Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review
Abstract
:1. Introduction
2. Metabolism of Vitamin D and Mechanisms of Vitamin D Receptor
3. Vitamin D in Sport Performance
4. Potential Mechanisms of Vitamin D Impact on Exercise Performance
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 4, 136. [Google Scholar] [CrossRef] [PubMed]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A review of mushrooms as a potential source of dietary Vitamin, D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D: Importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am. J. Clin. Nutr. 2004, 79, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Aydın, C.G.; Dinçel, Y.M.; Arıkan, Y.; Taş, S.K.; Deniz, S. The effects of indoor and outdoor sports participation and seasonal changes on vitamin D levels in athletes. SAGE Open Med. 2019, 7, 2050312119837480. [Google Scholar] [CrossRef]
- Owens, D.L.; Sharples, A.P.; Polydorou, I.; Alwan, N.; Donovan, T.; Tang, J.; Fraser, W.D.; Cooper, R.G.; Morton, J.P.; Stewart, C.; et al. A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E1019–E1031. [Google Scholar] [CrossRef]
- Cook, R.; Thomas, V.; Martin, R. Can treating vitamin D deficiency reduce exacerbations of chronic obstructive pulmonary disease? BMJ 2019, 364, l1025. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. New Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Hamilton, S.A.; McNeil, R.; Hollis, B.W.; Davis, D.L.; Winkler, J.; Cook, C.; Warner, G.; Bivens, B.; McShane, P.; Wagner, C.L. Profound vitamin d deficiency in a diverse group of women during pregnancy living in a sun-rich environment at latitude 32° N. Hindawi Publ. Corp. Int. J. Endocrinol. 2010, 2010, 917428. [Google Scholar] [CrossRef]
- Macdonald, H.M. Contributions of sunlight and diet to Vitamin D status. Calcif. Tissue Int. 2013, 92, 163–176. [Google Scholar] [CrossRef]
- Zürcher, S.J.; Quadri, A.; Huber, A.; Thomas, L.; Close, G.L.; Brunner, S.; Noack, P.; Gojanovic, B.; Kriemler, S. Predictive factors for Vitamin D concentrations in Swiss Athletes: A cross-sectional study. Sports Med. Int. Open 2018, 2, E148–E156. [Google Scholar] [CrossRef]
- Piazzolla, G.; Castrovilli, A.; Liotino, V.; Vulpi, M.R.; Fanelli, M.; Mazzocca, A.; Candigliota, M.; Berardi, E.; Resta, O.; Sabbà, C.; et al. Metabolic syndrome and Chronic Obstructive Pulmonary Disease (COPD): The interplay among smoking, insulin resistance and vitamin D. PLoS ONE 2017, 12, e0186708. [Google Scholar] [CrossRef] [PubMed]
- Grześk, G.; Janiszewska, E.; Malinowski, B.; Kubica, A.; Wiciński, M. Adherence in patients with atrial fibrillation treated with dabigatran. Kardiol. Pol. 2018, 11, 1562–1563. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, B.; Zalewska, K.; Węsierska, A.; Sokołowska, M.M.; Socha, M.; Liczner, G.; Pawlak-Osińska, K.; Wiciński, M. Intermittent Fasting in Cardiovascular Disorders—An Overview. Nutrients 2019, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G. Impact of gender difference on vitamin D status and its relationship with the extent of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. Nmcd 2015, 25, 464–470. [Google Scholar] [CrossRef] [PubMed]
- AlQuaiz, A.M.; Kazi, A.; Fouda, M.; Alyousefi, N. Age and gender differences in the prevalence and correlates of vitamin D deficiency. Arch. Osteoporos. 2018, 13, 49. [Google Scholar] [CrossRef]
- Johnson, L.K.; Hofsø, D.; Aasheim, E.T.; Tanbo, T.; Holven, K.B.; Andersen, L.F.; Røislien, J.; Hjelmesæth, J. Impact of gender on vitamin D deficiency in morbidly obese patients: A cross-sectional study. Eur. J. Clin. Nutr. 2012, 66, 83–90. [Google Scholar] [CrossRef]
- Al-Horani, H.; Abu Dayyih, W.; Mallah, E.; Hamad, M.; Mima, M.; Awad, R.; Arafat, T. Nationality, gender, age, and body mass index influences on Vitamin D concentration among elderly patients and young Iraqi and Jordanian in Jordan. Biochem. Res. Int. 2016, 2016, 8920503. [Google Scholar] [CrossRef]
- Halliday, T.M.; Peterson, N.J.; Thomas, J.J.; Kleppinger, K.; Hollis, B.W.; Larson-Meyer, D.E. Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. Med. Sci. Sports Exerc. 2011, 43, 335–343. [Google Scholar] [CrossRef]
- Desbrow, B.; Burd, N.A.; Tarnopolsky, M.; Moore, D.R.; Elliott-Sale, K.J. Nutrition for special populations: Young, female, and masters athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 220–227. [Google Scholar] [CrossRef]
- Aspell, N.; Laird, E.; Healy, M.; Shannon, T.; Lawlor, B.; O’Sullivan, M. The prevalence and determinants of Vitamin D status in community-dwelling older adults: Results from the English Longitudinal Study of Ageing (ELSA). Nutrients 2019, 11, 1253. [Google Scholar] [CrossRef]
- Kleine, C.E.; Obi, Y.; Streja, E.; Hsiung, J.T.; Park, C.; Holick, M.F.; Kalantar-Zadeh, K. Seasonal variation of serum 25-hydroxyvitamin D and parameters of bone and mineral disorder in dialysis patients. Bone 2019, 124, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Farrokhyar, F.; Tabasinejad, R.; Dao, D.; Peterson, D.; Ayeni, O.R.; Hadioonzadeh, R.; Bhandari, M. Prevalence of Vitamin D inadequacy in Athletes: A systematic-review and meta-analysis. Sports Med. 2015, 45, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Fulton, S.K.; Binnie, M.; Goodman, C. Training environment and Vitamin D status in Athletes. Int. J. Sports Med. 2013, 34, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, J.H.; Jung, M.H.; Cho, M.C. Total 25-hydroxy vitamin D level in cerebrospinal fluid correlates with serum total, bioavailable, and free 25-hydroxy vitamin D levels in Korean population. PLoS ONE 2019, 14, e0213389. [Google Scholar] [CrossRef]
- Dai, Q.; Zhu, X.; Manson, J.E.; Song, Y.; Li, X.; Franke, A.A.; Costello, R.B.; Rosanoff, A.; Nian, H.; Fan, L.; et al. Magnesium status and supplementation influence vitamin D status and metabolism: Results from a randomized trial. Am. J. Clin. Nutr. 2018, 108, 1249–1258. [Google Scholar] [CrossRef]
- Demay, M.B. Mechanism of Vitamin D receptor action. Ann. N. Y. Acad. Sci. 2006, 1068, 204–213. [Google Scholar] [CrossRef]
- Dattilo, G.; Casale, M.; Avventuroso, E.; Laganà, P. Vitamin D dietary supplementation: Relationship with chronic heart failure. J. AOAC Int. 2018, 101, 939–941. [Google Scholar] [CrossRef]
- Dittfeld, A.; Gwizdek, K.; Koszowska, A.; Fizia, K. Multidirectional effect of vitamin D. Ann. Acad. Med. Silesiensis 2014, 68, 1. [Google Scholar]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef]
- Owens, D.J.; Allison, R.; Close, G.L. Vitamin D and the athlete: Current perspectives and new challenges. Sports Med. 2018, 48 (Suppl. 1), 3–16. [Google Scholar] [CrossRef]
- Hannan, M.T.; Litman, H.J.; Araujo, A.B.; McLennan, C.E.; McLean, R.R.; McKinlay, J.B.; Chen, T.C.; Holick, M.F. Serum 25-Hydroxyvitamin D and bone mineral density in a racially and ethnically diverse group of men. J. Clin. Endocrinol. Metab. 2008, 93, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Madden, R.F.; Shearer, J.; Legg, D.; Parnell, J.A. Evaluation of dietary supplement use in wheelchair rugby athletes. Nutrients 2018, 10, 1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, D.J.; Fraser, W.D.; Close, G.L. Vitamin D and the athlete: Emerging insights. Eur. J. Sport Sci. 2015, 15, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Russell, J.; Cobley, J.N.; Owens, D.J.; Wilson, G.; Gregson, W.; Fraser, W.D.; Morton, J.P. Assessment of vitamin D concentration in nonsupplemented professional athletes and healthy adults during the winter months in the UK: Implications for skeletal muscle function. J. Sports Sci. 2013, 31, 344–353. [Google Scholar] [CrossRef]
- Książek, A.; Dziubek, W.; Pietraszewska, J.; Słowińska-Lisowska, M. Relationship between 25(OH)D levels and athletic performance in elite Polish judoists. Biol. Sport 2018, 35, 191–196. [Google Scholar]
- Mielgo-Ayuso, J.; Calleja-González, J.; Urdampilleta, A.; León-Guereño, P.; Córdova, A.; Caballero-García, A.; Fernandez-Lázaro, D. Effects of Vitamin D supplementation on haematological values and muscle recovery in elite male traditional rowers. Nutrients 2018, 10, 1968. [Google Scholar] [CrossRef] [Green Version]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Margioris, A.N. Vitamin D and exercise performance in professional soccer players. PLoS ONE 2014, 9, e101659. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kaczmarczyk, M.; Michalczyk, M.; Radzimiński, Ł.; Stępień, P.; Jastrzębska, J.; Wakuluk, D.; Díaz Suáres, A.D.; López Sánchez, G.F.; Cięszczyk, P.; et al. Can supplementation of Vitamin D improve aerobic capacity in well trained youth soccer players? J. Hum. Kinet. 2018, 61, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Wyon, M.A.; Wolman, R.; Nevill, A.M.; Cloak, R.; Metsios, G.S.; Gould, D.; Ingham, A.; Koutedakis, Y. Acute effects of Vitamin D3 supplementation on muscle strength in judoka athletes: A randomized placebo-controlled, double-blind trial. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2016, 26, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Skalska, M.; Nikolaidis, P.T.; Knechtle, B.; Rosemann, T.J.; Radzimiński, Ł.; Jastrzębska, J.; Kaczmarczyk, M.; Myśliwiec, A.; Dragos, P.; López-Sánchez, G.F.; et al. Vitamin D supplementation and physical activity of young soccer players during high-intensity training. Nutrients 2019, 11, 349. [Google Scholar] [CrossRef] [Green Version]
- Orysiak, J.; Mazur-Rozycka, J.; Fitzgerald, J.; Starczewski, M.; Malczewska-Lenczowska, J.; Busko, K. Vitamin D status and its relation to exercise performance and iron status in young ice hockey players. PLoS ONE 2018, 13, e0195284. [Google Scholar] [CrossRef]
- Fairbairn, K.A.; Ceelen, I.J.M.; Skeaff, C.M.; Cameron, C.M.; Perry, T.L. Vitamin D3 supplementation does not improve sprint performance in professional rugby players: A randomised, placebo-controlled double blind intervention study. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.J.; McSorley, E.M.; Pourshahidi, L.K.; Madigan, S.M.; Laird, E.; Healy, M.; Magee, P.J. Vitamin D3 supplementation using an oral spray solution resolves deficiency but has no effect on VO2 max in Gaelic footballers: Results from a randomised, double-blind, placebo-controlled trial. Eur. J. Nutr. 2017, 56, 1577–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, D.S.; McClung, J.P.; Kohen, T.; Lieberman, H.R. Vitamin D and physical performance. Sports Med. 2013, 43, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Hamilton, D.L.; Philp, A.; Burke, L.L.; Morton, J.P. New strategies in sport nutrition to increase exercise performance. Free Radic. Biol. Med. 2016, 98, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Hollis, B.W.; Wagner, C.L.; Drezner, M.K.; Binkley, N.C. Circulating vitamin D3 and 25-hydroxyvitamin D in humans: An important tool to define adequate nutritional vitamin D status. J. Steroid Biochem. Mol. Biol. 2007, 103, 631–634. [Google Scholar] [CrossRef] [Green Version]
- Cannell, J.J.; Hollis, B.W.; Sorenson, M.B.; Taft, T.N.; Anderson, J.J. Athletic performance and Vitamin, D. Med. Sci. Sports Exerc. 2009, 41, 1102–1110. [Google Scholar] [CrossRef]
- Koundourakis, N.E.; Avgoustinaki, P.D.; Malliaraki, N.; Margioris, A.N. Muscular effects of vitamin D in young athletes and non-athletes and in the elderly. Hormones 2016, 15, 471–488. [Google Scholar] [CrossRef] [Green Version]
- Girgis, C.M.; Clifton-Bligh, R.J.; Turner, N.; Lynn Lau, S.; Gunton, J.E. Effects of vitamin D in skeletal muscle: Falls, strength, athletic performance and insulin sensitivity. Clin. Endocrinol. 2014, 80, 169–181. [Google Scholar] [CrossRef]
- Sinha, A.; Hollingsworth, K.G.; Ball, S.; Cheetham, T. Improving the Vitamin D status of Vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J. Clin. Endocrinol. Metab. 2013, 98, E509–E513. [Google Scholar] [CrossRef] [Green Version]
- Antinozzi, C.; Corinaldesia, C.; Giordanob, C.; Pisanob, A.; Cerbellib, B.; Migliaccioa, S.; Di Luigia, L.; Stefanantonic, K.; Vannellid, G.B.; Minisolae, S.; et al. Potential role for the VDR agonist elocalcitol in metabolic control: Evidences in human skeletal muscle cells. J. Steroid Biochem. Mol. Biol. 2017, 167, 169–181. [Google Scholar] [CrossRef] [PubMed]
Author | Study Group | Vitamin D Doses | Baseline 25(OH)D | Endpoint 25(OH)D | Results |
---|---|---|---|---|---|
Close et al., 2013 [34] | n = 61 UK soccer players, rugby players, flat and hunt jockeys | 5000 IU/day for 8 weeks vs. placebo | D3T: 29 ± 25 nmol/L CG: 53 ± 29 nmol/L | D3T: 103 ± 25 nmol/L CG: 74 ± 24 nmol/L | Increase in 10-m sprint times (p = 0.008) and vertical jump (p = 0.008) in the vitamin D group vs. placebo |
Książek et al., 2018 [35] | n = 25 Polish judoists | no supplementation | 17.4 ± 5.2 ng/mL; 80% of subjects were <30 ng/mL | - | Positive correlation between 25(OH)D and left hand grip strength (p < 0.05), level and power of vertical jump (p < 0.05) and total work in left and right lower extremity during extension. |
Koundourakis et al., 2014 [37] | n = 67 Greek soccer players | No supplementation, 6-week off-season | 34.41 ± 7.08 ng/mL | 47.24 ± 13.50 ng/mL after 6 weeks | Positive correlation between 25(OH)D level and squat jump (p < 0.001), countermovement jump (p < 0.001), VO2max (p < 0.001). Negative correlation between 25(OH)D level and 10-m sprint time (p < 0.001), 20-m sprint time; (p < 0.001). |
Jastrzębska et al., 2016 [38] | n = 36 Polish soccer players | 5000 IU/day for 8 weeks vs. placebo | D3T: 48.5 ± 8.6 mmol/L CG: 47.5 ± 16.2 mmol/L | D3T: 106.3 ± 26.62 mmol/L CG: 43.5 ± 16.7 mmol/L | Significant improvement of maximal running capacity, running velocity at lactate threshold, maximal heart rate, physical work capacity and maximal oxygen uptake vs. placebo. |
Wyon et al., 2015 [39] | n = 22 UK adult judoka athletes | 150,000 IU once for 8 days vs. placebo | D3T: 13.16 ± 3.75 ng/mL CG: 16.33 ± 2.73 ng/mL | D3T: 16.76 ± 3.21 ng/mL CG: 16.33 ± 2.56 ng/mL | Significant increase in muscle strength between days 1 and 8 vs. placebo group (p = 0.01). |
Skalska et al., 2019 [40] | n = 36 Polish young soccer players | 5000 IU/day for 8 weeks vs. placebo | D3T: 48.5 ± 8.6 nmol/L CG: 47.5 ± 16.2 nmol/L | D3T: 106.3 ± 26.6 nmol/L CG: 43.5 ± 16.9 nmol/L | Comparing the supplemented and un-supplemented groups, no significant differences were found in any of the analyzed indicators. |
Orysiak et al., 2018 [41] | n = 50 Polish ice hockey players | No supplementation | 30.3 ± 14.9 ng/mL; 62% of subjects were <30 ng/mL | - | No correlation between 25(OH)D concentration and isometric muscle-strength, vertical jump performance and repeated sprint ability (p > 0.05) |
Fairbairn et al., 2017 [42] | n = 57 New Zealand professional rugby players | 50,000 IU once every 2 weeks for 11–12 weeks | D3T: 94 ± 18 nmol/L CG: 95 ± 17 nmol/L | D3T: 114 ± 19 nmol/L CG: 80 ± 21 nmol/L | No significant difference between supplemented and placebo groups (p > 0.05) |
Todd et al., 2016 [43] | n = 43 Gaelic football players | 3000 IU/ day for 12 weeks vs. placebo | D3T: 47.37 ± 13.3 nmol/L CG: 43.1 ± 22.0 nmol/L | D3T: 83.68 ± 32.98 nmol/L CG: 49.22 ± 25.40 nmol/L | Supplementation of vitamin D had no significant effect on VO2max, skeletal muscle function and lung function. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiciński, M.; Adamkiewicz, D.; Adamkiewicz, M.; Śniegocki, M.; Podhorecka, M.; Szychta, P.; Malinowski, B. Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review. Nutrients 2019, 11, 2826. https://doi.org/10.3390/nu11112826
Wiciński M, Adamkiewicz D, Adamkiewicz M, Śniegocki M, Podhorecka M, Szychta P, Malinowski B. Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review. Nutrients. 2019; 11(11):2826. https://doi.org/10.3390/nu11112826
Chicago/Turabian StyleWiciński, Michał, Dawid Adamkiewicz, Monika Adamkiewicz, Maciej Śniegocki, Marta Podhorecka, Paweł Szychta, and Bartosz Malinowski. 2019. "Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review" Nutrients 11, no. 11: 2826. https://doi.org/10.3390/nu11112826
APA StyleWiciński, M., Adamkiewicz, D., Adamkiewicz, M., Śniegocki, M., Podhorecka, M., Szychta, P., & Malinowski, B. (2019). Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review. Nutrients, 11(11), 2826. https://doi.org/10.3390/nu11112826