Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile
Abstract
:1. Background
2. Methods
2.1. Inclusion Criteria for Patients to Be Offered Enrolment
- -
- age > 18 years with immediate family able to provide written informed consent;
- -
- prescribed one or more antibiotic in ICU;
- -
- functional intact gastrointestinal tract; and
- -
- anticipated ICU stay of >72 h after enrollment.
- -
- received oral or IV antibiotics for >48 h in hospital;
- -
- received a course of antibiotics in the past 30 days;
- -
- history of CDI in previous 90 days;
- -
- poor prognosis and not anticipated to survive the probiotic treatment period;
- -
- one of the following medical diagnoses: immunosuppression, bowel resection, artificial heart valve, infective endocarditis, rheumatic heart disease, pancreatitis, or inflammatory bowel disease;
- -
- permanent resident in long term care;
- -
- known to regularly consume probiotics; and
- -
- history of milk allergy or intolerance to dairy products.
2.2. Outcome Markers that Were Measured Include
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Baseline | Day 1 to End of Probiotic Treatment | 7 Days Post End of Probiotic Treatment | Hospital Discharge | 30 Days Post Antibiotic Stop Follow up Visit | |
---|---|---|---|---|---|
Informed Consent | x | ||||
Gender/Race | x | ||||
Age (years) | x | ||||
Height/Weight/BMI 1 | x | ||||
Co-morbidities | x | ||||
Albumin | x | x | |||
C-Reactive protein | x | x | |||
White Blood Cells | x | x | |||
Disease Severity Score (APACHE II 2) | x | ||||
Length of Stay | x | x | |||
Gastro-intestinal adverse events | x | ||||
Number and Route of antibiotics | x | x | x | x | |
Indication for antibiotics | x | x | x | x | |
Risk of diarrhea | x | x | |||
Stool cultures | x | x | x | x | x |
EN/po 3 energy prescription (kcals/day) | x | ||||
EN/po protein prescription (g/day) | x | ||||
EN/po energy intake (kcals/day) 4 | x | ||||
EN/po protein intake (g/day) 4 | x | ||||
Fiber intake (g/day) | x | ||||
Supplemental Parenteral Nutrition required (Y or N); Reason | x | x | |||
Weight weekly | x | ||||
Additional probiotic use | x | x | |||
Volume of Danactive taken (mL/24 h) | x | ||||
Bowel Movements per 24 h/CDI (Y or N) | x | x | x | x | |
Concomitant medications 5 | x | x |
References
- Wischmeyer, P.; McDonald, D.; Knight, R. Role of the microbiome, probiotics, and dysbiosis therapy in critical illness. Curr. Opin. Crit. Care 2016, 22, 347–353. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. Antibiotic-associated diarrhea: Epidemiology, trends and treatment. Future Microbiol. 2008, 3, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Gravel, D.; Miller, M.; Simor, A.; Taylor, G.; Gardam, M.; McGeer, A.; Hutchinson, J.; Moore, D.; Kelly, S.; Boyd, D.; et al. Healthcare-associated clostridium difficile infection in adults admitted to acute care hospitals in Canada: A Canadian nosocomial infection surveillance program study. Clin. Infect. Dis. 2009, 48, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Oake, N.; Taljaard, M.; van Walraven, C.; Wilson, K.; Roth, V.; Forster, A.J. The effect of hospital-acquired Clostridium difficile infection on in-hospital mortality. Arch. Intern. Med. 2010, 170, 1804–1810. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; et al. Dysbiosis of the microbiome in critical illness. mSphere 2016, 1, e00199-16. [Google Scholar] [CrossRef] [PubMed]
- Brito-Ashurt, I.; Preiser, J. Diarrhea in critically ill patients: The role of enteral feeding. J. Parenter. Enter. Nutr. 2016, 40, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Jafarnejad, S.; Shab-Bidar, S.; Speakman, J.; Parastui, K.; Daneshi-Maskooni, M.; Djafarian, K. Probiotics Reduce the Risk of Antibiotic-Associated Diarrhea in Adults (18–64 Years) but Not the Elderly (>65 Years) A Meta-Analysis. Nutr. Clin. Pract. 2016, 31, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Grayson, M. (Ed.) Kucers’ the Use of Antibiotics, 6th ed.; Hodder Arnold/ASM Press: London, UK, 2010. [Google Scholar]
- Morrow, L.E.; Gogineni, V.; Malesker, M.A. Probiotics in the intensive care unit. Nutr. Clin. Pract. 2012, 27, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Hempel, S.; Newberry, S.; Maher, A.; Wang, Z.; Miles, J.N.; Shanman, R.; Johnsen, B.; Shekelle, P.G. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA 2012, 307, 1959–1969. [Google Scholar] [PubMed]
- Goldstein, E.; Johnson, S.; Maziade, P.; McFarland, L.V.; Trick, W.; Dresser, L.; Millette, M.; Mazloum, H.; Low, D.E. Pathway to prevention of nosocomial Clostridium difficile infection. Clin. Infect. Dis. 2015, 60, S148–S158. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.C.; Ma, S.S.Y.; Goldenberg, J.Z.; Thorlund, K.; Vandvik, P.O.; Loeb, M.; Guyatt, G.H. Probiotics for the prevention of Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.Z.; Ma, S.S.Y.; Saxton, J.D.; Martzen, M.R.; Vandvik, P.O.; Thorlund, K.; Guyatt, G.H.; Johnston, B.C. Probiotics for the Prevention of Clostridium Difficile-Associated Diarrhea in Adults and Children (Review); The Cochrane Library: London, UK, 2013. [Google Scholar]
- Goldenberg, J.; Lytvyn, L.; Lo, C.; Beardsley, J.; Mertz, D.; Johnston, B. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children (Review). Cochrane Database Syst. Rev. 2017, 12, CD006095. [Google Scholar] [PubMed]
- Allen, S.; Wareham, K.; Wang, D.; Bradley, C.; Hutchings, H.; Harris, W.; Dhar, A.; Brown, H.; Foden, A.; Gravenor, M.B.; et al. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea in older inpatients (PLACIDE): A randomized, double-blind, placebo-controlled, multicenter trial. Lancet 2013, 382, 1249–1257. [Google Scholar] [CrossRef]
- Shen, N.; Maw, A.; Tmanova, L.; Pino, A.; Ancy, K.; Crawford, C.; Simon, M.S.; Evans, A.T. Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: A systematic review with meta-regression analysis. Gastroenterology 2017, 152, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Maziade, P.; Pereira, P.; Goldstein, E. A decade of experience in primary prevention of Clostridium difficile infection a community hospital using the probiotic combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+). Clin. Infect. Dis. 2015, 60 (Suppl. 2), S144–S147. [Google Scholar] [CrossRef] [PubMed]
- Hickson, M.; D’Souza, A.L.; Muthu, N.; Rogers, T.R.; Want, S.; Rajkumar, C.; Bulpitt, C.J. Use of probiotic Lactobacillus preparation to prevent diarrhea associated with antibiotics: Randomized double blind placebo controlled trial. BMJ 2007, 335, 80. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Kottmann, T.; Alavi, M. Commercially available probiotic drinks containing Lactobacillus casei DN-114001 reduce antibiotic-associated diarrhea. World J. Gastroenterol. 2014, 20, 15837–15844. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Martindale, R. Reduction of hospital acquired Clostridium difficile with probiotic protocol implementation. 2018; in publication. [Google Scholar]
- Critical Care Nutrition. Available online: www.criticalcarenutrition.com (accessed on 12 January 2018).
- Evans, C.; Johnson, S. Prevention of Clostridium difficile Infection with Probiotics. Clin. Infect. Dis. 2015, 60 (Suppl. 2), S122–S128. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Leff, J.; Schneider, Y.; Crawford, C.; Maw, A.; Bosworth, B.; Simon, M.S. Cost-effectiveness analysis of probiotic use to prevent Clostridium difficile infection in hospitalized adults receiving antibiotics. Open Forum Infect. Dis. 2017, 4, ofx148. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.; Montori, V.; Gotzsche, P.; Devereaux, P.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated guidelines for reporting parallel group randomized trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- STROBE Statement. Available online: http://www.strobe-statement.org (accessed on 28 March 2018).
- Danone Canada. Available online: www.danone.ca/en (accessed on 11 October 2017).
- Alberta Health. Infection Prevention and Control Standards “Performance Measure Definition” for Hospital Acquired Clostridium Difficile Infection Rate; Government of Alberta: Calgary, AB, Canada, 2015.
- Thibault, R.; Graf, S.; Clerc, A.; Delieuvin, N.; Heidegger, C.P.; Picard, C. Diarrhoea in the ICU: Respective contribution of feeding and antibiotics. Crit. Care 2013, 17, R153. [Google Scholar] [CrossRef] [PubMed]
- Nestlé Health Science. Available online: www.nestlehealthscience.ca (accessed on 6 March 2018).
- Kotzampassi, K.; Giamarellos-Bourboulis, E. Probiotics for infectious diseases: More drugs, less dietary supplementation. Int. J. Antimicrob. Agents 2012, 40, 288–296. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Probiotic Intervention (n = 16) | Control Group (n = 16) |
---|---|---|
Age, year (mean ± SD) | 59.9 ± 15.6 | 57.5 ± 15.0 |
Male sex, n (%) | 12 (75) | 10 (62.5) |
BMI *, kg/m2 (mean ± SD) | 25.0 ± 10.2 | 25.2 ± 6.0 |
Height, cm (mean ± SD) | 172.6 ± 17.6 | 173.7 ± 9.9 |
Weight, kg (mean ± SD) | 74.7 ± 22.9 | 75.5 ± 15.7 |
APACHE II score ** (mean ± SD) | 25.5 ± 5.39 | 25.9 ± 9.7 |
Race, n (%) | ||
Caucasian/White | 14 (87.5) | 14 (87.5) |
Black/African/African-American | 1 (6.3) | 0 (0.0) |
Native | 0 (0.0) | 2 (12.5) |
Hispanic | 1 (6.3) | 0 (0.0) |
Admission category, n (%) | ||
Operative | 3 (18.8) | 1 (6.3) |
Non Operative | 13 (81.3) | 15 (93.8) |
Admission Diagnosis, n (%) | ||
Cardiac Arrest | 1 (6.3) | 0 (0.0) |
Respiratory (Incl. pneumonia) | 7 (44.0) | 5 (31.2) |
Sepsis | 0 (0.0) | 2 (12.5) |
Pulmonary Edema | 1 (6.3) | 0 (0.0) |
Trauma (Incl. Head) | 4 (25.0) | 4 (25.0) |
Brain Injury (incl. Hemorrhage) | 3 (6.3) | 0 (0.0) |
Other Medical Diseases (Hypernatremia, Smoke inhalation, Overdose, Diabetic Ketoacidosis, Meningioma) | 0 (0.0) | 5 (19.0) |
Charlson comorbid condition, n (%) | ||
None | 12 (75.0) | 12 (75.0) |
Angina | 1 (6.3) | 1 (6.3) |
Valvular Disease | 2 (12.5) | 1 (6.3) |
Myocardial Infarction | 1 (6.3) | 0 (0.0) |
Chronic Heart Failure | 0 (0.0) | 1 (6.3) |
Hypertension | 0 (0.0) | 1 (6.3) |
Peripheral Vascular Disease | 2 (12.5) | 6 (37.5) |
Asthma | 7 (43.8) | 3 (18.8) |
Chronic Obstructive Pulmonary Disease | 0 (0.0) | 1 (6.3) |
Dementia | 1 (6.3) | 0 (0.0) |
Diabetes (I or II) | 1 (6.3) | 2 (12.5) |
Diabetes (end organ) | 2 12.5) | 3 (18.8) |
Renal Disease | 0 (0.0) | 1(6.3) |
Gastrointestinal Reflux | 4 (25) | 3 (18.8) |
Any Tumour | 1 (6.3) | 2 (12.5) |
Arthritis | 2 (12.5) | 3 (18.8) |
Visual Impairment | 1 (6.3) | 1 (6.3) |
Probiotic Intervention (n = 16) | Control Group (n = 16) | p Value | |
---|---|---|---|
Laxative Use, n (%) | 7 (43.8) | 13 (81.3) | 0.066 |
Senna | 5 (31.3) | 6 (37.5) | 1.00 |
Colace | 5 (31.3) | 4 (25.0) | 1.00 |
Dulcolax | 10 (62.5) | 6 (37.5) | 0.289 |
Fleet | 6 (37.5) | 5 (31.3) | 1.00 |
Peg3350 | 9 (56.3) | 11 (68.7) | 0.716 |
Antibiotic Type, n (%) | |||
Cephalosporins (Frequently Associated with AAD) | |||
Cefazolin | 7 (43.7) | 7 (43.7) | 1.000 |
Cefuroxime | 2 (12.5) | 2 12.5) | 1.000 |
Ceftriaxone | 14 (87.5) | 11(68.7) | 0.394 |
Cefixime | 2 (12.5) | 0 (0.0) | 0.484 |
Cephalexin | 1 (6.2) | 0 (0.0) | 1.000 |
Penicillins (Frequently Associated with AAD) | |||
Penicillin G | 0 (0.0) | 1 (6.2) | 1.000 |
Amoxicillin | 4 (25.0) | 0 (0.0) | 0.101 |
Piperacillin/Tazobactam | 7 (43.7) | 7 (43.7) | 0.394 |
Fluoroquinolones (Frequently Associated with AAD) | |||
Ciprofloxacin | 0 (0.0) | 2 (12.5) | 0.484 |
Levofloxacin | 1 (6.2) | 0 (0.0) | 1.000 |
Macrolides (Occasionally Associated) | |||
Azithromycin | 6 (37.5) | 7 (43.7) | 1.000 |
Carbapenem (Occasionally Associated with AAD) | |||
Meropenem | 0 (0.0) | 2 (12.5) | 0.484 |
Imipenim/cilastatin | 0 (0.0) | 1 (6.2) | 1.000 |
Other (Rarely Associated with AAD) | |||
Metronidiazole | 8 (50.0) | 5 (31.2) | 0.473 |
Voriconazole | 1 (6.2) | 0 (0.0) | 1.000 |
Vancomycin | 0 (0.0) | 3 (18.7) | 0.226 |
Number of Antibiotics received during study period, n (%) | |||
1 | 0 (0.0) | 0 (0.0) | |
2 | 2 (12.5) | 3 (18.1) | |
3 | 4 (25.0) | 5 (31.3) | |
4 | 6 (37.5) | 1 (6.2) | |
5 | 1 (6.2) | 5 (31.3) | |
6 | 2 (12.5) | 1 (6.2) | |
7 | 1 (6.2) | 1 (6.2) | |
Number of Antibiotics received that are frequently associated with diarrhea (High Risk), n (%) | |||
0 | 0 (0.0) | 1 (6.2) | |
1 | 5 (31.3) | 5 (31.3) | |
2 | 4 (25.0) | 5 (31.3) | |
3 | 5 (31.3) | 5 (31.3) | |
4 | 1 (6.2) | 0 (0.0) | |
5 | 1 (6.2) | 0 (0.0) | |
≥1 High Risk Antibiotic, n (%) | 16 (100.0) | 15 (93.8) | |
High Risk antibiotic and AAD | 2 (37.5) | 3 (18.1) | |
Independent Sample T-Test | |||
Number of Antibiotics received, mean ± SD | 4.0 ± 1.41 | 3.94 ± 1.53 | 0.905 |
Number of High risk Antibiotics received, mean ± SD | 2.31 ± 1.20 | 1.88 ± 0.96 | 0.350 |
AAD + high risk antibiotic received, mean ± SD | 0.13 ± 0.34 | 0.25 ± 0.45 | 0.076 |
Probiotic Intervention (n = 16) | Control Group (n = 16) | p Value | |
---|---|---|---|
Diarrhea | |||
Diarrhea n (%) | 11 (68.8) | 10 (62.5) | 1.000 |
No Definite Cause | 2 (12.5) | 0 (0.0) | |
Antibiotic Associated Diarrhea, n (%) | 2 (12.5) | 5 (31.3) | 0.394 |
Laxatives Cause, n (%) | 5 (31.3) | 3 (18.7) | 0.685 |
Outcome Diarrhea (Caused by AAD * or CDI *) | 3 (18.7) | 7 (44.0) | 0.252 |
Proportion of Consecutive Diarrhea Days ≥2, n (%) | 5 (31.3) | 8 (50.0) | 0.473 |
Diarrhea (rate over 100 patient days) | 19/100 | 24/100 | |
Diarrhea Duration post AAD * diagnosis, days mean ± SD | 1.0 ± 2.73 | 1.44 ± 2.99 | 0.574 |
Total Diarrhea Days, mean ± SD | 2.13 ± 2.8 | 3.69 ± 4.44 | 0.241 |
CDI | |||
ICU Acquired Clostridium difficile, n (%) | 1 (6.0) | 2 (12.5) | 0.600 |
Community Acquired Clostridium difficile, n (%) ** | 1 (6.0) | 0 (0.0) | 1.000 |
30 Day Outcomes | |||
30 Day Survival, n (%) | 13 (81.3) | 12 (75.0) | 1.000 |
30 days outcomes CDI *** | 1 (6.3) | 3 (18.8) | 0.600 |
30 days outcomes AAD | 2 (12.5) | 5 (31.3) | 0.394 |
30 days outcome CDI or AAD | 3 (18.8) | 6 (37.5) | 0.433 |
Survival and Length of Stay | |||
ICU Survival, n (%) | 15 (93.7) | 14 (87.5) | 1.000 |
Hospital Survival, n (%) | 14 (87.5) | 14 (87.5) | 1.000 |
Wilcoxon Signed Ranks | |||
ICU Length of Stay, Days mean ± SD | 11.38 ± 7.4 | 15.31 ± 12.96 | 0.300 |
Hospital Length of Stay, Days mean ± SD, | 79.56 ± 116.8 | 39.38 ± 54.74 |
Probiotic Intervention (n = 16) | Control Group (n = 16) | p Value | |
---|---|---|---|
Average Energy Prescribed (kcal) mean ± SD | 1944.5 ± 354.4 | 2068.8 ± 973.6 | 0.636 |
Average Energy Intake, kcal mean ± SD | 1436.9 ± 414.2 | 1408.8 ± 352.4 | 0.837 |
Average Protein Prescribed (g) mean ± SD | 117.5 ± 20.6 | 109.6 ± 27.9 | 0.371 |
Average Protein Intake, g mean ± SD | 90.66 ± 34.1 | 79.1± 27.4 | 0.298 |
Average Fiber Intake, g mean ± SD | 10.9 ± 5.2 | 10.6 ± 5.5 | 0.884 |
Enteral Nutrition, days mean ± SD | 10.4 ± 7.5 | 11.0 ± 6.64 | 0.824 |
Oral Nutrition, days mean ± SD | 3.5 ± 4.3 | 3.2 ± 4.4 | 0.840 |
Oral Nutrition >50% mean ± SD | 1.38 ± 0.7 | 2.3 ± 3.2 | 0.299 |
Total Parenteral nutrition, days mean ± SD | 0.0 | 1.44 ± 5.75 | 0.325 |
Total Parenteral nutrition/NPO *, days mean ± SD | 0.0 | 0.50 ± 2.00 | 0.325 |
Days of Probiotic, mean ± SD | 10.31 ± 4.2 | ---- | |
Enteral Nutrition Products | n = 16 | n = 16 | |
Isosource Fiber, n (%) | 2 (12.5) | 0 (0.0) | |
Isosource VHN ** n (%) | 10 (62.5) | 10 (62.5) | |
Isosource 1.5, n (%) | 2 (12.5) | 3 (18.0) | |
Resource Diabetic, n (%) | 1 (6.3) | 3 (18.0) | |
Novosource Renal, n (%) | 1 (6.3) | 2 (12.5) | |
Peptamen 1.0, n (%) | 1 (6.3) | 1 (6.3) | |
Peptamen AF 1.2, n (%) | 4 (25.0) | 3 (18.0) | |
Peptamen 1.5, n (%) | 2 (12.5) | 2 (12.5) | |
Peptamen Intense, n (%) | 2 (12.5) | 3 (18.0) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberda, C.; Marcushamer, S.; Hewer, T.; Journault, N.; Kutsogiannis, D. Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile. Nutrients 2018, 10, 539. https://doi.org/10.3390/nu10050539
Alberda C, Marcushamer S, Hewer T, Journault N, Kutsogiannis D. Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile. Nutrients. 2018; 10(5):539. https://doi.org/10.3390/nu10050539
Chicago/Turabian StyleAlberda, Cathy, Sam Marcushamer, Tayne Hewer, Nicole Journault, and Demetrios Kutsogiannis. 2018. "Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile" Nutrients 10, no. 5: 539. https://doi.org/10.3390/nu10050539
APA StyleAlberda, C., Marcushamer, S., Hewer, T., Journault, N., & Kutsogiannis, D. (2018). Feasibility of a Lactobacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile. Nutrients, 10(5), 539. https://doi.org/10.3390/nu10050539