Caffeine Increased Muscle Endurance Performance Despite Reduced Cortical Activation and Unchanged Neuromuscular Efficiency and Corticomuscular Coherence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Caffeine and Placebo Ingestion
2.4. MVC and Isometric Contraction to Task Failure
2.5. Measures and Instruments
2.5.1. Electroencephalography (EEG)
2.5.2. Neuromuscular Efficiency (NME)
2.5.3. EEG–EMG Coherence
2.5.4. Statistical analyses
3. Results
3.1. Baseline Session and Blinding Efficacy
3.2. Caffeine Effects on Muscle Performance
3.3. Caffeine Effects on Central and Peripheral Indexes
4. Discussion
5. Methodological Aspects, Strength, and Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International society of sports nutrition position stand: Caffeine and performance. J. Int. Soc. Sport. Nutr. 2010, 7, 5. [Google Scholar] [CrossRef]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Del Coso, J.; Urdampilleta, A.; León-Guereño, P.; Fernández-Lázaro, D. Caffeine supplementation and physical performance, muscle damage and perception of fatigue in soccer players: A systematic review. Nutrients 2019, 11, 440. [Google Scholar] [CrossRef]
- Franco-Alvarenga, P.E.; Brietzke, C.; Canestri, R.; Goethel, M.F.; Hettinga, F.; Santos, T.M.; Pires, F.O. Caffeine improved cycling trial performance in mentally fatigued cyclists, regardless of alterations in prefrontal cortex activation. Physiol. Behav. 2019, 204, 41–48. [Google Scholar] [CrossRef]
- Goncalves, L.S.; Painelli, V.S.; Yamaguchi, G.; de Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Tarnopolsky, M.; Cupido, C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J. Appl. Physiol. 2000, 89, 1719–1724. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, CR399–CR404. [Google Scholar] [CrossRef]
- Kalmar, J.M. The influence of caffeine on voluntary muscle activation. Med. Sci. Sports Exerc. 2005, 37, 2113–2119. [Google Scholar] [CrossRef]
- Walton, C.; Kalmar, J.; Cafarelli, E. Caffeine increases spinal excitability in humans. Muscle Nerve 2003, 28, 359–364. [Google Scholar] [CrossRef]
- Bowtell, J.L.; Mohr, M.; Fulford, J.; Jackman, S.R.; Ermidis, G.; Krustrup, P.; Mileva, K.N. Improved exercise tolerance with caffeine is associated with modulation of both peripheral and central neural processes in human participants. Front. Nutr. 2018, 5, 6. [Google Scholar] [CrossRef]
- Plaskett, C.J.; Cafarelli, E. Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J. Appl. Physiol. 2001, 91, 1535–1544. [Google Scholar] [CrossRef] [Green Version]
- de Morree, H.M.; Klein, C.; Marcora, S.M. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J. Appl. Physiol. 2014, 117, 1514–1523. [Google Scholar] [CrossRef] [Green Version]
- Deslandes, A.; Veiga, H.; Cagy, M.; Fiszman, A.; Piedade, R.; Ribeiro, P. Quantitative electroencephalography (qEEG) to discriminate primary degenerative dementia from major depressive disorder (depression). Arq. Neuropsiquiatr. 2004, 62, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci. Rep. 2015, 5, 10209. [Google Scholar] [CrossRef]
- Grosse, P.; Cassidy, M.J.; Brown, P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: Physiological principles and clinical applications. Clin. Neurophysiol. 2002, 113, 1523–1531. [Google Scholar] [CrossRef]
- Tuncel, D.; Dizibuyuk, A.; Kiymik, M.K. Time frequency based coherence analysis between EEG and EMG activities in fatigue duration. J. Med. Syst. 2010, 34, 131–138. [Google Scholar] [CrossRef]
- Fitt, E.; Pell, D.; Cole, D. Assessing caffeine intake in the United Kingdom diet. Food Chem. 2013, 140, 421–426. [Google Scholar] [CrossRef]
- Del Coso, J.; Lara, B.; Ruiz-Moreno, C.; Salinero, J.J. Challenging the myth of non-response to the ergogenic effects of caffeine ingestion on exercise performance. Nutrients 2019, 11, 732. [Google Scholar] [CrossRef]
- Mau-Moeller, A.; Jacksteit, R.; Jackszis, M.; Feldhege, F.; Weippert, M.; Mittelmeier, W.; Bader, R.; Skripitz, R.; Behrens, M. Neuromuscular function of the quadriceps muscle during isometric maximal, submaximal and submaximal fatiguing voluntary contractions in knee osteoarthrosis patients. PLoS ONE 2017, 12, e0176976. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Lopes da Silva, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Maurits, N. From Neurology to Methodology and Back an Introduction to Clinical Neuroengineering; Springer: London, UK, 2011; ISBN 9781461411314. [Google Scholar]
- Uusberg, A.; Uibo, H.; Kreegipuu, K.; Allik, J. EEG alpha and cortical inhibition in affective attention. Int. J. Psychophysiol. 2013, 89, 26–36. [Google Scholar] [CrossRef]
- von Stein, A.; Sarnthein, J. Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 2000, 38, 301–313. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Giles, J.A.; McCoy, R.W.; Volek, J.S.; Gomez, A.L.; Kraemer, W.J. Neural factors account for strength decrements observed after short-term muscle unloading. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R578–R583. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, J.R.; Amjad, A.M.; Breeze, P.; Brillinger, D.R.; Halliday, D.M. The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog. Biophys. Mol. Biol. 1989, 53, 1–31. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Kalmar, J.M.; Cafarelli, E. Caffeine: A valuable tool to study central fatigue in humans? Exerc. Sport Sci. Rev. 2004, 32, 143–147. [Google Scholar] [CrossRef]
- Cerqueira, V.; de Mendonça, A.; Minez, A.; Dias, A.R.; de Carvalho, M. Does caffeine modify corticomotor excitability? Neurophysiol. Clin. 2006, 36, 219–226. [Google Scholar] [CrossRef]
- Fiege, M.; Wappler, F.; Weisshorn, R.; Ulrich Gerbershagen, M.; Steinfath, M.; Schulte Esch, J. Results of contracture tests with halothane, caffeine, and ryanodine depend on different malignant hyperthermia-associated ryanodine receptor gene mutations. Anesthesiology 2002, 97, 345–350. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Effect of caffeine on the neuromuscular system--potential as an ergogenic aid. Appl. Physiol. Nutr. Metab. 2008, 33, 1284–1289. [Google Scholar] [CrossRef]
- Westerblad, H.; Duty, S.; Allen, D.G. Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J. Appl. Physiol. 1993, 75, 382–388. [Google Scholar] [CrossRef]
- de Lima, F.D.R.; Brietzke, C.; Franco-Alvarenga, P.E.; Asano, R.Y.; Viana, B.F.; Santos, T.M.; Pires, F.O. Traditional models of fatigue and physical performance. J. Phys. Educ. 2018, 29. [Google Scholar]
- Pincivero, D.M.; Campy, R.M.; Salfetnikov, Y.; Bright, A.; Coelho, A.J. Influence of contraction intensity, muscle, and gender on median frequency of the quadriceps femoris. J. Appl. Physiol. 2001, 90, 804–810. [Google Scholar] [CrossRef]
- Enders, H.; Nigg, B.M. Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations. Eur. J. Sport Sci. 2016, 16, 416–426. [Google Scholar] [CrossRef]
- Gwin, J.T.; Ferris, D.P. Beta- and gamma-range human lower limb corticomuscular coherence. Front. Hum. Neurosci. 2012. [Google Scholar] [CrossRef]
- Qi, Y.; Siemionow, V.; Wanxiang, Y.; Sahgal, V.; Yue, G.H. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 97–106. [Google Scholar]
- Yang, Q.; Fang, Y.; Sun, C.-K.; Siemionow, V.; Ranganathan, V.K.; Khoshknabi, D.; Davis, M.P.; Walsh, D.; Sahgal, V.; Yue, G.H. Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res. 2009, 1250, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Omlor, W.; Patino, L.; Hepp-Reymond, M.-C.; Kristeva, R. Gamma-range corticomuscular coherence during dynamic force output. Neuroimage 2007, 34, 1191–1198. [Google Scholar] [CrossRef]
- Shabir, A.; Hooton, A.; Tallis, J.; Higgins, F.M. The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients 2018, 10, 1528. [Google Scholar] [CrossRef]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Goncalves, L.S.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.G.; et al. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sport. 2016, 27. [Google Scholar] [CrossRef]
- Pires, F.O.; Anjos, C.A.S.D.o.s.; Covolan, R.J.M.; Fontes, E.B.; Noakes, T.D.; Gibson, A.S.C.; Magalhães, F.H.; Ugrinowitsch, C. Caffeine and placebo improved maximal exercise performance despite unchanged motor cortex activation and greater prefrontal cortex deoxygenation. Front. Physiol. 2018, 9, 1144. [Google Scholar] [CrossRef]
- Wilk, M.; Filip, A.; Krzysztofik, M.; Maszczyk, A.; Zajac, A. The acute effect of various doses of caffeine on power output and velocity during the bench press exercise among athletes habitually using caffeine. Nutrients 2019, 11, 1465. [Google Scholar] [CrossRef]
Time of Exercise | |||||
---|---|---|---|---|---|
Ingestion | Dependent Variable | 25% | 50% | 75% | 100% |
CAF | Prefrontal EEG | 40.9 ± 54.0 | 49.4 ± 43.2 | 75.7 ± 16.0 | 86.7 ± 12.9 |
95% CI | (−507.5–245.1) | (−60.2–93.6) | (−187.8–80.2) | (−366.9–274.2) | |
Motor Cortex EEG | −311.8 ± 634.7 | −95.6 ± 184.4 | −99.9 ± 197.1 | 33.1 ± 75.2 | |
95% CI | (−176.6–62.6) | (−216.1–19.1) | (−185.7–46.1) | (22.2–88.3) | |
NME | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | |
95% CI | (0.01–0.04) | (0.01–0.04) | (0.01–0.03) | (0.01–0.03) | |
EEG–EMG Coherence | 0.06 ± 0.05 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.06 ± 0.06 | |
95% CI | (0.02–0.06) | (0.02–0.05) | (0.02–0.03) | (0.02–0.06) | |
PLA | Prefrontal EEG | 70.2 ± 22.9 | 64.9 ± 36.3 | 80.1 ± 21.1 | 92.1 ± 11.6 |
95% CI | (45.2–96.8) | (2.7–84.3) | (33.1–104.3) | (81.6–102.3) | |
Motor Cortex EEG | −27.0 ± 148.9 | −80.7 ± 191.9 | −10.3 ± 150.3 | 66.2 ± 57.5 | |
95% CI | (57.0–88.6) | (−165.7–79.6) | (−109.1–121.1) | (66.4–107.4) | |
NME | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | |
95% CI | (0.01–0.06) | (0.01–0.05) | (0.01–0.04) | (0.01–0.04) | |
EEG–EMG Coherence | 0.06 ± 0.06 | 0.04 ± 0.03 | 0.09 ± 0.09 | 0.05 ± 0.05 | |
95% CI | (0.02–0.06) | (0.02–0.06) | (0.03–0.08) | (0.02–0.06) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco-Alvarenga, P.E.; Brietzke, C.; Canestri, R.; Goethel, M.F.; Viana, B.F.; Pires, F.O. Caffeine Increased Muscle Endurance Performance Despite Reduced Cortical Activation and Unchanged Neuromuscular Efficiency and Corticomuscular Coherence. Nutrients 2019, 11, 2471. https://doi.org/10.3390/nu11102471
Franco-Alvarenga PE, Brietzke C, Canestri R, Goethel MF, Viana BF, Pires FO. Caffeine Increased Muscle Endurance Performance Despite Reduced Cortical Activation and Unchanged Neuromuscular Efficiency and Corticomuscular Coherence. Nutrients. 2019; 11(10):2471. https://doi.org/10.3390/nu11102471
Chicago/Turabian StyleFranco-Alvarenga, Paulo Estevão, Cayque Brietzke, Raul Canestri, Márcio Fagundes Goethel, Bruno Ferreira Viana, and Flávio Oliveira Pires. 2019. "Caffeine Increased Muscle Endurance Performance Despite Reduced Cortical Activation and Unchanged Neuromuscular Efficiency and Corticomuscular Coherence" Nutrients 11, no. 10: 2471. https://doi.org/10.3390/nu11102471
APA StyleFranco-Alvarenga, P. E., Brietzke, C., Canestri, R., Goethel, M. F., Viana, B. F., & Pires, F. O. (2019). Caffeine Increased Muscle Endurance Performance Despite Reduced Cortical Activation and Unchanged Neuromuscular Efficiency and Corticomuscular Coherence. Nutrients, 11(10), 2471. https://doi.org/10.3390/nu11102471