Is Iron Supplementation Influenced by Sub-Clinical Inflammation?: A Randomized Controlled Trial Among Adolescent Schoolgirls in Myanmar
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Registration
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; De Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2008, 12, 444–454. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Grimm, K.A.; Sullivan, K.M.; Alasfoor, D.; Parvanta, I.; Suleiman, A.J.M.; Kaur, M.; Al-Hatmi, F.O.; Ruth, L.J. Iron-fortified wheat flour and iron deficiency among women. Food Nutr. Bull. 2012, 33, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.E.; Wessling-Resnick, M. Iron metabolism and the innate immune response to infection. Microbes Infect. 2012, 14, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Black, R.E.; Ramsan, M.; Chwaya, H.M.; Stoltzfus, R.J.; Dutta, A.; Dhingra, U.; Kabole, I.; Deb, S.; Othman, M.K.; et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: Community-based, randomised, placebo-controlled trial. Lancet 2006, 367, 133–143. [Google Scholar] [CrossRef]
- Brand-Miller, J.C.; Liu, V.; Petocz, P.; Baxter, R.C. The glycemic index of foods influences postprandial insulin-like growth factor–binding protein responses in lean young subjects. Am. J. Clin. Nutr. 2005, 82, 350–354. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2012, 1823, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Thurnham, D.I.; Mburu, A.S.; Mwaniki, D.L.; De Wagt, A. Micronutrients in childhood and the influence of subclinical inflammation. Proc. Nutr. Soc. 2005, 64, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Thurnham, D.I.; McCabe, G.P.; Northrop-Clewes, C.A.; Nestel, P. Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: Meta-analysis. Lancet 2003, 362, 2052–2058. [Google Scholar] [CrossRef]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef]
- Northrop-Clewes, C.A. Interpreting indicators of iron status during an acute phase response—Lessons from malaria and human immunodeficiency virus. Ann. Clin. Biochem. 2008, 45, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Htet, M.K.; Fahmida, U.; Dillon, D.; Akib, A.; Utomo, B.; Thurnham, D.I. The influence of vitamin A status on iron-deficiency anaemia in anaemic adolescent schoolgirls in Myanmar. Public Health Nutr. 2013, 17, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Htet, M.K.; Dillon, D.; Akib, A.; Utomo, B.; Fahmida, U.; Thurnham, D.I. Microcytic anaemia predominates in adolescent school girls in the delta region of Myanmar. Asia Pac. J. Clin. Nutr. 2012, 21, 411–415. [Google Scholar] [PubMed]
- Angeles-Agdeppa, I.; Schultink, W.; Sastroamidjojo, S.; Gross, R.; Karyadi, D. Weekly micronutrient supplementation to build iron stores in female Indonesian adolescents. Am. J. Clin. Nutr. 1997, 66, 177–183. [Google Scholar] [CrossRef] [PubMed]
- WHO. Weekly Iron and Folic Acid Supplementation Programmes for Women of Reproductive Age: An Analysis of Best Programme Practices; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- WHO. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined Measurement of Ferritin, Soluble Transferrin Receptor, Retinol Binding Protein, and C-Reactive Protein by an Inexpensive, Sensitive, and Simple Sandwich Enzyme-Linked Immunosorbent Assay Technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.D.; Flowers, C.H.; Skikne, B.S. The quantitative assessment of body iron. Blood 2003, 101, 3359–3363. [Google Scholar] [CrossRef]
- Erhardt, J.G.; Mack, H.; Sobeck, U.; Biesalski, H.K. β-Carotene and α-tocopherol concentration and antioxidant status in buccal mucosal cells and plasma after oral supplementation. Br. J. Nutr. 2002, 87, 471–475. [Google Scholar] [CrossRef]
- O’Broin, S.; Kelleher, B. Microbiological assay on microtitre plates of folate in serum and red cells. J. Clin. Pathol. 1992, 45, 344–347. [Google Scholar] [CrossRef]
- Gibson, R. Principles of Nutritional Assessment; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- WHO. Iron Deficiency Anaemia: Assessment, Prevention, and Control. A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- West, K.P. Extent of vitamin A deficiency among preschool children and women of reproductive age. J. Nutr. 2002, 132, S2857–S2866. [Google Scholar] [CrossRef] [PubMed]
- National Nutrition Centre (NNC). National Haemoglobin and Nutritional Status Survey among Adolsecents; Department of Health, Ministry of Health: Yangon, Myanmar, 2002.
- Department of Population. The 2014 Myanmar Population and Housing Census; Ministry of Immigration and Population: Nay Pyi Taw, Myanmar, 2014.
- National Nutrition Centre (NNC). Myanmar Micronutrients and Food Consumption Survey (2017–2018), Interim Report; Department of Health, Ministry of Health and Sports: Nay Pyi Taw, Myanmar, 2019.
- Htet, M.K.; Dillon, D.; Rosida, A.; Timan, I.; Fahmida, U.; Thurnham, D.I. Hepcidin profile of anemic adolescent schoolgirls in Indonesia at the end of 12 weeks of iron supplementation. Food Nutr. Bull. 2014, 35, 160–166. [Google Scholar] [CrossRef]
- Steel, D.M.; Whitehead, A.S. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol. Today 1994, 15, 81–88. [Google Scholar] [CrossRef]
- George, J.; Yiannakis, M.; Main, B.; Devenish, R.; Anderson, C.; An, U.S.; Williams, S.M.; Gibson, R.S. Genetic Hemoglobin Disorders, Infection, and Deficiencies of Iron and Vitamin A Determine Anemia in Young Cambodian Children. J. Nutr. 2012, 142, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.; Smuts, C.M.; Malan, L.; Arnold, M.; Yee, B.K.; Bianco, L.E.; Boekschoten, M.V.; Müller, M.; Langhans, W.; Hurrell, R.F.; et al. In Male Rats with Concurrent Iron and (n-3) Fatty Acid Deficiency, Provision of Either Iron or (n-3) Fatty Acids Alone Alters Monoamine Metabolism and Exacerbates the Cognitive Deficits Associated with Combined Deficiency. J. Nutr. 2012, 142, 1472–1478. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sullivan, K.M.; Venugopalan, B.; Jefferds, M.E.; Boy, E.; Bonilla, J.; Sandino, I.; Halleslevens, P. Association of elevated α₁-acid glycoprotein (AGP) and the prevalence of anemia in Nicaraguan preschool children. Food Nutr. Bull. 2012, 33, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Rivera, S.; Gabayan, V.; Keller, C.; Taudorf, S.; Pedersen, B.K.; Ganz, T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 2004, 113, 1271–1276. [Google Scholar] [CrossRef]
- Dobrian, A.D.; Lieb, D.C.; Cole, B.K.; Taylor-Fishwick, D.A.; Chakrabarti, S.K.; Nadler, J.L. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog. Lipid Res. 2011, 50, 115–131. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Biebinger, R.; Rohner, F.; Dib, A.; Zeder, C.; Hurrell, R.F.; Chaouki, N. Vitamin A supplementation in children with poor vitamin A and iron status increases erythropoietin and hemoglobin concentrations without changing total body iron. Am. J. Clin. Nutr. 2006, 84, 580–586. [Google Scholar] [CrossRef]
- Semba, R.; Bloem, M. The anemia of vitamin A deficiency: Epidemiology and pathogenesis. Eur. J. Clin. Nutr. 2002, 56, 271–281. [Google Scholar] [CrossRef]
- Villamor, E.; Fawzi, W.W. Effects of Vitamin A Supplementation on Immune Responses and Correlation with Clinical Outcomes. Clin. Microbiol. Rev. 2005, 18, 446–464. [Google Scholar] [CrossRef]
Treatment Group | ||||||
---|---|---|---|---|---|---|
Variables | FA (n = 98) | VitA (n = 101) | IFA (n = 94) | IFA + VitA (n = 98) | Total n = 391 | p 3 |
Age (years) | 15. 8 ± 1.13 | 16.1 ± 1.20 | 15.9 ± 1.21 | 16.0 ± 1.15 | 15.9 ± 1.17 | 0.270 |
Age of Menarche | 13.2 ± 0.89 | 13.3 ± 0.89 | 13.1 ± 1.01 | 13.1 ± 0.89 | 13.2 ± 0.92 | 0.469 |
Weight (kg) | 41.3 ± 6.12 | 42.3 ± 6.42 | 41.5 ± 6.03 | 41. 8 ± 6.27 | 41.7 ± 6.20 | 0.711 |
Height (cm) | 149.8 ± 4.60 | 151.7 ± 5.75 | 150.8 ± 5.33 | 151.2 ± 5.23 | 150.8 ± 5.27 | 0.075 |
BMI-for-Age | −0.67 ± 0.96 | −0.73 ± 0.86 | −0.77 ± 0.94 | −0.79 ± 1.02 | −0.74 ± 0.94 | 0.821 |
Thinness (%) 4 | 10.2 | 5.9 | 9.6 | 10.2 | 8.9 | 0.672 |
Hemoglobin (g/dL) | 8.9 ± 1.3 | 8.9 ± 1.1 | 8.8 ± 1.1 | 8.8 ± 1.2 | 8.9 ± 1.2 | 0.850 |
Serum Ferritin 2 (µg/L) | 29.9 ± 2.5 | 33.4 ± 2.5 | 31.4 ± 2.4 | 25.5 ± 3.1 | 29.9 ± 2.6 | 0.233 |
Transferrin receptor (mg/L) | 6.74 ± 1.5 | 6.56 ± 1.42 | 7.09 ± 1.52 | 7.16 ± 1.59 | 6.9 ± 1.5 | 0.391 |
Body iron (mg/kg) | 4.04 ± 3.77 | 4.49 ± 4.21 | 3.97 ± 3.91 | 3.16 ± 5.27 | 3.92 ± 4.34 | 0.185 |
Serum retinol 2 (µmol/L) | 1.18 ± 1.28 | 1.17 ± 1.31 | 1.21 ± 1.28 | 1.18 ± 1.29 | 1.18 ± 1.29 | 0.858 |
Serum folate (nmol/L) | 6.02 ± 1.95 | 6.0 ± 1.7 | 6.66 ± 1.80 | 6.27 ± 1.67 | 6.22 ± 1.78 | 0.574 |
CRP(mg/L) | 0.73 ± 2.07 | 0.96 ± 3.32 | 1.38 ± 6.08 | 0.47 ± 0.87 | 0.88 ± 3.60 | 0.349 |
AGP (g/L) | 0.76 ± 0.18 | 0.75 ± 0.16 | 0.74 ± 0.20 | 0.74 ± 0.17 | 0.75 ± 0.18 | 0.798 |
Change in Hb | Change in SF (Log Value) | Change in Body Iron Store | ||||
---|---|---|---|---|---|---|
No SCI 2 (336) | SCI (55) | No SCI (336) | SCI (55) | No SCI (336) | SCI (55) | |
FA | 1.98 ± 1.08 | 2.18 ± 1.14 | 0.91 ± 1.58 a | 1.05 ± 2.59 | −0.24 ± 1.90 a | −0.47 ± 1.56 |
VitA | 1.96 ± 1.25 | 2.12 ± 1.66 | 1.04 ± 1.65 a | 0.89 ± 1.87 | 0.28 ± 1.92 a | −0.10 ± 2.22 |
IFA | 2.28 ± 1.18 | 2.10 ± 1.20 | 1.26 ± 1.54 b | 1.05 ± 2.59 | 1.20 ± 1.64 b | 0.43 ± 3.23 |
IFA + vitA | 2.28 ± 1.32 | 2.46 ± 1.40 | 1.41 ± 1.72 b | 1.07 ± 1.99 | 1.73 ± 2.45 b | 0.78 ± 2.95 |
F value | 1.843 | 0.186 | 13.55 | 0.303 | 16.477 | 0.688 |
p value 3 | 0.139 | 0.906 | <0.001 | 0.823 | <0.001 | 0.563 |
Unstandardized Coefficient (B) | SE | Standardized Coefficient | p | |
---|---|---|---|---|
Treatment with Fe 1 | ||||
(Constant) | 11.19 | 0.51 | <0.001 | |
Hb at baseline | −0.85 | 0.04 | −0.81 | <0.001 |
Serum ferritin at baseline | −0.09 | 0.11 | −0.03 | 0.397 |
sTfR at BL | −1.85 | 0.27 | −0.27 | <0.001 |
Treatment with Iron | 0.28 | 0.09 | 0.11 | 0.002 |
SCI treated with Fe | −0.26 | 0.24 | −0.05 | 0.268 |
SCI | 0.11 | 0.16 | 0.03 | 0.490 |
Treatment with VitA 2 | ||||
(Constant) | 11.37 | 0.51 | <0.001 | |
Hb at baseline | −0.85 | 0.04 | −0.82 | <0.001 |
Serum ferritin at baseline | −0.11 | 0.11 | −0.04 | 0.324 |
sTfR at BL | −1.77 | 0.27 | −0.25 | 0.000 |
Treatment with VitA | −0.08 | 0.09 | −0.03 | 0.359 |
SCI treated with VitA | 0.48 | 0.24 | 0.10 | 0.044 |
SCI | −0.26 | 0.17 | −0.07 | 0.123 |
Without Sub-Clinical Inflammation | With Sub-Clinical Inflammation | p 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | FA (n = 82) | VitA (n = 86) | IFA (n = 82) | IFA + vitA (n = 86) | FA (n = 16) | VitA (n = 15) | IFA (n = 12) | IFA + vitA (n = 12) | Within Group Over Time | Between Group | SCI | Group × SCI |
Hb(g/L) | <0.001 | 0.181 | 0.325 | 0.027 | ||||||||
Baseline | 9.0 ± 1.3 | 8.9 ± 1.1 | 8.9 ± 1.1 | 8.8 ± 1.2 | 8.6 ± 1.3 | 9.1 ± 1.4 | 8.3 ± 1.1 | 8.9 ± 1.2 | ||||
Midline | 9.9 ± 1.1 | 9.8 ± 0.9 | 9.8 ± 1.0 | 9.9 ± 1.0 | 9.7 ± 1.0 | 10.4 ± 1.1 | 9.7 ± 1.6 | 9.8 ± 1.2 | ||||
Endline | 11 ± 0.8 | 10.9 ± 0.9 | 11.2 ± 0.9 | 11.1 ± 0.9 | 10.7 ± 0.8 b | 11.2 ± 1.1 b | 10.4 ± 1 a | 11.3 ± 0.9 b | ||||
SF (µg/L) 3 | 0.178 | 0.154 | <0.002 | 0.444 | ||||||||
Baseline | 43.7 ± 46.2 | 43.4 ± 33.3 | 40.7 ± 28.0 | 36.9 ± 28.9 | 54.5 ± 46.7 | 79.8 ± 59.9 | 67.7 ± 51.9 | 65.9 ± 52 | ||||
Midline | 34.2 ± 32.0 | 39.5 ± 29.6 | 39.8 ± 22.9 | 38.1 ± 25.9 | 46.0 ± 40.1 | 65.5 ± 38.6 | 51.4 ± 27.9 | 56.5 ± 28.4 | ||||
Endline | 38.2 ± 34.8 | 44.4 ± 31.3 | 47.3 ± 29.1 | 45.4 ± 30.6 | 50.7 ± 44.6 | 68.9 ± 42 | 68.2 ± 48.7 | 59 ± 42 | ||||
sTfR(mg/L) | <0.001 | 0.039 | 0.129 | 0.013 | ||||||||
Baseline | 7.3 ± 5.8 | 7.2 ± 3.1 | 7.5 ± 4.5 | 8.3 ± 5.7 | 8.8 ± 4.7 | 6.3 ± 1.6 | 11.2 ± 9 | 7.5 ± 4.5 | ||||
Midline | 7.1 ± 5.7 | 7.0 ± 3.3 | 7.0 ± 4.4 | 7.7 ± 5.0 | 9.1 ± 6.1 b | 5.9 ± 1.4 a | 11.0 ± 8.3 b | 6.6 ± 2.9 a | ||||
Endline | 7.2 ± 5.5 | 6.9 ± 3.2 | 6.8 ± 4.2 | 6.9 ± 3.8 | 9.0 ± 4.9 b | 5.7 ± 1.3 a | 10.5 ± 8.2 b | 6.1 ± 2.0 a | ||||
Body Iron Store (mg/kg) | 0.003 | 0.110 | 0.054 | 0.128 | ||||||||
Baseline | 4.1 ± 3.5 | 4.1 ± 4.3 | 3.9 ± 3.7 | 2.9 ± 5.2 | 3.8 ± 5.3 | 6.9 ± 2.8 | 4.4 ± 5.1 | 5.1 ± 5.5 | ||||
Midline | 3.5 ± 3.3 | 3.9 ± 4.0 | 4.5 ± 2.9 | 3.9 ± 3.7 | 3.6 ± 3.9 a | 6.8 ± 2.3 b | 4.0 ± 4.1 a | 6.0 ± 3 b | ||||
Endline | 3.9 ± 3.7 | 4.4 ± 4.2 | 5.1 ± 3.1 | 4.6 ± 4.0 | 3.3 ± 5.4 | 6.8 ± 3.1 | 4.8 ± 4.6 | 5.9 ± 3.7 | ||||
Serum Retinol (µmol/L) 3 | 0.052 | 0.329 | 0.338 | 0.80 | ||||||||
Baseline | 1.23 ± 0.36 | 1.22 ± 0.32 | 1.25 ± 0.31 | 1.19 ± 0.31 | 1.08 ± 0.22 | 1.1 ± 0.29 | 1.14 ± 0.27 | 1.32 ± 0.33 | ||||
Midline | 1.12 ± 0.31 | 1.19 ± 0.35 | 1.18 ± 0.29 | 1.18 ± 0.32 | 1.08 ± 0.3 | 1.17 ± 0.34 | 1.28 ± 0.31 | 1.15 ± 0.27 | ||||
Endline | 1.11 ± 0.32 | 1.23 ± 0.35 | 1.18 ± 0.34 | 1.19 ± 0.34 | 1.03 ± 0.16 | 1.13 ± 0.23 | 1.1 ± 0.32 | 1.16 ± 0.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyaw Htet, M.; Fahmida, U.; Dillon, D.; Akib, A.; Utomo, B.; Thurnham, D.I. Is Iron Supplementation Influenced by Sub-Clinical Inflammation?: A Randomized Controlled Trial Among Adolescent Schoolgirls in Myanmar. Nutrients 2019, 11, 918. https://doi.org/10.3390/nu11040918
Kyaw Htet M, Fahmida U, Dillon D, Akib A, Utomo B, Thurnham DI. Is Iron Supplementation Influenced by Sub-Clinical Inflammation?: A Randomized Controlled Trial Among Adolescent Schoolgirls in Myanmar. Nutrients. 2019; 11(4):918. https://doi.org/10.3390/nu11040918
Chicago/Turabian StyleKyaw Htet, Min, Umi Fahmida, Drupadi Dillon, Arwin Akib, Budi Utomo, and David I Thurnham. 2019. "Is Iron Supplementation Influenced by Sub-Clinical Inflammation?: A Randomized Controlled Trial Among Adolescent Schoolgirls in Myanmar" Nutrients 11, no. 4: 918. https://doi.org/10.3390/nu11040918
APA StyleKyaw Htet, M., Fahmida, U., Dillon, D., Akib, A., Utomo, B., & Thurnham, D. I. (2019). Is Iron Supplementation Influenced by Sub-Clinical Inflammation?: A Randomized Controlled Trial Among Adolescent Schoolgirls in Myanmar. Nutrients, 11(4), 918. https://doi.org/10.3390/nu11040918