Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure
Abstract
:1. Introduction
2. Calcium and Blood Pressure Regulation
2.1. Calcium Intake and Parathyroid Function on Blood Pressure Regulation
2.1.1. Mechanisms Mediated by Parathyroid Hormone (PTH)
2.1.2. Parathyroid Hypertensive Factor (PHF)
2.2. Calcium Intake and Vitamin D in Blood Pressure Regulation
2.3. Calcium Intake and Renin–Angiotensin–Aldosterone System
2.3.1. Renin
2.3.2. Angiotensin II
2.3.3. Aldosterone
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
[Ca2+]i | cytosolic free calcium/intracellular calcium concentration |
ACAT-1R | adenylate cyclasetype I angiotensin II receptor |
cAMP | 3′,5′-cyclic adenosine monophosphate |
CZG | zona glomerulosa of the adrenal cortex of the adrenal gland |
DBP | diastolic blood pressure |
IP3 | inositol trisphosphate |
PHF | parathyroid hypertensive factor |
PKA | protein kinase A |
PKC | protein kinase C |
PLC | phospholipase C |
PRA | plasma renin activity |
PTH | parathyroid hormone |
PTHr-1 | PTH receptor |
RAAS | the renin–angiotensin-aldosterone system |
StAR | acute steroidogenic regulatory protein |
SBP | systolic blood pressure |
VDR | Vitamin D intracellular receptor |
References
- Belizan, J.M.; Villar, J. The relationship between calcium intake and edema-, proteinuria-, and hypertension-gestosis: An hypothesis. Am. J. Clin. Nutr. 1980, 33, 2202–2210. [Google Scholar] [CrossRef]
- Belizán, J.M.; Villar, J.; Self, S.; Pineda, O.; González, I.; Sainz, E. The mediating role of the parathyroid gland in the effect of low calcium intake on blood pressure in the rat. Arch. Latinoam. Nutr. 1984, 34, 666–675. [Google Scholar] [PubMed]
- Belizan, J.M.; Villar, J.; Pineda, O.; Gonzalez, A.E.; Sainz, E.; Garrera, G.; Sibrian, R. Reduction of blood pressure with calcium supplementation in young adults. J. Am. Med. Assoc. 1983, 249, 1161–1165. [Google Scholar] [CrossRef]
- Belizan, J.M.; Pineda, O.; Sainz, E.; Menendez, L.A.; Villar, J. Rise of blood pressure in calcium-deprived pregnant rats. Am. J. Obstet. Gynecol. 1981, 141, 163–169. [Google Scholar] [CrossRef]
- Baksi, S.N.; Abhold, R.H.; Speth, R.C. Low-calcium diet increases blood pressure and alters peripheral but not central angiotensin II binding sites in rats. J. Hypertens. 1989, 7, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Yuasa, S.; Shoji, T.; Miki, S.; Fujioka, H.; Uchida, K.; Sumikura, T.; Takamitsu, Y.; Yura, T.; Matsuo, H. Effect of Low Dietary Calcium Intake on Blood Pressure and Pressure Natriuresis Response in Rats: A Possible Role of the Renin-Angiotensin System. Blood Press. 1996, 5, 121–127. [Google Scholar]
- McCarron, D. Blood pressure and calcium balance in the Wistar-Kyoto rat. Life Sci. 1982, 30, 683–689. [Google Scholar] [CrossRef]
- Furspan, P.B.; Rinaldi, G.J.; Hoffman, K.; Bohr, D.F. Dietary calcium and cell membrane abnormality in genetic hypertension. Hypertension 1989, 13, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Hatton, D.C.; Scrogin, K.E.; Levine, D.; Feller, D.; Mccarron, D.A. Dietary calcium modulates blood pressure through alpha 1-adrenergic receptors. Am. J. Physiol. 1993, 264, 234–238. [Google Scholar] [CrossRef]
- Arvola, P.; Ruskoaho, H.; Pörsti, I. Effects of high calcium diet on arterial smooth muscle function and electrolyte balance in mineralocorticoid-salt hypertensive rats. Br. J. Pharmacol. 1993, 108, 948–958. [Google Scholar] [CrossRef] [Green Version]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizán, J.M. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst. Rev. 2015, 30, CD010037. [Google Scholar] [CrossRef]
- Dickinson, H.O.; Nicolson, D.J.; Cook, J.V.; Campbell, F.; Beyer, F.R.; Ford, G.A.; Mason, J. Calcium supplementation for the management of primary hypertension in adults. Cochrane Database Syst. Rev. 2006, 19, CD004639. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; He, J.; Appel, L.J.; Cutler, J.A.; Havas, S.; Kotchen, T.A.; Roccella, E.J.; Stout, R.; Vallbona, C.; Winston, M.C.; et al. Primary prevention of hypertension: Clinical and public health advisory from The National High Blood Pressure Education Program. JAMA J. Am. Med. Assoc. 2002, 288, 1882–1888. [Google Scholar] [CrossRef]
- Belizán, J.M.; Villar, J.; Gonzalez, L.; Campodonico, L.; Bergel, E. Calcium supplementation to prevent hypertensive disorders of pregnancy. N. Engl. J. Med. 1991, 325, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, A.N.; Duley, L.; Torloni, M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst. Rev. 2014, 24, CD001059. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Betrán, A.P.; Singata-Madliki, M.; Cormick, G.; Munjanja, S.P.; Fawcus, S.; Mose, S.; Hall, D.; Ciganda, A.; Seuc, A.H.; et al. Prepregnancy and early pregnancy calcium supplementation among women at high risk of pre-eclampsia: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 330–339. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guideline: Calcium Supplementation in Pregnant Women; WHO: Geneva, Switzerland, 2013; pp. 1–35. [Google Scholar]
- Belizan, J.M.; Villar, J.; Bergel, E.; del Pino, A.; Di Fulvio, S.; Galliano, S.V.; Kattan, C. Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: Follow up of a randomised controlled trial. BMJ 1997, 315, 281–285. [Google Scholar] [CrossRef]
- Bergel, E.; Gibbons, L.; Rasines, M.G.; Luetich, A.; Belizán, J.M. Maternal calcium supplementation during pregnancy and dental caries of children at 12 years of age: Follow-up of a randomized controlled trial. Acta Obstet. Gynecol. Scand. 2010, 89, 1396–1402. [Google Scholar] [CrossRef]
- Hofmeyr, G. Protocol 11PRT/4028: Long term calcium supplementation in women at high risk of pre-eclampsia: A randomised, placebo-controlled trial. Lancet 2011. Available online: https://www.thelancet.com/protocol-reviews/11PRT-4028 (accessed on 17 May 2019).
- McCarron, D.A.; Morris, C.D.; Henry, H.J.; Stanton, J.L. Blood pressure and nutrient intake in the United States. Nutr. Today 1984, 19, 14–23. [Google Scholar] [CrossRef]
- Skowrońska-Jóźwiak, E.; Jaworski, M.; Lorenc, R.; Karbownik-Lewińska, M.; Lewiński, A. Low dairy calcium intake is associated with overweight and elevated blood pressure in Polish adults, notably in premenopausal women. Public Health Nutr. 2016, 20, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Schmelz, E.; Marrugat, J. Relationship between diet and blood pressure in a representative Mediterranean population. Eur. J. Nutr. 2002, 41, 161–167. [Google Scholar] [CrossRef]
- Grubenmann, W.; Binswanger, U.; Hunziker, W.; Fischer, J.A. Effects of calcium intake and renal function on plasma immunoreactive parathyroid hormone levels in rats. Horm. Metab. Res. 1978, 10, 438–443. [Google Scholar] [CrossRef]
- Chan, R.; Woo, J.; Chan, D.; Mellström, D.; Leung, P.; Ohlsson, C.; Kwok, T. Serum 25-hydroxyvitamin D and parathyroid hormone levels in relation to blood pressure in a cross-sectional study in older Chinese men. J. Hum. Hypertens. 2011, 26, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Schoenmakers, I.; Jarjou, L.M.A.; Goldberg, G.R.; Tsoi, K.; Harnpanich, D.; Prentice, A. Acute response to oral calcium loading in pregnant and lactating women with a low calcium intake: A pilot study. Osteoporos. Int. 2013, 24, 2301–2308. [Google Scholar] [CrossRef]
- Sadideen, H.; Swaminathan, R. Effect of acute oral calcium load on serum PTH and bone resorption in young healthy subjects: An overnight study. Eur. J. Clin. Nutr. 2004, 58, 1661–1665. [Google Scholar] [CrossRef]
- Young, E.W.; McCarron, D.A.; Morris, C.D. Calcium regulating hormones in essential hypertension. Importance of gender. Am. J. Hypertens. 1990, 3, 161S–166S. [Google Scholar] [CrossRef]
- Brickman, A.S.; Nyby, M.D.; Von Hungen, K.; Eggena, P.; Tuck, M.L. Calcitropic hormones, platelet calcium, and blood pressure in essential hypertension. Hypertension 1990, 16, 515–522. [Google Scholar] [CrossRef]
- Morfis, L.; Smerdely, P.; Howes, L.G. Relationship between serum parathyroid hormone levels in the elderly and 24 h ambulatory blood pressures. J. Hypertens. 1997, 15, 1271–1276. [Google Scholar] [CrossRef]
- Snijder, M.B.; Lips, P.; Seidell, J.C.; Visser, M.; Deeg, D.J.H.; Dekker, J.M.; Van Dam, R.M. Vitamin D status and parathyroid hormone levels in relation to blood pressure: A population-based study in older men and women. J. Intern. Med. 2007, 261, 558–565. [Google Scholar] [CrossRef]
- Park, J.S.; Choi, S.B.; Rhee, Y.; Chung, J.W.; Choi, E.Y.; Kim, D.W. Parathyroid Hormone, Calcium, and Sodium Bridging Between Osteoporosis and Hypertension in Postmenopausal Korean Women. Calcif. Tissue Int. 2015, 96, 417–429. [Google Scholar] [CrossRef]
- Yao, L.; Folsom, A.R.; Pankow, J.S.; Selvin, E.; Michos, E.D.; Alonso, A.; Tang, W.; Lutsey, P.L. Parathyroid hormone and the risk of incident hypertension: The Atherosclerosis Risk in Communities study. J. Hypertens. 2016, 34, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Takagi, Y.; Fukase, M.; Takata, S.; Fujimi, T.; Fujita, T. Calcium Treatment of Essential Hypertension in Elderly Patients Evaluated by 24 H Monitoring. Am. J. Hypertens. 1991, 4, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Kamycheva, E.; Sundsfjord, J.; Jorde, R. Serum parathyroid hormone levels predict coronary heart disease: The Tromsø Study. Eur. J. Prev. Cardiol. 2004, 11, 69–74. [Google Scholar] [CrossRef]
- Jorde, R.; Sundsfjord, J.; Haug, E.; Bønaa, K.H. Relation between low calcium intake, parathyroid. hormone, and blood pressure. Blood Press. 2000, 35, 1154–1159. [Google Scholar] [CrossRef]
- Cawthon, P.M.; Parimi, N.; Barrett-Connor, E.; Laughlin, G.A.; Ensrud, K.E.; Hoffman, A.R.; Shikany, J.M.; Cauley, J.A.; Lane, N.E.; Bauer, D.C.; et al. Serum 25-hydroxyvitamin D, parathyroid hormone, and mortality in older men. J. Clin. Endocrinol. Metab. 2010, 95, 4625–4634. [Google Scholar] [CrossRef]
- Grandi, N.C.; Breitling, L.P.; Hahmann, H.; Wüsten, B.; März, W.; Rothenbacher, D.; Brenner, H. Serum parathyroid hormone and risk of adverse outcomes in patients with stable coronary heart disease. Heart 2011, 97, 1215–1221. [Google Scholar] [CrossRef]
- Van Ballegooijen, A.J.; Kestenbaum, B.; Sachs, M.C.; de Boer, I.H.; Siscovick, D.S.; Hoofnagle, A.N.; Ix, J.H.; Visser, M.; Brouwer, I.A. Association of 25-Hydroxyvitamin D and Parathyroid Hormone with Incident Hypertension. J. Am. Coll. Cardiol. 2014, 63, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Morimoto, S.; Yang, J.; Niinoabu, T.; Fukuo, K.; Ogihara, T. Expression of parathyroid hormone/parathyroid hormone-related protein receptor in vascular endothelial cells. J. Cardiovasc. Pharmacol. 1998, 31, S142–S144. [Google Scholar] [CrossRef]
- Vilardaga, J.P.; Romero, G.; Friedman, P.A.; Gardella, T.J. Molecular basis of parathyroid hormone receptor signaling and trafficking: A family B GPCR paradigm. Cell. Mol. Life Sci. 2011, 68, 1–13. [Google Scholar] [CrossRef]
- Gardella, T.J.; Vilardaga, J.P. International Union of Basic and Clinical Pharmacology. XCIII. The Parathyroid Hormone Receptors—Family B G Protein-Coupled Receptors. Pharmacol. Rev. 2015, 67, 310–337. [Google Scholar] [CrossRef]
- Hilpert, K.F.; West, S.G.; Bagshaw, D.M.; Fishell, V.; Barnhart, L.; Lefevre, M.; Most, M.M.; Zemel, M.B.; Chow, M.; Hinderliter, A.L.; et al. Effects of Dairy Products on Intracellular Calcium and Blood Pressure in Adults with Essential Hypertension. J. Am. Coll. Nutr. 2009, 28, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; de la Sierra, A.; Coca, A.; Poch, E.; Giner, V.; Urbano-Márquez, A. Oral Calcium Supplementation Reduces Intraplatelet Free Calcium Concentration and Insulin Resistance in Essential Hypertensive Patients. Hypertension 1997, 29, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogin, E.; Massry, S.G.; Harary, I. Effect of parathyroid hormone on rat heart cells. J. Clin. Investig. 1981, 67, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Picotto, G. Rapid effects of calciotropic hormones on female rat enterocytes: Combined actions of 1,25(OH)2-vitamin D3, PTH and 17β-estradiol on intracellular CA2+ regulation. Horm. Metab. Res. 2001, 33, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Smogorzewski, M.; Koss, M.; Massry, S.G. Pathways involved in PTH-induced rise in cytosolic Ca2+ concentration of rat renal proximal tubule. Am. J. Physiol. Physiol. 1995, 268, F330–F337. [Google Scholar] [CrossRef] [PubMed]
- Chausmer, A.B.; Sherman, B.S.; Wallach, S. The eflfect of parathyroid hormone on hepatic cell transport of calcium. Endocrinology 1972, 90, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.A.; Chui, L.A.; Massry, S.G. Effect of parathyroid hormone and uremia on peripheral nerve calcium and motor nerve conduction velocity. J. Clin. Investig. 1978, 62, 88–93. [Google Scholar] [CrossRef]
- Yamaguchi, D.T.; Hahn, T.J.; Iida-Klein, A.; Kleeman, C.R.; Muallem, S. Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. cAMP-dependent and cAMP-independent calcium channels. J. Biol. Chem. 1987, 262, 7711–7718. [Google Scholar] [PubMed]
- Reid, I.R.; Civitelli, R.; Halstead, L.R.; Avioli, L.V.; Hruska, K.A. Parathyroid hormone acutely elevates intracellular calcium in osteoblastlike cells. Am. J. Physiol. Metab. 1987, 253, E45–E51. [Google Scholar] [CrossRef]
- Fardella, C.; Rodriguez-Portales, J.A. Intracellular calcium and blood pressure: Comparison between primary hyperparathyroidism and essential hypertension. J. Endocrinol. Investig. 1995, 18, 827–832. [Google Scholar] [CrossRef]
- Song, G.J.; Fiaschi-Taesch, N.; Bisello, A. Endogenous Parathyroid Hormone-Related Protein Regulates the Expression of PTH Type 1 Receptor and Proliferation of Vascular Smooth Muscle Cells. Mol. Endocrinol. 2009, 23, 1681–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, A.S.; Linas, S.L. Parathyroid hormone/adenylate cyclase coupling in vascular smooth muscle cells. Hypertension 1994, 23, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.; Schoefer, P.; Stoclet, J.C.; Gairard, A. Effect of parathyroid hormone and antagonist on aortic cAMP levels. Can. J. Physiol. Pharmacol. 1987, 65, 2349–2353. [Google Scholar] [CrossRef]
- Nickols, G.A.; Metz, M.A.; Cline, W.H. Endothelium-independent linkage of parathyroid hormone receptors of rat vascular tissue with increased adenosine 3′,5′-monophosphate and relaxation of vascular smooth muscle. Endocrinology 1986, 119, 349–356. [Google Scholar] [CrossRef]
- Hulter, H.N.; Melby, J.C.; Peterson, J.C.; Cooke, C.R. Chronic continuous PTH infusion results in hypertension in normal subjects. J. Clin. Hypertens. 1986, 2, 360–370. [Google Scholar]
- Oshima, T.; Schleiffer, R.; Young, E.W.; McCarron, D.A.; Bukoski, R.D. Parathyroidectomy lowers blood pressure independently of changes in platelet free calcium. J. Hypertens. 1991, 9, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H. Parathyroid hormone causes a transient rise in intracellular ionized calcium in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 1990, 166, 709–714. [Google Scholar] [CrossRef]
- Lewanczuk, R.Z.; Wang, J.; Zhang, Z.R.; Pang, P.K.T. Effects of Spontaneously Hypertensive Rat Plasma on Blood Pressure and Tail Artery Calcium Uptake in Normotensive Rats. Am. J. Hypertens. 1989, 2, 26–31. [Google Scholar]
- Lewanczuk, R.Z.; Resnick, L.M.; Blumenfeld, J.D.; Laragh, J.H.; Pang, P.K. A new circulating hypertensive factor in the plasma of essential hypertensive subjects. J. Hypertens. 1990, 8, 105–108. [Google Scholar] [CrossRef]
- Pernot, F.; Burkhard, C.; Gairard, A. Parathyroid cross-transplantation and development of high blood pressure in rats. J. Cardiovasc. Pharmacol. 1994, 23, S18–S22. [Google Scholar] [CrossRef]
- Neuser, D.; Schulte-Brinkmann, R.; Kazda, S. Development of hypertension in WKY rats after transplantation of parathyroid glands from SHR/SP. J. Cardiovasc. Pharmacol. 1990, 16, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.K.Y.; Benishin, C.G.; Lewanczuk, R.Z. Combined effect of dietary calcium and calcium antagonists on blood pressure reduction in spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 1992, 19, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Lewanczuk, R.Z. In vivo potentiation of vasopressors by spontaneously hypertensive rat plasma correlation with blood pressure and calcium uptake. Clin. Exp. Hypertens. A 1989, 11, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Lewanczuk, R.Z.; Pang, P.K.T. Vascular and calcemic effects of plasma of spontaneously hypertensive rats. Am. J. Hypertens. 1990, 3, 189S–194S. [Google Scholar] [CrossRef]
- Shan, J.; Benishin, C.G.; Lewanczuk, R.Z.; Pang, P.K. Mechanism of the vascular action of parathyroid hypertensive factor. J. Cardiovasc. Pharmacol. 1994, 23, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.K.T.; Benishin, C.G.; Lewanczuk, R.Z. Parathyroid hypertensive factor, a circulating factor in animal and human hypertension. Am. J. Hypertens. 1991, 4, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Benishin, C.G.; Lewanczuk, R.Z.; Shan, J.; Pang, P.K. Purification and structural characterization of parathyroid hypertensive factor.pdf. J. Cardiovasc. Pharmacol. 1994, 23, S9–S13. [Google Scholar] [CrossRef]
- Schlüter, H.; Quante, C.; Buchholz, B.; Dietl, K.H.; Spieker, C.; Karas, M.; Zidek, W. A vasopressor factor partially purified from human parathyroid glands. Biochem. Biophys. Res. Commun. 1992, 188, 323–329. [Google Scholar] [CrossRef]
- Mangos, G.J.; Brown, M.A.; Whitworth, J.A. Difficulties in detecting parathyroid hypertensive factor in the rat. Clin. Exp. Pharmacol. Physiol. 1998, 25, 936–938. [Google Scholar] [CrossRef]
- Beveridge, L.A.; Struthers, A.D.; Khan, F.; Jorde, R.; Scragg, R.; Macdonald, H.M.; Alvarez, J.A.; Boxer, R.S.; Dalbeni, A.; Gepner, A.D.; et al. Effect of vitamin D supplementation on blood pressure a systematic review and meta-analysis incorporating individual patient data. JAMA Intern. Med. 2015, 175, 745–754. [Google Scholar] [CrossRef]
- Lennon, S.L.; DellaValle, D.M.; Rodder, S.G.; Prest, M.; Sinley, R.C.; Hoy, M.K.; Papoutsakis, C. 2015 Evidence Analysis Library Evidence-Based Nutrition Practice Guideline for the Management of Hypertension in Adults. J. Acad. Nutr. Diet. 2017, 117, 1445–1458. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Loloei, S.; Mirjalili, M.R.; Barzegar, K. The effect of vitamin D supplementation on blood pressure in patients with elevated blood pressure and vitamin D deficiency: A randomized, double-blind, placebo-controlled trial. Blood Press. Monit. 2015, 20, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Huang, K. Effect of vitamin D supplementation on blood pressure parameters in patients with vitamin D deficiency: A systematic review and meta-analysis. J. Am. Soc. Hypertens. 2018, 12, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Forman, J.P.; Scott, J.B.; Ng, K.; Drake, B.F.; Suarez, E.G.; Hayden, D.L.; Bennett, G.G.; Chandler, P.D.; Hollis, B.W.; Emmons, K.M.; et al. Effect of vitamin D supplementation on blood pressure in blacks. Hypertension 2013, 61, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Areco, V.; Rivoira, M.A.; Rodriguez, V.; Marchionatti, A.M.; Carpentieri, A.; De Talamoni, N.T. Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals. Nutr. Res. Rev. 2015, 28, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Centeno, V.; Díaz De Barboza, G.; Marchionatti, A.; Rodríguez, V.; Tolosa De Talamoni, N. Molecular mechanisms triggered by low-calcium diets. Nutr. Res. Rev. 2009, 22, 163–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favus, M.J.; Walling, M.W.; Kimberg, D.V. Effects of dietary calcium restriction and chronic thyroparathyroidectomy on the metabolism of [3H]25 hydroxyvitamin D3 and the active transport of calcium by rat intestine. J. Clin. Investig. 1974, 53, 1139–1148. [Google Scholar] [CrossRef]
- Colston, K.W.; Evans, I.M.A.; Galante, L.; MacIntyre, I.; Moss, D.W. Regulation of vitamin D metabolism: Factors influencing the rate of formation of 1,25-dihydroxycholecalciferol by kidney homogenates (Short Communication). Biochem. J. 2015, 134, 817–820. [Google Scholar] [CrossRef]
- Zehnder, D.; Bland, R.; Chana, R.S.; Wheeler, D.C.; Howie, A.J.; Williams, M.C.; Stewart, P.M.; Hewison, M. Synthesis of 1,25-dihydroxyvitamin D(3) by human endothelial cells is regulated by inflammatory cytokines: A novel autocrine determinant of vascular cell adhesion. J. Am. Soc. Nephrol. 2002, 13, 621–629. [Google Scholar]
- Norman, A.W.; Okamura, W.H.; Bishop, J.E.; Henry, H.L. Update on biological actions of 1α,25(OH)2-vitamin D3 (rapid effects) and 24R,25(OH)2-vitamin D3. Mol. Cell. Endocrinol. 2002, 197, 1–13. [Google Scholar] [CrossRef]
- Bukoski, R.D.; Xue, H.; McCarron, D.A. Effect of 1,25(OH)2 vitamin D3 and ionized Ca2+ on 45Ca uptake by primary cultures of aortic myocytes of spontaneously hypertensive and Wistar Kyoto normotensive rats. Biochem. Biophys. Res. Commun. 1987, 146, 1330–1335. [Google Scholar] [CrossRef]
- Inoue, T.; Kawashima, H. 1,25-Dihydroxyvitamin D3 stimulates 45Ca2+-uptake by cultured vascular smooth muscle cells derived from rat aorta. Biochem. Biophys. Res. Commun. 1988, 152, 1388–1394. [Google Scholar] [CrossRef]
- Xue, H.; Mccarron, D.A.; Bukoski, R.D. 1,25 (OH)2 vitamin D3-induced 45CA uptake in vascular myocytes cultured from spontaneously hypertensive and normotensive rats. Life Sci. 1991, 49, 651–659. [Google Scholar] [CrossRef]
- Bukoski, R.D.; Wang, D.; Wagman, D.W. Injection of 1,25-(OH)2 vitamin D3 enhances resistance artery contractile properties. Hypertension 1990, 16, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Resnick, L.M.; Lewanczuk, R.Z.; Karpinski, E.; Li, B.; Pang, P.Κ.T. 1,25-dihydroxyvitamin D as a cardiovascular hormone. Effects on calcium current and cytosolic free calcium in vascular smooth muscle cells. Am. J. Hypertens 1993, 6, 983–988. [Google Scholar] [CrossRef]
- Boland, R.; Buitrago, C.; de Boland, A.R. Modulation of tyrosine phosphorylation signalling pathways by 1α,25(OH)2-vitamin D3. Trends Endocrinol. Metab. 2005, 16, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C. Vitamin D regulation of the renin-angiotensin system. J. Cell. Biochem. 2003, 88, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Resnick, L.M.; Müller, F.B.; Laragh, J.H. Calcium-regulating hormones in essential hypertension: Relation to plasma renin activity and sodium metabolism. Ann. Intern. Med. 1986, 105, 649–654. [Google Scholar] [CrossRef]
- Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D 3 is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002, 110, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lu, F.; Cao, K.; Xu, D.; Goltzman, D.; Miao, D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1α-hydroxylase knockout mice. Kidney Int. 2008, 74, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Qiao, G.; Zhang, Z.; Liu, S.Q.; Li, Y.C. Targeted vitamin D receptor expression in juxtaglomerular cells suppresses renin expression independent of parathyroid hormone and calcium. Kidney Int. 2008, 74, 1577–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grünberger, C.; Kurtz, A.; Klar, J.; Obermayer, B.; Schweda, F. The Calcium Paradoxon of Renin Release. Circ. Res. 2006, 99, 1197–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Capisano, M.C.; Ortiz, P.A.; Garvin, J.L.; Harding, P.; Beierwaltes, W.H. Expression and function of the calcium-sensing receptor in juxtaglomerular cells. Hypertension 2007, 50, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Watkins, B.E.; Davis, J.O.; Lohmeier, T.E.; Freeman, R.H. Intrarenal site of action of calcium on renin secretion in dogs. Circ. Res. 1976, 36, 847–853. [Google Scholar] [CrossRef]
- Helwig, J.J.; Musso, M.J.; Judes, C.; Nickols, G.A. Parathyroid hormone and calcium: Interactions in the control of renin secretion in the isolated, nonfiltering rat kidney. Endocrinology 1991, 129, 1233–1242. [Google Scholar] [CrossRef]
- Kotchen, T.A.; Maull, K.I.; Luke, R. Effect of acute and chronic calcium administration on plasma renin. J. Clin. Investig. 1974, 54, 1279–1286. [Google Scholar] [CrossRef]
- Atchison, D.K.; Harding, P.; Beierwaltes, W.H. Hypercalcemia reduces plasma renin via parathyroid hormone, renal interstitial calcium, and the calcium-sensing receptor. Hypertension 2011, 58, 604–610. [Google Scholar] [CrossRef]
- Riccardi, D.; Lee, W.S.; Lee, K.; Segre, G.V.; Brown, E.M.; Hebert, S.C. Localization of the extracellular Ca(2+)-sensing receptor and PTH/PTHrP receptor in rat kidney. Am. J. Physiol. Physiol. 1996, 271, F951–F956. [Google Scholar] [CrossRef]
- Grant, F.D.; Mandel, S.J.; Brown, E.M.; Williams, G.H.; Seely, E.W. Interrelationships between the renin-angiotensin-aldosterone and calcium homeostatic systems. J. Clin. Endocrinol. Metab. 1992, 75, 988–992. [Google Scholar]
- Doris, P.A. Plasma angiotensin II: Interdependence on sodium and calcium homeostasis. Peptides 1988, 9, 243–248. [Google Scholar] [CrossRef]
- Brown, J.M.; Williams, J.S.; Luther, J.M.; Garg, R.; Garza, A.E.; Pojoga, L.H.; Ruan, D.T.; Williams, G.H.; Adler, G.K.; Vaidya, A. Human interventions to characterize novel relationships between the renin-angiotensin-aldosterone system and parathyroid hormone. Hypertension 2014, 63, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Müller, J. Aldosterone: The minority hormone of. Steroids 1995, 60, 2–9. [Google Scholar] [CrossRef]
- Rojas, J.; Olivar, L.C.; Chavez Castillo, M.; Martinez, M.S.; Wilches-Duran, S.; Graterol, M.; Contreras-Velasquez, J.; Cerda, M.; Riaño, M.; Bermudez, V. Hormona paratiroidea, aldosterona e hipertensión arterial ¿una amenaza infravalorada? Rev. Latinoam. Hipertens. 2017, 12, 1–18. [Google Scholar]
- Catena, C.; Colussi, G.L.; Brosolo, G.; Bertin, N.; Novello, M.; Palomba, A.; Sechi, L.A. Salt, Aldosterone, and Parathyroid Hormone: What Is the Relevance for Organ Damage? Int. J. Endocrinol. 2017, 2017, 4397028. [Google Scholar] [CrossRef] [PubMed]
- Sabbadin, C.; Cavedon, E.; Zanon, P.; Iacobone, M.; Armanini, D. Resolution of hypertension and secondary aldosteronismafter surgical treatment of primary hyperparathyroidism. J. Endocrinol. Investig. 2013, 36, 665–666. [Google Scholar]
- Barkan, A.; Marilus, R.; Winkelsberg, G.; Yeshurun, D.; Blum, I. Primary hyperparathyroidism: Possible cause of primary hyperaldosteronism in a 60-year-old woman. J. Clin. Endocrinol. Metab. 1980, 51, 144–147. [Google Scholar] [CrossRef]
- Mazzocchi, G.; Aragona, F.; Malendowicz, L.K.; Nussdorfer, G.G. PTH and PTH-related peptide enhance steroid secretion from human adrenocortical cells. Am. J. Physiol. Metab. 2001, 280, E209–E213. [Google Scholar] [CrossRef] [PubMed]
- Isales, C.M.; Barrett, P.Q.; Brines, M.; Bollag, W. Parathyroid Hormone Modulates Angiotensin II-Induced. Endocrinology 1991, 129, 489–495. [Google Scholar] [CrossRef]
- Maniero, C.; Fassina, A.; Guzzardo, V.; Lenzini, L.; Amadori, G.; Pelizzo, M.R.; Gomez-Sanchez, C.; Rossi, G.P. Primary hyperparathyroidism with concurrent primary aldosteronism. Hypertension 2011, 58, 341–346. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- Belizán, J.M.; Villar, J.; Repke, J. The relationship between calcium intake and pregnancy-induced hypertension: Up-to-date evidence. Am. J. Obstet. Gynecol. 1988, 158, 898–902. [Google Scholar] [CrossRef]
Reference (First Author) | Method | Country and Participants | PTH (pmol/L) | BP (SBP − DBP mmHg) |
---|---|---|---|---|
Young 1990 [28] | Cross-sectional | USA, 115 subjects, ≈45 years | NT = 4.5 ± 2.2 | NT = 120(±11) − 80(±8) |
HT = 5.0 ± 2.4 | HT = 138(±8) − 95(±5) | |||
Brickman 1990 [29] | Cross-sectional | USA, 38 men, ≈56 years | NT = 20.8 ± 1.1 | NT = 123(±2.8) − 78(±1.3) |
HT = 28.4 + 3.5 | HT = 150(±3.9) − 97(±0.9) | |||
Morfis 1997 [30] | Cross-sectional | Australia, 123 subjects, 63–88 years | NT = 2.7 ± 1.1 | NT = 125(±12) − 71(±7) |
HT = 2.9 ± 1.3 | HT =135(±14) − 73(±10) | |||
Park 2015 [32] | Cross-sectional | Korea, 1664 postmenopausal women, >50 years | NT = 63.7 ± 23.4 | NT = 117.5(±12.4) − 73.3(±8.1) |
HT = 68.3 ± 23.6 | HT = 149.4(±11.4) − 86.0(±10.1) |
Reference (First Author) | Method | Country and Participants | PTH (pmol/L) | BP (SBP − DBP mmHg) |
---|---|---|---|---|
Snijder 2007 [31] | Cross-sectional | The Netherlands, 1205 subjects, participants, 55–85 years | Q1: <2.45 | 150.1(±26.1) − 82.5(±13.0) |
Q2: 2.45–3.13 | 151.7(±24.8) − 82.6(±13.4) | |||
Q3: 3.14–4.25 | 154.7(±24.6) – 84.3(±13.6) | |||
Q4: >4.25 | 156.2(±27.6) − 83.9(±13.0) | |||
Chan 2011 [25] | Cross-sectional | China, 939 men, >65 years | Q1: <3.1 | 135.8(±1.7) − 76.5(±0.8) |
Q2: 3.2–4.1 | 139.9(±1.6) − 76.5(±0.8) | |||
Q3: 4.2–5.5 | 141.4(±1.7) − 76.5(±0.8) | |||
Q4: >5.5 | 143.6(±1.8) − 79.9(±0.8) | |||
Yao 2016 [33] | Cohort study | USA, 7504 subjects, 45–64 years | Q1: 3.2–28.8 | 112(±13) − 68.0(±8.2) |
Q2: 28.9–34.9 | 113(±12) − 68.4(±8.3) | |||
Q3: 35.0–41.5 | 114(±12) − 69.4(±8.5) | |||
Q4: 41.6–50.1 | 115(±12) − 69.9(±8.1) | |||
Q5: 50.2–162.6 | 115(±12) − 70.5(±8.2) |
Reference (First Author) | Method | Country and Participants | Ca Intake (mg/day) | PTH (pmol/L) | BP (SBP − DBP mmHg) | |
---|---|---|---|---|---|---|
Takagi 1991 [34] | Clinical trial | Japan, 9 HT, 65–86 years, CaSup (1 g) vs. diet Ca 500 mg, 8 weeks | 1 g/day (CaSup) | 27 | −13.6 mmHg to −5.0 mmHg | |
500 mg/day (diet) | 33 | −1.5 mmHg to +1.0 mmHg | ||||
Jorde 2000 [36] | Cohort study | Norway, 1113 subjects, 30–79 years | 592.1(±459.6) | 4.5(±1.2) | 143.4(±19.9) − 84.3(±10.4) | |
400.3(±227.3) | 9.1(±2.4) | 153.9(±27.1) − 89.7(±14.1) | ||||
Kamycheva 2004 [35] | Cross-sectional | Norway, 3570 subjects, >24 years | ♂ | 499(±259) | Q1 <1.9 | 136.9(±17.7) |
476(±257) | Q2 1.9–2.6 | 140.1(±19.6) | ||||
443(±233) | Q3 2.61–3.5 | 142.0(±20.3) | ||||
430(±243) | Q4 >3.5 | 145.2(±20.3) | ||||
♀ | 478(±277) | Q1 <1.8 | 133.2(±18.5) | |||
428(±227) | Q2 1.8–2.4 | 135.5(±21.5) | ||||
431(±226) | Q3 2.41–3.3 | 141.9(±22.4) | ||||
408(±217) | Q4 >3.3 | 146.5(±23.2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa-Etchegoyen, C.; Lombarte, M.; Matamoros, N.; Belizán, J.M.; Cormick, G. Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients 2019, 11, 1112. https://doi.org/10.3390/nu11051112
Villa-Etchegoyen C, Lombarte M, Matamoros N, Belizán JM, Cormick G. Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients. 2019; 11(5):1112. https://doi.org/10.3390/nu11051112
Chicago/Turabian StyleVilla-Etchegoyen, Cecilia, Mercedes Lombarte, Natalia Matamoros, José M. Belizán, and Gabriela Cormick. 2019. "Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure" Nutrients 11, no. 5: 1112. https://doi.org/10.3390/nu11051112
APA StyleVilla-Etchegoyen, C., Lombarte, M., Matamoros, N., Belizán, J. M., & Cormick, G. (2019). Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients, 11(5), 1112. https://doi.org/10.3390/nu11051112