Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Lifestyle Intervention on Muscle Strength in Older Adults: Secondary Analysis of the Multidomain Alzheimer Preventive Trial (MAPT)
Abstract
1. Introduction
2. Subjects and Methods
2.1. Population and Protocol
2.2. Primary Outcome
2.3. Secondary Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Penninx, B.W.; Kritchevsky, S.B.; Newman, A.B. Inflammatory markers and incident mobility limitation in the elderly. J. Am. Geriatr. Soc. 2004, 52, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Harris, T.B.; Guralnik, J.M. Inflammation, a novel risk factor for disability in older persons. J. Am. Geriatr. Soc. 1999, 47, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Lemaitre, R.N.; King, I.B.; Song, X.; Huang, H.; Sacks, F.M.; Rimm, E.B.; Wang, M.; Siscovick, D.S. Plasma phospholipid long-chain omega-3 fatty acids and total and cause-specific mortality in older adults: A cohort study. Ann. Intern. Med. 2013, 158, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 pufa therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Abbatecola, A.M.; Cherubini, A.; Guralnik, J.M.; Andres Lacueva, C.; Ruggiero, C.; Maggio, M.; Bandinelli, S.; Paolisso, G.; Ferrucci, L. Plasma polyunsaturated fatty acids and age-related physical performance decline. Rejuvenation Res. 2009, 12, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Frison, E.; Boirie, Y.; Peuchant, E.; Tabue-Teguo, M.; Barberger-Gateau, P.; Feart, C. Plasma fatty acid biomarkers are associated with gait speed in community-dwelling older adults: The three-city-bordeaux study. Clin. Nutr. 2017, 36, 416–422. [Google Scholar] [CrossRef]
- Reinders, I.; Murphy, R.A.; Song, X.; Visser, M.; Cotch, M.F.; Lang, T.F.; Garcia, M.E.; Launer, L.J.; Siggeirsdottir, K.; Eiriksdottir, G.; et al. Polyunsaturated fatty acids in relation to incident mobility disability and decline in gait speed; the Age, Gene/Environment Susceptibility-Reykjavik Study. Eur. J. Clin. Nutr. 2015, 69, 489–493. [Google Scholar] [CrossRef]
- Krzymińska-Siemaszko, R.; Czepulis, N.; Lewandowicz, M.; Zasadzka, E.; Suwalska, A.; Witowski, J.; Wieczorowska-Tobis, K. The Effect of a 12-Week Omega-3 Supplementation on Body Composition, Muscle Strength and Physical Performance in Elderly Individuals with Decreased Muscle Mass. Int. J. Environ. Res. Public Health 2015, 12, 10558–10574. [Google Scholar] [CrossRef]
- Hutchins-Wiese, H.L.; Kleppinger, A.; Annis, K.; Liva, E.; Lammi-Keefe, C.J.; Durham, H.A.; Kenny, A.M. The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J. Nutr. Health Aging 2013, 17, 76–80. [Google Scholar] [CrossRef]
- Logan, S.L.; Spriet, L.L. Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PLoS ONE 2015, 10, e0144828. [Google Scholar] [CrossRef]
- Macartney, M.J.; Hingley, L.; Brown, M.A.; Peoples, G.E.; McLennan, P.L. Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br. J. Nutr. 2014, 112, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Ochi, E.; Tsuchiya, Y. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in Muscle Damage and Function. Nutrients 2018, 10, 552. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, S.; Guyonnet, S.; Coley, N.; Cantet, C.; Bonnefoy, M.; Bordes, S.; Bories, L.; Cufi, M.N.; Dantoine, T.; Dartigues, J.F.; et al. Effect for the MAPT Study Group* Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol. 2017, 16, 377–389. [Google Scholar] [CrossRef]
- Vellas, B.; Carrie, I.; Gillette-Guyonnet, S.; Touchon, J.; Dantoine, T.; Dartigues, J.F.; Cuffi, M.N.; Bordes, S.; Gasnier, Y.; Robert, P.; et al. A multidomain approach for preventing Alzheimer’s disease: Design and baseline data. J. Prev. Alzheimers. Dis. 2014, 1, 13–22. [Google Scholar] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.J.; Syddall, H.E.; Patel, H.P.; Martin, H.J.; Cooper, C.; Sayer, A.A. Is grip strength a good marker of physical performance among community-dwelling older people? J. Nutr. Health Aging 2012, 16, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A. Biol. Sci. Med. Sci. 2000, 55, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800–802. [Google Scholar] [CrossRef]
- Ewaschuk, J.B.; Almasud, A.; Mazurak, V.C. Role of n-3 fatty acids in muscle loss and myosteatosis. Appl. Physiol. Nutr. Metab. 2014, 39, 654–662. [Google Scholar] [CrossRef]
- Lalia, A.Z.; Dasari, S.; Robinson, M.M.; Abid, H.; Morse, D.M.; Klaus, K.A.; Lanza, I.R. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging 2017, 9, 1096–1129. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.R.; Mittendorfer, B. Fish oil-derived n-3 polyunsaturated fatty acids for the prevention and treatment of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.S.; Smith, H.J.; Drake, J.L.; Tisdale, M.J. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 2001, 61, 3604–3609. [Google Scholar] [PubMed]
- Becker, C.; Lord, S.R.; Studenski, S.A.; Warden, S.J.; Fielding, R.A.; Recknor, C.P.; Hochberg, M.C.; Ferrari, S.L.; Blain, H.; Binder, E.F.; et al. Myostatin antibody (LY2495655) in older weak fallers: A proof-of-concept, randomised, phase 2 trial. Lancet Diabetes. Endocrinol. 2015, 3, 948–957. [Google Scholar] [CrossRef]
- de l’Agence Française de Sécurité Sanitaire des Aliments Relatif à L’Actualisation des Apports Nutritionnels Conseillés Pour Les Acides Gras. Available online: https://www.anses.fr/fr/system/files/NUT2006sa0359.pdf (accessed on 10 January 2019).
- Barreto, P.S.; Rolland, Y.; Cesari, M.; Dupuy, C.; Andrieu, S.; Vellas, B.; MAPT study group. Effects of multidomain lifestyle intervention, omega-3 supplementation or their combination on physical activity levels in older adults: Secondary analysis of the Multidomain Alzheimer Preventive Trial (MAPT) randomised controlled trial. Age Ageing 2018, 47, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Rodacki, C.L.; Rodacki, A.L.; Pereira, G.; Naliwaiko, K.; Coelho, I.; Pequito, D.; Fernandes, L.C. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012, 95, 428–436. [Google Scholar] [CrossRef]
ω3-PUFA | ω3-PUFA + Multidomain Intervention | Multidomain Intervention + Placebo | Placebo | p | |
---|---|---|---|---|---|
N | 422 | 417 | 420 | 420 | |
Gender (F/M; %) | 16.02/9.11 | 15.66/9.17 | 16.44/8.58 | 16.62/8.40 | 0.70 |
Age (yrs, mean, SD) | 75.67 (4.65) | 75.50 (4.46) | 75.05 (4.19) | 75.13 (4.36) | 0.22 |
Weight (kg, mean, SD) | 68.70 (13.22) | 68.65 (13.56) | 68.26 (12.62) | 68.09 (12.53) | 0.88 |
Body Mass Index (BMI) (kg/m2, mean, SD) | 26.28 (4.08) | 26.19 (4.29) | 26.00 (4.00) | 25.99 (3.91) | 0.67 |
> Graduate high level (%) | 7.06 | 6.94 | 7.91 | 7.12 | 0.26 |
Sedentary (physical activity (PA) Minnesotta scale, %) * | 16.14 | 14.88 | 12.65 | 13.56 | 0.49 |
Mini-Mental State Examination (MMSE) (mean, SD) | 28.07 (1.62) | 28.08 (1.58) | 28.04 (1.62) | 28.09 (1.55) | 0.97 |
Muscle Strength | |||||
Repeated chair stand test (s, mean, SD) | 11.96 (3.53) | 11.85 (4.30) | 11.96 (4.72) | 11.59 (3.95) | 0.22 |
Handgrip strength (kg, mean, SD) | 27.33 (9.40) | 27.95 (9.40) | 27.50 (9.10) | 27.21 (9.26) | 0.68 |
Other Physical Performances | |||||
4-m walking speed (m/s−1, mean, SD) | 1.08 (0.26) | 1.09 (0.26) | 1.08 (0.26) | 1.10 (0.26) | 0.62 |
Short Physical Performance Battery (SPPB) (mean, SD) | 10.53 (1.55) | 10.50 (1.77) | 10.64 (1.70) | 10.66 (1.58) | 0.16 |
ω3-PUFA (n = 422) | ω3-PUFA + Multidomain Intervention (n = 417) | Multidomain Intervention + Placebo (n = 420) | Placebo (n = 420) | |
---|---|---|---|---|
Repeated chair stand test (s, mean, 95% CI) | 0.499 (0.0545 to 0.943) | 0.159 (−0.287 to 0.606) | −0.048 (−0.490 to 0.392) | 0.552 (0.111 to 0.993) |
Handgrip strength (kg, mean, 95% CI) | −3.532 (−4.216 to −2.849) | −3.968 (−4.645 to −3.290) | −4.0244 (−4.699 to−3.349) | −3.9158 (−4.587 to −3.244) |
4-m walking speed (m/s−1, mean, 95% CI) | −0.093 (−0.120 to −0.065) | −0.084 (0.111 to −0.057) | −0.066 (−0.093 to −0.039) | −0.077 (−0.105 to −0.050) |
SPPB (mean, 95% CI) | −0.3660 (−0.550 to −0.181) | −0.315 (−0.499 to −0.132) | −0.187 (−0.370 to −0.004) | −0.255 (−0.437 to −0.072) |
ω3-PUFA vs. Placebo | Raw p Value | Adjusted p Value * | ω3-PUFA + Multidomain Intervention vs. Placebo | Raw p Value | Adjusted p Value * | Multidomain Intervention + Placebo vs. Placebo | Raw p Value | Adjusted p Value * | |
---|---|---|---|---|---|---|---|---|---|
Repeated chair stand test (s, mean, 95% CI) | −0.053 (−0.680 to 0.572) | 0.866 | 0.866 | −0.393 (−1.021 to 0.234) | 0.219 | 0.438 | −0.601 (−1.225 to 0.022) | 0.058 | 0.176 |
Handgrip strength (kg, mean, 95% CI) | 0.382 (−0.575 to 1.341) | 0.433 | 0.914 | −0.05253 (−1.006 to 0.901) | 0.914 | 0.914 | −0.108 (−1.060 to 0.843) | 0.823 | 0.914 |
4-m walking speed (m/s−1, mean, 95% CI) | −0.015 (−0.053 to 0.023) | 0.435 | 0.737 | −0.00658 (−0.045 to 0.031 | 0.737 | 0.737 | 0.011 (−0.026 to 0.049) | 0.555 | 0.737 |
SPPB mean, 95% CI) | −0.110 (−0.370 to 0.149) | 0.403 | 0.646 | −0.06058 (−0.319 to 0.198) | 0.646 | 0.646 | 0.067 (−0.191 to 0.325) | 0.609 | 0.646 |
N | Number of Events | Incidence (% Participant/y) | 95% CI | RR * | 95% CI | Raw p Value | Adjusted p Value | |
---|---|---|---|---|---|---|---|---|
ω3-PUFA | 420 | 119 | 14.63 | 12.00–17.26 | 1.03 | 0.79–1.35 | 0.834 | 0.834 |
ω3-PUFA + Multidomain Intervention | 416 | 122 | 14.76 | 12.14–17.38 | 1.05 | 0.80–1.37 | 0.736 | 0.834 |
Multidomain Intervention + Placebo | 419 | 116 | 13.74 | 11.24–16.24 | 0.95 | 0.73–1.25 | 0.720 | 0.834 |
Placebo | 419 | 120 | 14.02 | 11.51–16.53 | 1 | - | - | - |
ω3-PUFA vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Subgroup Intervention vs. Placebo) | ω3-PUFA + Multidomain Intervention vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Subgroup Intervention vs. Placebo) | Multidomain Intervention + Placebo vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Subgroup Intervention vs. Placebo) | |
---|---|---|---|---|---|---|---|---|---|
Low DHA and EPA in red blood cells † | 0.262 (96; −1.046 to 1.571) | 0.694 | 0.694 | 0.270 (105; −1.046 to 1.587) | 0.686 | 0.694 | −0.429 (85; −1.794 to 0.935) | 0.537 | 0.694 |
Normal DHA and EPA in red blood cells † | −0.093 (283; −0.836 to 0.648) | 0.804 | 0.804 | −0.482 (265; −1.225 to 0.260) | 0.202 | 0.405 | −0.5167 (290; −1.249 to 0.216) | 0.166 | 0.405 |
High adherent to the Multidomain intervention (at least 75% of the sessions) | 0.170 (330; −0.513 to 0.853) | 0.625 | 0.625 | −0.348 (333; −1.029 to 0.334) | 0.317 | 0.625 | −0.167 (348; −0.837 to 0.503) | 0.625 | 0.625 |
Low adherent to the Multidomain intervention (less than 75% of the sessions) | −1.395 (65; −3.031 to 0.242) | 0.094 | 0.189 | −0.415 (57; −2.117 to 1.288) | 0.633 | 0.633 | −3.369 (52; −5.132 to −1.606) | <0.001 | <0.001 |
ω3-PUFA vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Sub-Group Intervention vs. Placebo) | ω3-PUFA + Multidomain Intervention vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Sub-Group Intervention vs. Placebo) | Multidomain Intervention + Placebo vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Sub-Group Intervention vs. Placebo) | |
---|---|---|---|---|---|---|---|---|---|
Low DHA and EPA in red blood cells † | 0.423 (106; −1.564 to 2.410) | 0.676 | 0.845 | 0.206 (101; −1.740 to 2.153) | 0.835 | 0.845 | −0.202 (86; −2.236 to 1.832) | 0.8455 | 0.845 |
Normal DHA and EPA in red blood cells † | 0.324 (287; −0.770 to 1.418 | 0.561 | 0.974 | −0.018 (287; −1.112 to 1.076) | 0.974 | 0.974 | −0.137 (287; −1.216 to 0.942) | 0.9740 | 0.803 |
High adherent to the Multidomain intervention (at least 75% of the sessions) | 0.220 (335; −0.824 to 1.264) | 0.425 | 0.447 | −0.178 (59; −1.211 to 0.855) | 0.447 | 0.447 | −0.254 (354; −1.273 to 0.766) | 0.3964 | 0.396 |
Low adherent to the Multidomain intervention (less than 75% of the sessions) | 1.769 (65; −0.658 to 4.196) | 0.152 | 0.458 | 0.669 (340; −1.830 to 3.167) | 0.599 | 0.599 | 1.122 (53; −1.473 to 3.716) | 0.3964 | 0.5997 |
ω3-PUFA vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Sub-Group Intervention vs. Placebo) | ω3-PUFA + Multidomain Intervention vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Sub-Group Intervention vs. Placebo) | Multidomain Intervention + Placebo vs. Placebo Mean (n; 95% CI) | Raw p Value (within Sub-Group Intervention vs. Placebo) | Adjusted p Value * (within Sub-Group Intervention vs. Placebo) | |
---|---|---|---|---|---|---|---|---|---|
Low DHA and EPA in red blood cells † | 0.129 (109; −0.411 to 0.670) | 0.638 | 0.638 | −0.139 (100; −0.674 to 0.396) | 0.610 | 0.638 | 0.227 (87; −0.332 to 0.786) | 0.425 | 0.638 |
Normal DHA and EPA in red blood cells † | −0.110 (285; −0.410 to 0.190 | 0.472 | 0.964 | 0.006 (190; −0.293 to 0.306) | 0.964 | 0.964 | −0.021 (304; −0.317 to 0.275) | 0.888 | 0.964 |
High adherent to the Multidomain intervention (at least 75% of the sessions) | −0.110 (278; −0.382 to 0.161) | 0.425 | 0.447 | 0.115 (201; −0.182 to 0.413) | 0.447 | 0.447 | 0.178 (238; −0.109 to 0.466) | 0.225 | 0.447 |
Low adherent to the Multidomain intervention (less than 75% of the sessions) | −0.284 (102; −0.781 to 0.211) | 0.260 | 0.504 | −0.249 (199; −0.583 to 0.085) | 0.143 | 0.431 | −0.118 (179; −0.466 to 0.229) | 0.504 | 0.504 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolland, Y.; Barreto, P.d.S.; Maltais, M.; Guyonnet, S.; Cantet, C.; Andrieu, S.; Vellas, B. Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Lifestyle Intervention on Muscle Strength in Older Adults: Secondary Analysis of the Multidomain Alzheimer Preventive Trial (MAPT). Nutrients 2019, 11, 1931. https://doi.org/10.3390/nu11081931
Rolland Y, Barreto PdS, Maltais M, Guyonnet S, Cantet C, Andrieu S, Vellas B. Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Lifestyle Intervention on Muscle Strength in Older Adults: Secondary Analysis of the Multidomain Alzheimer Preventive Trial (MAPT). Nutrients. 2019; 11(8):1931. https://doi.org/10.3390/nu11081931
Chicago/Turabian StyleRolland, Yves, Philipe de Souto Barreto, Mathieu Maltais, Sophie Guyonnet, Christelle Cantet, Sandrine Andrieu, and Bruno Vellas. 2019. "Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Lifestyle Intervention on Muscle Strength in Older Adults: Secondary Analysis of the Multidomain Alzheimer Preventive Trial (MAPT)" Nutrients 11, no. 8: 1931. https://doi.org/10.3390/nu11081931
APA StyleRolland, Y., Barreto, P. d. S., Maltais, M., Guyonnet, S., Cantet, C., Andrieu, S., & Vellas, B. (2019). Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Lifestyle Intervention on Muscle Strength in Older Adults: Secondary Analysis of the Multidomain Alzheimer Preventive Trial (MAPT). Nutrients, 11(8), 1931. https://doi.org/10.3390/nu11081931