Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile
Abstract
1. Background
2. Methods
2.1. Inclusion Criteria for Patients to Be Offered Enrolment
- -
- age > 18 years with immediate family able to provide written informed consent;
- -
- prescribed one or more antibiotic in ICU;
- -
- functional intact gastrointestinal tract; and
- -
- anticipated ICU stay of >72 h after enrollment.
- -
- received oral or IV antibiotics for >48 h in hospital;
- -
- received a course of antibiotics in the past 30 days;
- -
- history of CDI in previous 90 days;
- -
- poor prognosis and not anticipated to survive the probiotic treatment period;
- -
- one of the following medical diagnoses: immunosuppression, bowel resection, artificial heart valve, infective endocarditis, rheumatic heart disease, pancreatitis, or inflammatory bowel disease;
- -
- permanent resident in long term care;
- -
- known to regularly consume probiotics; and
- -
- history of milk allergy or intolerance to dairy products.
2.2. Outcome Markers that Were Measured Include
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Baseline | Day 1 to End of Probiotic Treatment | 7 Days Post End of Probiotic Treatment | Hospital Discharge | 30 Days Post Antibiotic Stop Follow up Visit | |
---|---|---|---|---|---|
Informed Consent | x | ||||
Gender/Race | x | ||||
Age (years) | x | ||||
Height/Weight/BMI 1 | x | ||||
Co-morbidities | x | ||||
Albumin | x | x | |||
C-Reactive protein | x | x | |||
White Blood Cells | x | x | |||
Disease Severity Score (APACHE II 2) | x | ||||
Length of Stay | x | x | |||
Gastro-intestinal adverse events | x | ||||
Number and Route of antibiotics | x | x | x | x | |
Indication for antibiotics | x | x | x | x | |
Risk of diarrhea | x | x | |||
Stool cultures | x | x | x | x | x |
EN/po 3 energy prescription (kcals/day) | x | ||||
EN/po protein prescription (g/day) | x | ||||
EN/po energy intake (kcals/day) 4 | x | ||||
EN/po protein intake (g/day) 4 | x | ||||
Fiber intake (g/day) | x | ||||
Supplemental Parenteral Nutrition required (Y or N); Reason | x | x | |||
Weight weekly | x | ||||
Additional probiotic use | x | x | |||
Volume of Danactive taken (mL/24 h) | x | ||||
Bowel Movements per 24 h/CDI (Y or N) | x | x | x | x | |
Concomitant medications 5 | x | x |
References
- Wischmeyer, P.; McDonald, D.; Knight, R. Role of the microbiome, probiotics, and dysbiosis therapy in critical illness. Curr. Opin. Crit. Care 2016, 22, 347–353. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. Antibiotic-associated diarrhea: Epidemiology, trends and treatment. Future Microbiol. 2008, 3, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Gravel, D.; Miller, M.; Simor, A.; Taylor, G.; Gardam, M.; McGeer, A.; Hutchinson, J.; Moore, D.; Kelly, S.; Boyd, D.; et al. Healthcare-associated clostridium difficile infection in adults admitted to acute care hospitals in Canada: A Canadian nosocomial infection surveillance program study. Clin. Infect. Dis. 2009, 48, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Oake, N.; Taljaard, M.; van Walraven, C.; Wilson, K.; Roth, V.; Forster, A.J. The effect of hospital-acquired Clostridium difficile infection on in-hospital mortality. Arch. Intern. Med. 2010, 170, 1804–1810. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; et al. Dysbiosis of the microbiome in critical illness. mSphere 2016, 1, e00199-16. [Google Scholar] [CrossRef] [PubMed]
- Brito-Ashurt, I.; Preiser, J. Diarrhea in critically ill patients: The role of enteral feeding. J. Parenter. Enter. Nutr. 2016, 40, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Jafarnejad, S.; Shab-Bidar, S.; Speakman, J.; Parastui, K.; Daneshi-Maskooni, M.; Djafarian, K. Probiotics Reduce the Risk of Antibiotic-Associated Diarrhea in Adults (18–64 Years) but Not the Elderly (>65 Years) A Meta-Analysis. Nutr. Clin. Pract. 2016, 31, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Grayson, M. (Ed.) Kucers’ the Use of Antibiotics, 6th ed.; Hodder Arnold/ASM Press: London, UK, 2010. [Google Scholar]
- Morrow, L.E.; Gogineni, V.; Malesker, M.A. Probiotics in the intensive care unit. Nutr. Clin. Pract. 2012, 27, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Hempel, S.; Newberry, S.; Maher, A.; Wang, Z.; Miles, J.N.; Shanman, R.; Johnsen, B.; Shekelle, P.G. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA 2012, 307, 1959–1969. [Google Scholar] [PubMed]
- Goldstein, E.; Johnson, S.; Maziade, P.; McFarland, L.V.; Trick, W.; Dresser, L.; Millette, M.; Mazloum, H.; Low, D.E. Pathway to prevention of nosocomial Clostridium difficile infection. Clin. Infect. Dis. 2015, 60, S148–S158. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.C.; Ma, S.S.Y.; Goldenberg, J.Z.; Thorlund, K.; Vandvik, P.O.; Loeb, M.; Guyatt, G.H. Probiotics for the prevention of Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.Z.; Ma, S.S.Y.; Saxton, J.D.; Martzen, M.R.; Vandvik, P.O.; Thorlund, K.; Guyatt, G.H.; Johnston, B.C. Probiotics for the Prevention of Clostridium Difficile-Associated Diarrhea in Adults and Children (Review); The Cochrane Library: London, UK, 2013. [Google Scholar]
- Goldenberg, J.; Lytvyn, L.; Lo, C.; Beardsley, J.; Mertz, D.; Johnston, B. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children (Review). Cochrane Database Syst. Rev. 2017, 12, CD006095. [Google Scholar] [PubMed]
- Allen, S.; Wareham, K.; Wang, D.; Bradley, C.; Hutchings, H.; Harris, W.; Dhar, A.; Brown, H.; Foden, A.; Gravenor, M.B.; et al. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea in older inpatients (PLACIDE): A randomized, double-blind, placebo-controlled, multicenter trial. Lancet 2013, 382, 1249–1257. [Google Scholar] [CrossRef]
- Shen, N.; Maw, A.; Tmanova, L.; Pino, A.; Ancy, K.; Crawford, C.; Simon, M.S.; Evans, A.T. Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: A systematic review with meta-regression analysis. Gastroenterology 2017, 152, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Maziade, P.; Pereira, P.; Goldstein, E. A decade of experience in primary prevention of Clostridium difficile infection a community hospital using the probiotic combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+). Clin. Infect. Dis. 2015, 60 (Suppl. 2), S144–S147. [Google Scholar] [CrossRef] [PubMed]
- Hickson, M.; D’Souza, A.L.; Muthu, N.; Rogers, T.R.; Want, S.; Rajkumar, C.; Bulpitt, C.J. Use of probiotic Lactobacillus preparation to prevent diarrhea associated with antibiotics: Randomized double blind placebo controlled trial. BMJ 2007, 335, 80. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Kottmann, T.; Alavi, M. Commercially available probiotic drinks containing Lactobacillus casei DN-114001 reduce antibiotic-associated diarrhea. World J. Gastroenterol. 2014, 20, 15837–15844. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Martindale, R. Reduction of hospital acquired Clostridium difficile with probiotic protocol implementation. 2018; in publication. [Google Scholar]
- Critical Care Nutrition. Available online: www.criticalcarenutrition.com (accessed on 12 January 2018).
- Evans, C.; Johnson, S. Prevention of Clostridium difficile Infection with Probiotics. Clin. Infect. Dis. 2015, 60 (Suppl. 2), S122–S128. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Leff, J.; Schneider, Y.; Crawford, C.; Maw, A.; Bosworth, B.; Simon, M.S. Cost-effectiveness analysis of probiotic use to prevent Clostridium difficile infection in hospitalized adults receiving antibiotics. Open Forum Infect. Dis. 2017, 4, ofx148. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.; Montori, V.; Gotzsche, P.; Devereaux, P.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated guidelines for reporting parallel group randomized trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef] [PubMed]
- STROBE Statement. Available online: http://www.strobe-statement.org (accessed on 28 March 2018).
- Danone Canada. Available online: www.danone.ca/en (accessed on 11 October 2017).
- Alberta Health. Infection Prevention and Control Standards “Performance Measure Definition” for Hospital Acquired Clostridium Difficile Infection Rate; Government of Alberta: Calgary, AB, Canada, 2015.
- Thibault, R.; Graf, S.; Clerc, A.; Delieuvin, N.; Heidegger, C.P.; Picard, C. Diarrhoea in the ICU: Respective contribution of feeding and antibiotics. Crit. Care 2013, 17, R153. [Google Scholar] [CrossRef] [PubMed]
- Nestlé Health Science. Available online: www.nestlehealthscience.ca (accessed on 6 March 2018).
- Kotzampassi, K.; Giamarellos-Bourboulis, E. Probiotics for infectious diseases: More drugs, less dietary supplementation. Int. J. Antimicrob. Agents 2012, 40, 288–296. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Probiotic Intervention (n = 16) | Control Group (n = 16) |
---|---|---|
Age, year (mean ± SD) | 59.9 ± 15.6 | 57.5 ± 15.0 |
Male sex, n (%) | 12 (75) | 10 (62.5) |
BMI *, kg/m2 (mean ± SD) | 25.0 ± 10.2 | 25.2 ± 6.0 |
Height, cm (mean ± SD) | 172.6 ± 17.6 | 173.7 ± 9.9 |
Weight, kg (mean ± SD) | 74.7 ± 22.9 | 75.5 ± 15.7 |
APACHE II score ** (mean ± SD) | 25.5 ± 5.39 | 25.9 ± 9.7 |
Race, n (%) | ||
Caucasian/White | 14 (87.5) | 14 (87.5) |
Black/African/African-American | 1 (6.3) | 0 (0.0) |
Native | 0 (0.0) | 2 (12.5) |
Hispanic | 1 (6.3) | 0 (0.0) |
Admission category, n (%) | ||
Operative | 3 (18.8) | 1 (6.3) |
Non Operative | 13 (81.3) | 15 (93.8) |
Admission Diagnosis, n (%) | ||
Cardiac Arrest | 1 (6.3) | 0 (0.0) |
Respiratory (Incl. pneumonia) | 7 (44.0) | 5 (31.2) |
Sepsis | 0 (0.0) | 2 (12.5) |
Pulmonary Edema | 1 (6.3) | 0 (0.0) |
Trauma (Incl. Head) | 4 (25.0) | 4 (25.0) |
Brain Injury (incl. Hemorrhage) | 3 (6.3) | 0 (0.0) |
Other Medical Diseases (Hypernatremia, Smoke inhalation, Overdose, Diabetic Ketoacidosis, Meningioma) | 0 (0.0) | 5 (19.0) |
Charlson comorbid condition, n (%) | ||
None | 12 (75.0) | 12 (75.0) |
Angina | 1 (6.3) | 1 (6.3) |
Valvular Disease | 2 (12.5) | 1 (6.3) |
Myocardial Infarction | 1 (6.3) | 0 (0.0) |
Chronic Heart Failure | 0 (0.0) | 1 (6.3) |
Hypertension | 0 (0.0) | 1 (6.3) |
Peripheral Vascular Disease | 2 (12.5) | 6 (37.5) |
Asthma | 7 (43.8) | 3 (18.8) |
Chronic Obstructive Pulmonary Disease | 0 (0.0) | 1 (6.3) |
Dementia | 1 (6.3) | 0 (0.0) |
Diabetes (I or II) | 1 (6.3) | 2 (12.5) |
Diabetes (end organ) | 2 12.5) | 3 (18.8) |
Renal Disease | 0 (0.0) | 1(6.3) |
Gastrointestinal Reflux | 4 (25) | 3 (18.8) |
Any Tumour | 1 (6.3) | 2 (12.5) |
Arthritis | 2 (12.5) | 3 (18.8) |
Visual Impairment | 1 (6.3) | 1 (6.3) |
Probiotic Intervention (n = 16) | Control Group (n = 16) | p Value | |
---|---|---|---|
Laxative Use, n (%) | 7 (43.8) | 13 (81.3) | 0.066 |
Senna | 5 (31.3) | 6 (37.5) | 1.00 |
Colace | 5 (31.3) | 4 (25.0) | 1.00 |
Dulcolax | 10 (62.5) | 6 (37.5) | 0.289 |
Fleet | 6 (37.5) | 5 (31.3) | 1.00 |
Peg3350 | 9 (56.3) | 11 (68.7) | 0.716 |
Antibiotic Type, n (%) | |||
Cephalosporins (Frequently Associated with AAD) | |||
Cefazolin | 7 (43.7) | 7 (43.7) | 1.000 |
Cefuroxime | 2 (12.5) | 2 12.5) | 1.000 |
Ceftriaxone | 14 (87.5) | 11(68.7) | 0.394 |
Cefixime | 2 (12.5) | 0 (0.0) | 0.484 |
Cephalexin | 1 (6.2) | 0 (0.0) | 1.000 |
Penicillins (Frequently Associated with AAD) | |||
Penicillin G | 0 (0.0) | 1 (6.2) | 1.000 |
Amoxicillin | 4 (25.0) | 0 (0.0) | 0.101 |
Piperacillin/Tazobactam | 7 (43.7) | 7 (43.7) | 0.394 |
Fluoroquinolones (Frequently Associated with AAD) | |||
Ciprofloxacin | 0 (0.0) | 2 (12.5) | 0.484 |
Levofloxacin | 1 (6.2) | 0 (0.0) | 1.000 |
Macrolides (Occasionally Associated) | |||
Azithromycin | 6 (37.5) | 7 (43.7) | 1.000 |
Carbapenem (Occasionally Associated with AAD) | |||
Meropenem | 0 (0.0) | 2 (12.5) | 0.484 |
Imipenim/cilastatin | 0 (0.0) | 1 (6.2) | 1.000 |
Other (Rarely Associated with AAD) | |||
Metronidiazole | 8 (50.0) | 5 (31.2) | 0.473 |
Voriconazole | 1 (6.2) | 0 (0.0) | 1.000 |
Vancomycin | 0 (0.0) | 3 (18.7) | 0.226 |
Number of Antibiotics received during study period, n (%) | |||
1 | 0 (0.0) | 0 (0.0) | |
2 | 2 (12.5) | 3 (18.1) | |
3 | 4 (25.0) | 5 (31.3) | |
4 | 6 (37.5) | 1 (6.2) | |
5 | 1 (6.2) | 5 (31.3) | |
6 | 2 (12.5) | 1 (6.2) | |
7 | 1 (6.2) | 1 (6.2) | |
Number of Antibiotics received that are frequently associated with diarrhea (High Risk), n (%) | |||
0 | 0 (0.0) | 1 (6.2) | |
1 | 5 (31.3) | 5 (31.3) | |
2 | 4 (25.0) | 5 (31.3) | |
3 | 5 (31.3) | 5 (31.3) | |
4 | 1 (6.2) | 0 (0.0) | |
5 | 1 (6.2) | 0 (0.0) | |
≥1 High Risk Antibiotic, n (%) | 16 (100.0) | 15 (93.8) | |
High Risk antibiotic and AAD | 2 (37.5) | 3 (18.1) | |
Independent Sample T-Test | |||
Number of Antibiotics received, mean ± SD | 4.0 ± 1.41 | 3.94 ± 1.53 | 0.905 |
Number of High risk Antibiotics received, mean ± SD | 2.31 ± 1.20 | 1.88 ± 0.96 | 0.350 |
AAD + high risk antibiotic received, mean ± SD | 0.13 ± 0.34 | 0.25 ± 0.45 | 0.076 |
Probiotic Intervention (n = 16) | Control Group (n = 16) | p Value | |
---|---|---|---|
Diarrhea | |||
Diarrhea n (%) | 11 (68.8) | 10 (62.5) | 1.000 |
No Definite Cause | 2 (12.5) | 0 (0.0) | |
Antibiotic Associated Diarrhea, n (%) | 2 (12.5) | 5 (31.3) | 0.394 |
Laxatives Cause, n (%) | 5 (31.3) | 3 (18.7) | 0.685 |
Outcome Diarrhea (Caused by AAD * or CDI *) | 3 (18.7) | 7 (44.0) | 0.252 |
Proportion of Consecutive Diarrhea Days ≥2, n (%) | 5 (31.3) | 8 (50.0) | 0.473 |
Diarrhea (rate over 100 patient days) | 19/100 | 24/100 | |
Diarrhea Duration post AAD * diagnosis, days mean ± SD | 1.0 ± 2.73 | 1.44 ± 2.99 | 0.574 |
Total Diarrhea Days, mean ± SD | 2.13 ± 2.8 | 3.69 ± 4.44 | 0.241 |
CDI | |||
ICU Acquired Clostridium difficile, n (%) | 1 (6.0) | 2 (12.5) | 0.600 |
Community Acquired Clostridium difficile, n (%) ** | 1 (6.0) | 0 (0.0) | 1.000 |
30 Day Outcomes | |||
30 Day Survival, n (%) | 13 (81.3) | 12 (75.0) | 1.000 |
30 days outcomes CDI *** | 1 (6.3) | 3 (18.8) | 0.600 |
30 days outcomes AAD | 2 (12.5) | 5 (31.3) | 0.394 |
30 days outcome CDI or AAD | 3 (18.8) | 6 (37.5) | 0.433 |
Survival and Length of Stay | |||
ICU Survival, n (%) | 15 (93.7) | 14 (87.5) | 1.000 |
Hospital Survival, n (%) | 14 (87.5) | 14 (87.5) | 1.000 |
Wilcoxon Signed Ranks | |||
ICU Length of Stay, Days mean ± SD | 11.38 ± 7.4 | 15.31 ± 12.96 | 0.300 |
Hospital Length of Stay, Days mean ± SD, | 79.56 ± 116.8 | 39.38 ± 54.74 |
Probiotic Intervention (n = 16) | Control Group (n = 16) | p Value | |
---|---|---|---|
Average Energy Prescribed (kcal) mean ± SD | 1944.5 ± 354.4 | 2068.8 ± 973.6 | 0.636 |
Average Energy Intake, kcal mean ± SD | 1436.9 ± 414.2 | 1408.8 ± 352.4 | 0.837 |
Average Protein Prescribed (g) mean ± SD | 117.5 ± 20.6 | 109.6 ± 27.9 | 0.371 |
Average Protein Intake, g mean ± SD | 90.66 ± 34.1 | 79.1± 27.4 | 0.298 |
Average Fiber Intake, g mean ± SD | 10.9 ± 5.2 | 10.6 ± 5.5 | 0.884 |
Enteral Nutrition, days mean ± SD | 10.4 ± 7.5 | 11.0 ± 6.64 | 0.824 |
Oral Nutrition, days mean ± SD | 3.5 ± 4.3 | 3.2 ± 4.4 | 0.840 |
Oral Nutrition >50% mean ± SD | 1.38 ± 0.7 | 2.3 ± 3.2 | 0.299 |
Total Parenteral nutrition, days mean ± SD | 0.0 | 1.44 ± 5.75 | 0.325 |
Total Parenteral nutrition/NPO *, days mean ± SD | 0.0 | 0.50 ± 2.00 | 0.325 |
Days of Probiotic, mean ± SD | 10.31 ± 4.2 | ---- | |
Enteral Nutrition Products | n = 16 | n = 16 | |
Isosource Fiber, n (%) | 2 (12.5) | 0 (0.0) | |
Isosource VHN ** n (%) | 10 (62.5) | 10 (62.5) | |
Isosource 1.5, n (%) | 2 (12.5) | 3 (18.0) | |
Resource Diabetic, n (%) | 1 (6.3) | 3 (18.0) | |
Novosource Renal, n (%) | 1 (6.3) | 2 (12.5) | |
Peptamen 1.0, n (%) | 1 (6.3) | 1 (6.3) | |
Peptamen AF 1.2, n (%) | 4 (25.0) | 3 (18.0) | |
Peptamen 1.5, n (%) | 2 (12.5) | 2 (12.5) | |
Peptamen Intense, n (%) | 2 (12.5) | 3 (18.0) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberda, C.; Marcushamer, S.; Hewer, T.; Journault, N.; Kutsogiannis, D. Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile. Nutrients 2018, 10, 539. https://doi.org/10.3390/nu10050539
Alberda C, Marcushamer S, Hewer T, Journault N, Kutsogiannis D. Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile. Nutrients. 2018; 10(5):539. https://doi.org/10.3390/nu10050539
Chicago/Turabian StyleAlberda, Cathy, Sam Marcushamer, Tayne Hewer, Nicole Journault, and Demetrios Kutsogiannis. 2018. "Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile" Nutrients 10, no. 5: 539. https://doi.org/10.3390/nu10050539
APA StyleAlberda, C., Marcushamer, S., Hewer, T., Journault, N., & Kutsogiannis, D. (2018). Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile. Nutrients, 10(5), 539. https://doi.org/10.3390/nu10050539