Next Article in Journal
The Consumption of Alcoholic Beverages and the Prevalence of Cardiovascular Diseases in Men and Women: A Cross-Sectional Study
Previous Article in Journal
Advanced Glycation End-Products Can Activate or Block Bitter Taste Receptors
Previous Article in Special Issue
Natural Antioxidant Anthocyanins—A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration
Article Menu

Export Article

Open AccessArticle

Effect of Aruncus dioicus var. kamtschaticus Extract on Neurodegeneration Improvement: Ameliorating Role in Cognitive Disorder Caused by High-Fat Diet Induced Obesity

1
Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
2
Division of Special Forest Products, National Institute of Forest Science, Suwon 16631, Korea
3
Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
*
Author to whom correspondence should be addressed.
Su Bin Park and Jin Yong Kang contributed equally to this work as co-first authors.
Nutrients 2019, 11(6), 1319; https://doi.org/10.3390/nu11061319
Received: 2 May 2019 / Revised: 4 June 2019 / Accepted: 11 June 2019 / Published: 12 June 2019
(This article belongs to the Special Issue Nutrition, Cognition and Brain Integrity)
PDF [2130 KB, uploaded 12 June 2019]
  |     |  

Abstract

This study was performed to estimate the possibility of using an ethyl acetate fraction from Aruncus dioicus var. kamtschaticus (EFAD) on metabolic syndrome that is induced by a high-fat diet (HFD). It was demonstrated that EFAD suppresses lipid accumulation and improves insulin resistance (IR) caused by Tumor necrosis factor alpha (TNF-α) in in-vitro experiments using the 3T3-L1 cell. In in-vivo tests, C57BL/6 mice were fed EFAD at 20 and 40 mg/kg body weight (BW) for four weeks after the mice were fed HFD for 15 weeks to induce obesity. EFAD significantly suppressed the elevation of BW and improved impaired glucose tolerance in obese mice. Additionally, this study showed that EFAD has an ameliorating effect on obesity-induced cognitive disorder with behavioral tests. The effect of EFAD on peripheral-IR improvement was confirmed by serum analysis and western blotting in peripheral tissues. Additionally, EFAD showed an ameliorating effect on HFD-induced oxidative stress, impaired cholinergic system and mitochondrial dysfunction, which are interrelated symptoms of neurodegeneration, such as Alzheimer’s disease and central nervous system (CNS)-IR in brain tissue. Furthermore, we confirmed that EFAD improves CNS-IR by confirming the IR-related factors in brain tissue. Consequently, this study suggests the possibility of using EFAD for the prevention of neurodegeneration by improving metabolic syndrome that is caused by HFD.
Keywords: Neurodegeneration; metabolic syndrome; insulin resistance; high-fat diet; Aruncus dioicus var. kamtschaticus Neurodegeneration; metabolic syndrome; insulin resistance; high-fat diet; Aruncus dioicus var. kamtschaticus
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Park, S.B.; Kang, J.Y.; Kim, J.; Park, S.K.; Yoo, S.K.; Lee, U.; Kim, D.-O.; Heo, H.J. Effect of Aruncus dioicus var. kamtschaticus Extract on Neurodegeneration Improvement: Ameliorating Role in Cognitive Disorder Caused by High-Fat Diet Induced Obesity. Nutrients 2019, 11, 1319.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top