0.599 |
Vitamin D (nmol/L) | 48.57 ± 31.49 | 49.64 ± 23.93 | 49.43 ± 25.24 | 0.788 | 54.29 ± 32.59 | 55.30 ± 22.24 | 55.10 ± 24.23 | 0.752 | <0.001 | 0.752 |
Vitamin E (µmol/L) | 23.30 ± 17.88 | 29.54 ± 9.77 | 28.31 ± 11.84 | 0.039 | 34.05 ± 25.67 | 46.80 ± 15.69 | 44.30 ± 18.48 | 0.036 | <0.001 | 0.168 |
Vitamin D | SF (n = 10) | NSF (n = 41) | Total (n = 51) | p Value | |
---|---|---|---|---|---|
nmol/L | n (%) | n (%) | n (%) | ||
Baseline | <50 | 7 (70%) | 25 (61%) | 32 (63%) | 0.725 |
≥50 | 3 (30%) | 16 (39%) | 19 (37%) | ||
Week 2 | <50 | 6 (60%) | 22 (54%) | 28 (55%) | 1.000 |
≥50 | 4 (40%) | 19 (46%) | 23 (45%) |
Vitamin E | SF (n = 10) | NSF (n = 41) | Total (n = 51) | p Value | |
---|---|---|---|---|---|
µmol/L | n (%) | n (%) | n (%) | ||
Baseline | <12 | 2 (20%) | 1 (2%) | 3 (6%) | 0.132 |
12–29 | 5 (50%) | 22 (54%) | 27 (53%) | ||
≥30 | 3 (30%) | 18 (44%) | 21 (41%) | ||
Week 2 | <12 | 2 (20%) | 0 (0%) | 2 (4%) | 0.002 |
12–29 | 4 (40%) | 5 (12%) | 9 (18%) | ||
≥30 | 4 (40%) | 36 (88%) | 40 (78%) |
SF (n = 10) | NSF (n = 41) | Total (n = 51) | SF (n = 10) | NSF (n = 41) | Total (n = 51) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Baseline | Baseline | Week 2 | Week 2 | Week 2 | |||||
Mean ± SD | Mean ± SD | Mean ± SD | p Value a | Mean ± SD | Mean ± SD | Mean ± SD | p Value a | p Value b | p Value c | |
Volume (L/24 h) | 2.296 ± 0.889 | 2.142 ± 0.765 | 2.172 ± 0.784 | 0.472 | 2.060 ± 1.107 | 2.220 ± 0.914 | 2.189 ± 0.945 | 0.479 | 0.951 | 0.201 |
Density (g/cm3) | 1.008 ± 0.005 | 1.008 ± 0.005 | 1.008 ± 0.005 | 0.747 | 1.010 ± 0.006 | 1.008 ± 0.005 | 1.008 ± 0.005 | 0.275 | 0.396 | 0.195 |
pH | 6.01 ± 0.67 | 6.04 ± 0.48 | 6.03 ± 0.52 | 0.775 | 5.91 ± 0.62 | 6.10 ± 0.51 | 6.06 ± 0.53 | 0.299 | 0.634 | 0.193 |
Sodium (mmol/24 h) | 168 ± 66 | 146 ± 67 | 150 ± 67 | 0.253 | 185 ± 60 | 150 ± 63 | 157 ± 63 | 0.127 | 0.477 | 0.717 |
Potassium (mmol/24 h) | 51 ± 22 | 58 ± 18 | 56 ± 19 | 0.330 | 51 ± 21 | 56 ± 21 | 55 ± 21 | 0.586 | 0.869 | 0.803 |
Calcium (mmol/24 h) | 3.55 ± 2.33 | 3.61 ± 1.99 | 3.60 ± 2.04 | 0.991 | 4.15 ± 2.54 | 3.84 ± 2.11 | 3.90 ± 2.18 | 0.735 | 0.064 | 0.379 |
Magnesium (mmol/24 h) | 2.84 ± 1.90 | 3.51 ± 1.78 | 3.38 ± 1.80 | 0.392 | 3.31 ± 2.29 | 3.81 ± 1.39 | 3.71 ± 1.59 | 0.379 | 0.003 | 0.583 |
Ammonium (mmol/24 h) | 25.4 ± 16.6 | 23.6 ± 11.6 | 23.9 ± 12.5 | 0.895 | 31.4 ± 17.3 | 23.8 ± 15.5 | 25.3 ± 16.0 | 0.049 | 0.294 | 0.010 |
Chloride (mmol/24 h) | 199 ± 74 | 179 ± 67 | 183 ± 68 | 0.307 | 220 ± 64 | 178 ± 65 | 186 ± 66 | 0.069 | 0.967 | 0.319 |
Phosphate (mmol/24 h) | 26.8 ± 13.1 | 25.1 ± 7.5 | 25.4 ± 8.7 | 0.824 | 31.5 ± 16.2 | 26.0 ± 8.6 | 27.1 ± 10.5 | 0.461 | 0.223 | 0.140 |
Sulfate (mmol/24 h) | 16.8 ± 7.6 | 17.1 ± 5.6 | 17.0 ± 6.0 | 0.752 | 19.5 ± 5.6 | 18.5 ± 6.5 | 18.7 ± 6.3 | 0.843 | 0.017 | 0.330 |
Creatinine (mmol/24 h) | 9.76 ± 3.69 | 10.35 ± 2.74 | 10.23 ± 2.92 | 0.379 | 12.11 ± 4.54 | 10.46 ± 3.66 | 10.78 ± 3.86 | 0.354 | 0.249 | 0.008 |
Uric acid (mmol/24 h) | 2.59 ± 1.14 | 3.17 ± 0.82 | 3.06 ± 0.91 | 0.175 | 3.14 ± 1.04 | 3.23 ± 0.82 | 3.21 ± 0.85 | 0.735 | 0.273 | 0.105 |
Oxalate (mmol/24 h) | 0.649 ± 0.442 | 0.395 ± 0.215 | 0.445 ± 0.287 | 0.049 | 0.659 ± 0.292 | 0.378 ± 0.168 | 0.433 ± 0.225 | 0.002 | 0.900 | 0.168 |
Citrate (mmol/24 h) | 1.630 ± 1.645 | 2.933 ± 1.848 | 2.678 ± 1.868 | 0.039 | 1.606 ± 1.824 | 3.156 ± 1.968 | 2.852 ± 2.021 | 0.027 | 0.091 | 0.199 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siener, R.; Machaka, I.; Alteheld, B.; Bitterlich, N.; Metzner, C. Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis. Nutrients 2020, 12, 3110. https://doi.org/10.3390/nu12103110
Siener R, Machaka I, Alteheld B, Bitterlich N, Metzner C. Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis. Nutrients. 2020; 12(10):3110. https://doi.org/10.3390/nu12103110
Chicago/Turabian StyleSiener, Roswitha, Ihsan Machaka, Birgit Alteheld, Norman Bitterlich, and Christine Metzner. 2020. "Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis" Nutrients 12, no. 10: 3110. https://doi.org/10.3390/nu12103110
APA StyleSiener, R., Machaka, I., Alteheld, B., Bitterlich, N., & Metzner, C. (2020). Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis. Nutrients, 12(10), 3110. https://doi.org/10.3390/nu12103110