Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate—A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design and Experimental Protocol
2.3. Collagen Products
2.4. Blood Samples
2.5. Visual Analogue Scale (VAS)
2.6. H NMR Spectroscopy
2.7. Statistical Analyses
3. Results
3.1. H NMR Spectroscopic Analysis
3.2. General AAs Absorption
3.3. Specific Collagen AAs
3.4. Glucose
3.5. VAS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der Plas, A.; de Jonge, S.; de Vos, R.J.; van der Heide, H.J.; Verhaar, J.A.; Weir, A.; Tol, J.L. A 5-year follow-up study of Alfredson’s heel-drop exercise programme in chronic midportion Achilles tendinopathy. Br. J. Sports Med. 2012, 46, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, F.; Sánchez, L.; Amy, E.; Micheo, W. Anterior cruciate ligament injury: Return to play, function and long-term considerations. Curr. Sports Med. Rep. 2017, 16, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Dar, Q.-A.; Schott, E.M.; Catheline, S.E.; Maynard, R.D.; Liu, Z.; Kamal, F.; Farnsworth, C.W.; Ketz, J.P.; Mooney, R.A.; Hilton, M.J.; et al. Daily oral consumption of hydrolyzed type 1 collagen is chrondoprotective and anti-inflammatory in murine posttraumatic osteoarthritis. PLoS ONE 2017, 12, e0174705. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 2004, 84, 649–698. [Google Scholar] [CrossRef]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.R.; Wang, B.; Baar, K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef]
- Baar, K. Stress relaxation and targeted nutrition to treat patellar tendinopathy. Int. J. Sport Nutr. Exerc. Metab. 2018, 1–18. [Google Scholar] [CrossRef]
- Praet, S.; Purdam, C.R.; Welvaert, M.; Vlahovich, N.; Lovell, G.; Burke, L.M.; Gaida, J.E.; Manzanero, S.; Hughes, D.; Waddington, G. Oral supplementation of specific collagen peptides combined with calf-strengthening exercises enhances function and reduces pain in achilles tendinopathy patients. Nutrients 2019, 11, 76. [Google Scholar] [CrossRef]
- Dressler, P.; Gehring, D.; Zdzieblik, D.; Oesser, S.; Gollhofer, A.; Koenig, D. Improvement of functional ankle properties following supplementation with specific collagen peptides in athletes with chronic ankle instability. J. Sport Sci. Med. 2018, 17, 298–304. [Google Scholar] [CrossRef]
- Bello, A.E.; Oesser, S. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: A review of the literature. Curr. Med. Res. Opin. 2006, 22, 2221–2232. [Google Scholar] [CrossRef]
- García-Coranado, J.M.; Martínez-Olvera, L.; Elizondo-Omana, R.E.; Acosta-Olivo, C.A.; Cavazos, F.V.; Simental-Mendía, L.E.; Simental-Mendía, M. Effect of collagen supplementation on osteoarthritis symptoms: A meta-analysis of randomized placebo-controlled trials. Int. Orthop. 2018, 43, 531–538. [Google Scholar] [CrossRef]
- McAlindon, T.E.; Nuite, M.; Krishnan, N.; Ruthazer, R.; Price, L.L.; Burstein, D.; Griffith, J.; Flechsenhar, K. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: A pilot randomized controlled trial. Osteoarthr. Cartil. 2011, 19, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Machado, G.C.; Eyles, J.P.; Ravi, V.; Hunter, D.J. Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.L.; Sebastianelli, W.; Fleschenhar, K.R.; Aukermann, D.F.; Meza, F.; Millard, R.L.; Sherbondy, P.S.; Albert, A. 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr. Med. Res. Opin. 2008, 24, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Zdzieblik, D.; Oesser, S.; Gollhofer, A.; Konig, D. Improvement of activity-related knee joint discomfort following supplementation of specific collagen peptides. Appl. Physiol. Nutr. Metab. 2017, 42, 588–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallas, D.C.; Sancturay, M.R.; Qu, Y.; Khajavi, S.H.; Van Zandt, A.E.; Dyandra, M.; Frese, S.A.; Barile, D.; German, J.B. Personalizing protein nourishment. Crit. Rew. Food Sci. Nutr. 2017, 57, 3313–3331. [Google Scholar] [CrossRef] [PubMed]
- Koopman, R.; Crombach, N.; Gijsen, A.P.; Walrand, S.; Fauquant, J.; Kies, A.K.; Lemosquet, S.; Saris, W.H.M.; Boirie, Y.; van Loon, L.J.C. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with is intact protein. Am. J. Clin. Nutr. 2009, 90, 106–115. [Google Scholar] [CrossRef]
- Bertram, H.C.; Jakobsen, L.M.A. Nutrimetabolomics: Integrating metabolomics in nutrition to disentangle intake of animal-based foods. Metabolomics 2018, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Vangsoe, M.T.; Thogersen, R.; Bertram, H.C.; Heckmann, L.-H.L.; Hansen, M. Ingestion of insect protein isolate enhances blood amino acid concentrations similar to soy protein in a human trial. Nutrients 2018, 10, 1357. [Google Scholar] [CrossRef]
- Nielsen, L.; Nyby, S.; Klingenberg, L.; Ritz, C.; Sundekilde, U.K.; Bertram, H.C.; Westerterp-Plantenga, M.S.; Liaset, B.; Kristiansen, K.; Madsen, L.; et al. Salmon in combination with high glycemic index carbohydrates increases diet-induced thermogenesis compared with salmon with low glycemic index carbohydrates–An acute randomized cross-over meal test study. Nutrients 2019, 11, 365. [Google Scholar] [CrossRef]
- López-Morales, C.A.; Vãzquez-Leyva, S.; Vallejo-Castillo, L.; Carballo-Uicab, G.; Muñoz-García, L.; Herbert-Pucheta, J.E.; Zepeda-Vallejo, L.G.; Velasco-Velázquez, M.; Pavóon, L.; Pérez-Tapia, S.M.; et al. Determination of peptide profile consistency and safety of collagen hydrolysates as quality attributes. J. Food Sci. 2019, 84, 430–438. [Google Scholar] [CrossRef]
- Czajka, A.; Kania, E.; Genovese, L.; Corbo, A.; Merone, G.; Luci, C.; Sibilla, S. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr. Res. 2018, 57, 97–108. [Google Scholar] [CrossRef]
- de Paz-Lugo, P.; Lupiánez, J.A.; Meléndez-Hevia, E. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: Acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids 2018, 50, 1357–1365. [Google Scholar] [CrossRef]
- Baar, K. Minimizing injury and maximizing return to play: Lessons from engineered ligaments. Sports Med. 2007, 41, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Oesser, S.; Adam, M.; Babel, W.; Seifert, J. Oral administration of 14C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). J. Nutr. 1999, 129, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.L.; Holst, J.J. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysate in humans. Eur. J. Nutr. 2004, 43, 127–139. [Google Scholar] [CrossRef]
- Schmedes, M.; Bendtsen, L.; Gomes, S.; Liaset, B.; Holst, J.J.; Ritz, C.; Reitelseder, S.; Sjödin, A.; Astrup, A.; Young, J.F. The effect of casein, hydrolyzed casein, and whey proteins on urinary and postprandial plasma metabolites in overweight and moderately obese human subjects. J. Sci. Food Agric. 2018, 98, 5598–5605. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, Y.; Kubomura, D.; Sato, Y.; Sato, K. Dose-dependency changes in the levels of free and peptide forms of hydroxyproline in human plasma after collagen hydrolysate ingestion. Food Chem. 2014, 159, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Zdzieblik, D.; Oesser, S.; Baumstark, M.W.; Gollhofer, A.; König, D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomized controlled trial. Br. J. Nutr. 2015, 114, 1237–1245. [Google Scholar] [CrossRef]
- Razak, M.A.; Begum, P.S.; Viswanath, B.; Rajagopal, S. Multifarious beneficial effect of nonessential amino acid, glycine: A review. Ox. Med. Cell. Longev. 2017, 2017, 1716701. [Google Scholar] [CrossRef] [PubMed]
- Rutherfurd, S.M.; Moughan, P.J. Determination of sulfur amino acids in foods as related to bioavailability. J. AOAC Int. 2008, 91, 907–913. [Google Scholar] [PubMed]
- Farup, J.; Rahbek, S.K.; Storm, A.C.; Klitgaard, S.; Jørgensen, H.; Bibby, B.M.; Serena, A.; Vissing, K. Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans. SpringerPlus 2016, 5, 382. [Google Scholar] [CrossRef]
- Paterson, M.; Bell, K.J.; O’Connell, S.M.; Smart, C.E.; Shafat, A.S.; King, B. The role of dietary protein and fat in glycaemic control in type 1 diabetes: Implications for intensive diabetes management. Curr. Diabetes Rep. 2015, 16, 61. [Google Scholar] [CrossRef]
- Fromentin, C.; Tomé, D.; Nau, F.; Flet, L.; Luengo, C.; Azzout-Marniche, D.; Sanders, P. Fromentin, G.; Gaudichon, C. Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. Diabetes 2013, 62, 1435–1442. [Google Scholar] [CrossRef]
- Claessens, M.; Saris, W.H.M.; van Bak, M.A. Glucagon and insulin responses after ingestion of different amounts of intact and hydrolyzed proteins. Br. J. Nutr. 2008, 100, 61–69. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Branched-chain amino acids: Enzyme and substrate regulation. J. Nutr. 2006, 136, 207S–211S. [Google Scholar] [CrossRef]
- Halton, T.L.; Hu, F.B. The effects of high protein diets on thermogenesis, satiety and weight loss: A critical review. J. Am. Coll. Nutr. 2004, 23, 373–385. [Google Scholar] [CrossRef]
- Veldhorst, M.A.B.; Nieuwenhuizen, A.G.; Hochstenbach-Waelen, A.; Westerterp, K.R.; Engelen, M.P.K.J.; Brummer, R.-J.M.; Deutz, N.E.P.; Westerterp-Plantenga, M.S. A breakfast with alpha-lactalbumin, gelatin, or gelatin + TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey, or whey-GMP. Clin. Nutr. 2009, 28, 147–155. [Google Scholar] [CrossRef]
- Hochstenbach-Waelen, A.; Westerterp, K.R.; Soenen, S.; Westerterp-Plantenga, M.S. No long-term weight maintenance effects of gelatin in a supra-sustained protein diet. Physiol. Behav. 2010, 101, 237–244. [Google Scholar] [CrossRef]
Subjects (n = 10) | |
---|---|
Age (y) | 26 ± 1 |
Weight (kg) | 77 ± 6 |
Height (cm) | 180 ± 5 |
Activity level (h) BMI (kg/m2) | 10 ± 3 24 ± 2 |
Metabolite | δ 1H (multiplicity) |
---|---|
Alanine | 1.46 (d), 3.76 (q) |
Arginine | 1.68 (m), 1.90 (m), 3.23 (t), 3.76 (t) |
Asparagine | 4.00 (dd), 2.94 (m), 2.84 (m) |
Glucose | 3.233 (dd), 3.398 (m), 3.458 (m), 3.524 (dd), 3.726 (m), 3.824 (m), 3.889 (dd), 4.634 (d), 5.223 (d) |
Glycine | 3.54 (s) |
Histidine | 3.16 (dd), 3.23 (dd), 3.98 (dd), 7.09 (d), 7.90 (d) |
Isoleucine | 0.926 (t), 0.997 (d), 1.246 (m), 1.475 (m), 1.968 (m), 3.661 (d) |
Leucine | 0.948 (t), 1.700 (m), 3.722 (m) |
Lysine | 1.46 (m), 1.71 (m), 1.89 (m), 3.02 (t), 3.74 (t) |
Methionine | 2.157 (m), 2.631 (t), 3.851 (dd) |
Phenylalanine | 3.19 (m), 3.98 (dd), 7.32 (d), 7.36 (m), 7.42 (m) |
Proline | 1.99 (m), 2.06 (m), 2.34 (m), 3.33 (dt), 3.41 (dt), 4.12 (dd) |
Serine | 3.832 (dd), 3.958 (m) |
Threonine | 1.316 (d), 3.575 (d), 4.244 (m) |
Tyrosine | 3.024 (dd), 3.170 (dd), 3.921 (dd), 6.877 (m), 7.170 (m) |
Valine | 0.976 (d), 1.029 (d), 2.261 (m), 3.691 (d) |
Hydroxyproline | 2.14 (ddd), 2.42 (M), 3.36 (ddd), 3.46 (dd), 4.33 (d), 4.35 (d) |
Comparison | EHC vs. NC | EHC vs. Placebo | NC vs. Placebo | ||||||
---|---|---|---|---|---|---|---|---|---|
AA | EHC | NC | p | EHC | Pl | p | NC | Pl | p |
Alanine | 367.4 | 351.3 | 0.69 | 367.4 | 266.2 | 0.0002 | 351.3 | 266.2 | 0.001 |
Arginine | 86.54 | 82.54 | 0.67 | 86.54 | 50.28 | <0.0001 | 82.54 | 50.28 | <0.0001 |
Asparagine | 40.60 | 40.43 | 0.99 | 40.60 | 34.58 | 0.019 | 40.43 | 34.58 | 0.023 |
Glutamate | 39.17 | 34.34 | 0.25 | 39.17 | 25.68 | 0.0006 | 34.34 | 25.68 | 0.021 |
Glutamine | 513.5 | 521.9 | 0.87 | 513.5 | 469.2 | 0.043 | 521.9 | 469.2 | 0.015 |
Glycine | 448.7 | 380.7 | 0.0059 | 448.7 | 204.1 | <0.0001 | 380.7 | 204.1 | <0.0001 |
Histidine | 72.85 | 77.37 | 0.12 | 72.85 | 67.38 | 0.053 | 77.37 | 67.38 | 0.0006 |
Hydroxyproline | 64.92 | 48.88 | 0.0087 | 64.92 | 1.484 | <0.0001 | 48.88 | 1.484 | <0.0001 |
Isoleucine | 73.62 | 68.00 | 0.21 | 73.62 | 58.24 | 0.0003 | 68.00 | 58.24 | 0.017 |
Leucine | 127.4 | 120.8 | 0.42 | 127.4 | 99.09 | <0.0001 | 120.8 | 99.09 | 0.0014 |
Lysine | 122.5 | 119.1 | 0.79 | 122.5 | 99.37 | 0.0008 | 119.1 | 99.37 | 0.0034 |
Methionine | 18.78 | 22.51 | 0.034 | 18.78 | 17.42 | 0.59 | 22.51 | 17.42 | 0.0043 |
Proline | 335.4 | 285.8 | 0.0074 | 335.4 | 186.3 | <0.0001 | 285.8 | 186.3 | <0.0001 |
Phenylalanine | 47.65 | 48.21 | 0.93 | 47.65 | 39.80 | 0.0003 | 48.21 | 39.80 | 0.0001 |
Serine | 147.7 | 145.0 | 0.89 | 147.7 | 108.5 | <.0001 | 145.0 | 108.5 | <0.0001 |
Threonine | 152.2 | 148.2 | 0.83 | 152.2 | 120.6 | 0.0006 | 148.2 | 120.6 | 0.0023 |
Tyrosine | 56.47 | 55.91 | 0.96 | 56.47 | 48.72 | 0.011 | 55.91 | 48.72 | 0.018 |
Valine | 278.4 | 254.9 | 0.09 | 278.4 | 213.2 | <0.0001 | 254.9 | 213.2 | 0.0027 |
BCAA | 479.5 | 443.7 | 0.15 | 479.5 | 370.6 | <0.0001 | 443.7 | 370.6 | 0.002 |
Total AA | 2994 | 2806 | 0.14 | 2994 | 2110 | <0.0001 | 2806 | 2110 | <0.0001 |
EAA | 893.4 | 859.1 | 0.48 | 893.4 | 715.2 | <0.0001 | 859.1 | 715.2 | 0.0003 |
Gly-Pro-Hp | 849.1 | 715.4 | 0.0003 | 849.1 | 391.8 | <0.0001 | 715.4 | 391.8 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skov, K.; Oxfeldt, M.; Thøgersen, R.; Hansen, M.; Bertram, H.C. Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate—A Randomized Controlled Trial. Nutrients 2019, 11, 1064. https://doi.org/10.3390/nu11051064
Skov K, Oxfeldt M, Thøgersen R, Hansen M, Bertram HC. Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate—A Randomized Controlled Trial. Nutrients. 2019; 11(5):1064. https://doi.org/10.3390/nu11051064
Chicago/Turabian StyleSkov, Kathrine, Mikkel Oxfeldt, Rebekka Thøgersen, Mette Hansen, and Hanne Christine Bertram. 2019. "Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate—A Randomized Controlled Trial" Nutrients 11, no. 5: 1064. https://doi.org/10.3390/nu11051064
APA StyleSkov, K., Oxfeldt, M., Thøgersen, R., Hansen, M., & Bertram, H. C. (2019). Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate—A Randomized Controlled Trial. Nutrients, 11(5), 1064. https://doi.org/10.3390/nu11051064