Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredient Composition of Food Products
2.2. Nutrient Composition of Ingredients
2.3. Calculation of the Nutritional Quality of Food
2.4. Carbon Footprint Analysis of Traditional and Reformulated Foods
2.5. Greenhouse Gas Emissions from the Cultivation of Yellow Peas and Wheat
2.6. Grain, Energy, and Water Required for Milling Wheat and Yellow Peas
2.7. Energy and Water Utilization during the Manufacturing of Food Products
2.8. The Electricity Supply Mixture in Canada
2.9. Determination of the Carbon Footprint of Food Products
2.10. The Nutrition Carbon Footprint Score
3. Results
3.1. Nutritional Quality Comparison of Traditional and Reformulated Products
3.2. Carbon Footprint Comparison of Traditional and Reformulated Food Products
3.3. The Combined Nutrition Combined Carbon Footprint Score (NCFS)
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Economic and Social Development Department, Food and Agriculture Organization of the United Nations. Report of the FAO Expert Meeting on How to Feed the World in 2050; Food and Agriculture Organization: Rome, Italy, 24–26 June 2009. [Google Scholar]
- McDermott, J.; Wyatt, A.J. The role of pulses in sustainable and healthy food systems. Ann. N. Y. Acad. Sci. 2017, 1392, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Crops Statistics-Concepts, Definitions and Classifications. Available online: http://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/crops-statistics-concepts-definitions-and-classifications/en/ (accessed on 1 October 2016).
- MacWilliam, S.; Parker, D.; Tremorin, D.; Marinangeli, C.P.F. White Paper on Carbon Emissions from Pulse Crops. Available online: https://www.src.sk.ca/white-paper-carbon-emissions-pulse-crops (accessed on 27 March 2018).
- Angadi, S.V.; McConkey, B.G.; Cutforth, H.W.; Miller, P.R.; Ulrich, D.; Selles, F.; Volkmar, K.M.; Entz, M.H.; Brandt, S.A. Adaptation of alternative pulse and oilseed crops to the semiarid Canadian Prairie: Seed yield and water use efficiency. Can. J. Plant Sci. 2008, 88, 425–438. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Kennedy, A.C. Grain Legumes in Northern Great Plains. Agron. J. 2007, 99, 1700–1709. [Google Scholar] [CrossRef]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef]
- Marinangeli, C.P.F.; Curran, J.; Barr, S.I.; Slavin, J.; Puri, S.; Swaminathan, S.; Tapsell, L.; Patterson, C.A. Enhancing nutrition with pulses: Defining a recommended serving size for adults. Nutr. Rev. 2017, 75, 990–1006. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet. Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Mudryj, A.N.; Yu, N.; Hartman, T.J.; Mitchell, D.C.; Lawrence, F.R.; Aukema, H.M. Pulse consumption in Canadian adults influences nutrient intakes. Br. J. Nutr. 2012, 108 (Suppl. S1), S27–S36. [Google Scholar] [CrossRef] [PubMed]
- International Organizaton for Standardization. ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organizaton for Standardization. ISO 14044: Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Iasevoli, G.; Massi, M. The relationship between sustainable business management and competitiveness: Research trends and challenge. Int. J. Technol. Manag. 2012, 58, 32–48. [Google Scholar] [CrossRef]
- Chau, E.M.; Fet, A.M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 2008, 13, 255–264. [Google Scholar]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Macdiarmid, J.I. Is a healthy diet an environmentally sustainable diet? Proc. Nutr. Soc. 2012, 72, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, U.; Davis, J.; Flysjö, A.; Gustavsson, J.; Witthöft, C. Protein quality as functional unit—A methodological framework for inclusion in life cycle assessment of food. J. Clean. Prod. 2017, 140, 470–478. [Google Scholar] [CrossRef]
- Stylianou, K.S.; Heller, M.C.; Fulgoni, V.L., III; Ernstoff, A.S.; Keoleian, G.A.; Jolliet, O. A life cycle assessment framework combining nutritional and environmental health impacts of diet: A case study on milk. Int. J. Life Cycle Assess. 2016, 21, 734–746. [Google Scholar] [CrossRef] [Green Version]
- Heller, M.C.; Keoleian, G.A.; Willett, W.C. Toward a Life Cycle-Based, Diet-level Framework for Food Environmental Impact and Nutritional Quality Assessment: A Critical Review. Environ. Sci. Technol. 2013, 47, 12632–12647. [Google Scholar] [CrossRef] [PubMed]
- Peña-Bautista, R.J.; Hernandez-Espinosa, N.; Jones, J.M.; Guzmán, C.; Braun, H.J. CIMMYT Series on Carbohydrates, Wheat, Grains, and Health: Wheat-Based Foods: Their Global and Regional Importance in the Food Supply, Nutrition, and Health. Cereal Foods World 2017, 62, 231–249. [Google Scholar] [CrossRef]
- Frohlich, P.; Borsuk, Y.; Supeene, Y.; Sopiwnyk, E. Influence of Pre-Milling Thermal Treatments of Field Peas, Dry Edible Beans and Faba Beans on the Flavour and End Product Quality of Baked Products; Canadian International Grains Institute: Winnipeg, MB, Canada, 2017.
- Ebbinghaus, P.; McMillin, K.; Hill, H.; Assefaw, E.; Sopiwnyk, E. Advancing Pulse Flour Processing and Food Applications Project Report: Pea Based Breakfast Cereal Processing Final Report; Canadian International Grains Institute: Winnipeg, MB, Canada, 2016.
- Ebbinghaus, P.; Bourré, L.; Maskus, H.; Assefaw, E.; Malcolmson, L. Influence of Milling Method on the Physical and Functional Properties of Yellow Pea Flour Used in Spaghetti. In Proceedings of the AACC International Annual Meeting, Hollywood, FL, USA, 30 September–3 October 2012. [Google Scholar]
- Canadian National Millers Association. Generic Product Specifications: Types of Flour According to Use. Available online: http://www.canadianmillers.ca/productspecs.php (accessed on 29 January 2018).
- Government of Canada. Food and Drug Regulations: Division 13, B.13.001-Grain and Bakery Products. Available online: http://laws.justice.gc.ca/eng/regulations/c.r.c.,_c._870/page-63.html#h-93 (accessed on 18 January 2018).
- The Canadian Food Inspection Agency. Food Labeling for Industry: Prohibition Against the Sale of Unenriched White Flour and Products Containing Unenriched Flour. Available online: http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/grain-and-bakery products/unenriched-flour/eng/1415915977878/1415915979471 (accessed on 19 January 2018).
- US Department of Agriculture. USDA National Nutrient Database for Standard Reference: Release 28. Available online: http://www.ars.usda.gov/Services/docs.htm?docid=8964 (accessed on 23 March 2017).
- Government of Canada. Canadian Nutrient File. Available online: https://food-nutrition.canada.ca/cnf-fce/index-eng.jsp (accessed on 18 January 2018).
- Government of Canada. Table of Reference Amounts for Food. Available online: https://www.canada.ca/en/health-canada/services/technical-documents-labelling-requirements/table-reference-amounts-food.html (accessed on 18 January 2018).
- Fern, E.B.; Watzke, H.; Barclay, D.V.; Roulin, A.; Drewnowski, A. The Nutrient Balance Concept: A New Quality Metric for Composite Meals and Diets. PLoS ONE 2015, 10, e0130491. [Google Scholar] [CrossRef] [PubMed]
- The Canadian Food Inspection Agency. Food Labeling for Industry: Information within the Nutrition Facts Table—Daily Value and % Daily Value. Available online: http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/nutrition-labelling/information-within-the-nutrition-facts-table/eng/1389198568400/1389198597278?chap=0 (accessed on 12 August 2016).
- Government of Canada. Regulations Amending the Food and Drug Regulations (Nutrition Labelling, Other Labelling Provisions and Food Colours); Government of Canada: Gatineau, QC, Canada, 2016.
- Government of Canada. Table of Daily Values. Available online: https://www.canada.ca/en/health-canada/services/technical-documents-labelling-requirements/table-daily-values.html (accessed on 18 January 2018).
- National Academy of Sciences. Table: DRI Values Summary. Available online: http://www.nationalacademies.org/hmd/~/media/Files/Activity%20Files/Nutrition/DRI-Tables/5Summary%20TableTables%2014.pdf?la=en (accessed on 4 February 2016).
- Government of Canada. Notice of Modification—Prohibiting the Use of Partially Hydrogenated Oils (PHOs) in Foods. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/public-involvement-partnerships/modification-prohibiting-use-partially-hydrogenated-oils-in-foods/information-document.html (accessed on 17 October 2017).
- Statistics Canada. Estimated Areas, Yield, Production and Average Farm Price of Principal Field Crops, in Metric Units. Available online: http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=10017 (accessed on 1 January 2017).
- Canadian Field Print Initiative. Fertilizer Use Survey 2014–2015. Available online: http://fieldprint.ca/fertilizer-use-survey/ (accessed on 1 January 2017).
- Long Trail Sustainability. DataSmart LCI Package (US-EI SimaPro® Library). Available online: https://ltsexperts.com/services/software/datasmart-life-cycle-inventory/ (accessed on 1 January 2017).
- Government of Saskatchewan. Crop Planning Guide Saskatchewan Ministry of Agriculture. Available online: http://publications.gov.sk.ca/documents/20/87217-Crop%20Planning%20Guide%202016%20web%20final.pdf (accessed on 1 February 2017).
- MacWilliam, S.; Wismer, M.; Kulshreshtha, S. Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations. Agric. Syst. 2014, 123, 43–53. [Google Scholar] [CrossRef]
- Bremer, E.; Janzen, H.H.; Ellert, B.H.; McKenzie, R.H. Carbon, Nitrogen, and Greenhouse Gas Balances in an 18-Year Cropping System Study on the Northern Great Plains. Soil Sci. Soc. Am. J. 2011, 75, 1493–1502. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Hamel, C.; Cutforth, H.; Wang, H. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron. Sustain. Dev. 2011, 31, 643–656. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Wang, X.; McConkey, B. Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crop. Res. 2011, 122, 199–206. [Google Scholar] [CrossRef]
- Sainju, U.M.; Barsotti, J.L.; Wang, J. Net Global Warming Potential and Greenhouse Gas Intensity Affected by Cropping Sequence and Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2014, 78, 248–261. [Google Scholar] [CrossRef]
- Zentner, R.P.; Campbell, C.A.; Biederbeck, V.O.; Miller, P.R.; Selles, F.; Fernandez, M.R. In Search of a Sustainable Cropping System for the Semiarid Canadian Prairies. J. Sustain. Agric. 2001, 18, 117–136. [Google Scholar] [CrossRef]
- Zentner, R.P.; Lafond, G.P.; Derksen, D.A.; Nagy, C.N.; Wall, D.D.; May, W.E. Effects of tillage method and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies. Soil Tillage Res. 2004, 77, 125–136. [Google Scholar] [CrossRef]
- Government of Canada. Energy Conversion Tables. Available online: https://www.neb-one.gc.ca/nrg/tl/cnvrsntbl/cnvrsntbl-eng.html (accessed on 1 November 2016).
- United States Environmental Protection Agency. Emission Factors for Greenhouse Gas Inventories; United States Environmental Protection Agency: Washington, DC, USA, 2016.
- Goucher, L.; Bruce, R.; Cameron, D.D.; Lenny Koh, S.C.; Horton, P. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat. Plants 2017, 3, 17012. [Google Scholar] [CrossRef] [PubMed]
- Guidice, A.L.; Clasadonte, M.T.; Matarazzo, A. LCI Preliminary Results in the Sicilian Durum Wheat Pasta Chain Production. J. Commod. Sci. Technol. Qual. 2011, 50, 65–79. [Google Scholar]
- Maskus, H. Pulse Milling Project Year 4: Summary of Results; Canadian International Grains Institute: Winnipeg, MB, Canada, 2014.
- Blonk Consultants. Agri-Footprint 2. Part 2: Description of Data. Available online: https://simapro.com/wp-content/uploads/2016/03/Agri-footprint-2.0-Part-2-Description-of-data.pdf (accessed on 18 January 2017).
- Jeswani, H.K.; Burkinshaw, R.; Azapagic, A. Environmental sustainability issues in the food-energy-water nexus: Breakfast cereals and snacks. Sustain. Prod. Consum. 2015, 2, 17–28. [Google Scholar] [CrossRef]
- Itten, R.; Frischknecht, R.; Stucki, M. Life Cycle Inventories of Electricity Mixes and Grid; Treeze Ltd.: Uster, Switzerland, 2012. [Google Scholar]
- Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; Köllner, T. Implementation of Life Cycle Impact Assessment Methods; Environment Report No.3; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, July 2010. [Google Scholar]
- Koch, P.; Salou, T. Agribalyse®: Rapport Methodology; The French Environment and Energy Management Agency: Angers, France, 2016. [Google Scholar]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Soret, S. Sustainability of plant-based diets: Back to the future. Am. J. Clin. Nutr. 2014, 100 (Suppl. S1), 476S–482S. [Google Scholar] [CrossRef] [PubMed]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A.; et al. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, M.C.; Keoleian, G.A. Greenhouse Gas Emission Estimates of U.S. Dietary Choices and Food Loss. J. Ind. Ecol. 2015, 19, 391–401. [Google Scholar] [CrossRef]
- Kulak, M.; Nemecek, T.; Frossard, E.; Chable, V.; Gaillard, G. Life cycle assessment of bread from several alternative food networks in Europe. J. Clean. Prod. 2015, 90, 104–113. [Google Scholar] [CrossRef]
- Jensen, J.K.; Arlbjørn, J.S. Product carbon footprint of rye bread. J. Clean. Prod. 2014, 82, 45–57. [Google Scholar] [CrossRef]
- Agriculture Agri-Food Canada. Data Requested from Agriculture Agri-Food Canada: Crops That Preceded Spring Wheat Grown in Canada; AgroClimate, Geomatics, and Earth Observations Division of Agriculture Agri-Food Canada: Ottawa, ON, Canada, 2018.
- Braschkat, J.; Patyk, A.; Quirin, M.; Reinhardt, G.A. Life cycle assessment of bread production—A comparison of eight different scenarios. In Proceedings of the 4th International Conference on: Life Cycle Assessment in the Agri-food sector, Horsens, Denmark, 6–8 October 2003. [Google Scholar]
- Espinoza-Orias, N.; Stichnothe, H.; Azapagic, A. The carbon footprint of bread. Int. J. Life Cycle Assess. 2011, 16, 351–365. [Google Scholar] [CrossRef]
- Nette, A.; Wolf, P.; Schluter, O.; Meyer-Aurich, A. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour. Foods 2016, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Awada, L.; Lindwall, C.W.; Sonntag, B. The development and adoption of conservation tillage systems on the Canadian Prairies. Int. Soil Water Conserv. Res. 2014, 2, 47–65. [Google Scholar] [CrossRef]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Monforti, F. Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. J. Clean. Prod. 2017, 140, 455–469. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pfister, S.; Hellweg, S. Spatially Explicit Analysis of Biodiversity Loss Due to Global Agriculture, Pasture and Forest Land Use from a Producer and Consumer Perspective. Environ. Sci. Technol. 2016, 50, 3928–3936. [Google Scholar] [CrossRef] [PubMed]
- The Canadian Food Inspection Agency. Foods to Which Vitamins, Mineral Nutrients and Amino Acids May or Must Be Added [D.03.002, FDR]. Available online: http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/nutrient-content/reference-information/eng/1389908857542/1389908896254?chap=1 (accessed on 19 January 2018).
- Millward, D.J.; Layman, D.K.; Tome, D.; Schaafsma, G. Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 2008, 87, 1576S–1581S. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.A.; Munn, E.A.; Baines, S.K. Protein and vegetarian diets. Med. J. Aust. 2013, 199, S7–S10. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Hoekstra, A.Y.; Bidoglio, G. Potential water saving through changes in European diets. Environ. Int. 2013, 61, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Rounsevell, M.D.A. Human appropriation of land for food: The role of diet. Glob. Environ. Chang. 2016, 41, 88–98. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Chang. 2016, 38, 195–204. [Google Scholar] [CrossRef]
- Chaudhary, A.; Verones, F.; de Baan, L.; Hellweg, S. Quantifying Land Use Impacts on Biodiversity: Combining Species–Area Models and Vulnerability Indicators. Environ. Sci. Technol. 2015, 49, 9987–9995. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Brooks, T.M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 2017. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pourfaraj, V.; Mooers, A.O.; Cowie, R. Projecting global land use-driven evolutionary history loss. Divers. Distrib. 2018, 24, 158–167. [Google Scholar] [CrossRef]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, J.B.; Frei, B.; Fulgoni, V.L., III; Weaver, C.M.; Zeisel, S.H. Contribution of Dietary Supplements to Nutritional Adequacy in Race/Ethnic Population Subgroups in the United States. Nutrients 2017, 9, 1295. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.D.; Luna, S.V.; Lung’aho, M.G.; Wenger, M.J.; Murray-Kolb, L.E.; Beebe, S.; Gahutu, J.B.; Egli, I.M. Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. J. Nutr. 2016, 146, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.H.; Marinangeli, C.P.F.; Jones, P.J.H.; Carlberg, J.G. Canadian Potential Healthcare and Societal Cost Savings from Consumption of Pulses: A Cost-Of-Illness Analysis. Nutrients 2017, 9, 793. [Google Scholar] [CrossRef] [PubMed]
- Hendrie, G.A.; Ridoutt, B.G.; Wiedmann, T.O.; Noakes, M. Greenhouse gas emissions and the Australian diet—Comparing dietary recommendations with average intakes. Nutrients 2014, 6, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.A.; Dickie, S.; Woods, J.L. Do Nutrient-Based Front-of-Pack Labelling Schemes Support or Undermine Food-Based Dietary Guideline Recommendations? Lessons from the Australian Health Star Rating System. Nutrients 2018, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations Divison for Sustainable Developmet, Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
Ingredient (g) | Pan Bread * | Breakfast Cereal * | Pasta * | |||
---|---|---|---|---|---|---|
Traditional | Reformulated | Traditional | Reformulated | Traditional | Reformulated | |
Whole yellow pea flour | 0 | 83.25 | 0 | 536.00 | 0 | 301.69 |
Refined wheat bread flour † | 555.00 | 471.75 | 0 | 0 | 0 | 0 |
Refined all-purpose wheat flour, unbleached † | 0 | 0 | 1011.00 | 475.33 | 0 | 0 |
Durum Semolina flour † | 0 | 0 | 0 | 0 | 1005.64 | 703.95 |
Water | 391.36 | 391.36 | 53.33 | 53.33 | 251.41 | 251.41 |
Sugar | 22.36 | 22.36 | 53.33 | 53.33 | 0 | 0 |
Shortening ‡ | 22.36 | 22.36 | 0 | 0 | 0 | 0 |
Salt | 7.27 | 7.27 | 5.33 | 5.33 | 0 | 0 |
Yeast (fresh) | 22.36 | 22.36 | 0 | 0 | 0 | 0 |
Milk powder | 11.18 | 11.18 | 0 | 0 | 0 | 0 |
Dough conditioner ɣ | 11.18 | 11.18 | 0 | 0 | 0 | 0 |
Qualifying Nutrient | Daily Value |
---|---|
Macronutrients | |
Water | 3.2 L † |
Protein | 50 g † |
Fiber | 28 g * |
α-Linolenic Acid | 1.4 g † |
Linoleic Acid | 14 g † |
Vitamins | |
Total folate/folic acid | 400 µg * |
Niacin | 16 mg * |
Pantothenic acid | 5 mg * |
Riboflavin | 1.3 mg * |
Thiamin | 1.2 mg * |
Vitamin A | 900 µg * |
Vitamin B6 | 1.7 mg * |
Vitamin B12 | 2.4 µg * |
Vitamin C | 90 mg * |
Vitamin D | 20 µg * |
Vitamin E | 15 mg * |
Vitamin K | 120 µg * |
Choline | 550 mg * |
Minerals | |
Calcium | 1300 mg * |
Copper | 0.9 mg * |
Iron | 18 mg * |
Magnesium | 420 mg * |
Manganese | 2.3 mg * |
Phosphorous | 1250 mg * |
Potassium | 4700 mg * |
Selenium | 55 µg * |
Zinc | 11 mg * |
Disqualifying Nutrients | Mean Reference Value per Day |
Sugar | 100 g * |
Sodium | 2300 mg * |
Total Fat | 75 g * |
Saturated Fat | 20 g * |
Cholesterol | 300 mg * |
Product | % of Total Flour per Formulation * | Indices of Nutritional Quality | Carbon Footprint | NCFS | ||||
---|---|---|---|---|---|---|---|---|
Wheat Flour | Yellow Pea Flour | QI | DI | NBS (%) | kg CO2 eq/kg Food | g CO2 eq/Serving † | (NBS/ g CO2 eq/Serving) | |
Pan Bread | ||||||||
Traditional * | 100 | 0 | 0.62 | 0.40 | 47 | 0.405 | 31.70 | 1.49 |
Reformulated | 85 | 15 | 0.70 | 0.40 | 52 | 0.389 | 30.43 | 1.72 |
Breakfast Cereal | ||||||||
Traditional | 100 | 0 | 0.40 | 0.17 | 30 | 0.979 | 32.99 | 0.91 |
Reformulated | 47 | 53 | 0.76 | 0.20 | 51 | 0.875 | 29.47 | 1.73 |
Pasta | ||||||||
Traditional | 100 | 0 | 0.57 | 0.03 | 43 | 0.610 | 65.20 | 0.67 |
Reformulated | 70 | 30 | 0.74 | 0.04 | 51 | 0.532 | 56.85 | 0.90 |
Food | Formulation * | Cultivation Stage | Milling Stage | Manufacturing Stage | Total | ||||
---|---|---|---|---|---|---|---|---|---|
kg CO2 eq | % of Total | kg CO2 eq | % of Total | kg CO2 eq | % of Total | kg CO2 eq | % Difference | ||
Pan Bread | Traditional | 0.242 | 60 | 0.022 | 5 | 0.141 | 35 | 0.405 | |
Reformulated | 0.224 | 58 | 0.024 | 6 | 0.141 | 36 | 0.389 | −4% | |
Breakfast Cereal | Traditional | 0.440 | 45 | 0.040 | 4 | 0.498 | 51 | 0.979 | |
Reformulated | 0.322 | 37 | 0.052 | 6 | 0.498 | 57 | 0.873 | −11% | |
Pasta | Traditional | 0.518 | 85 | 0.025 | 4 | 0.068 | 11 | 0.610 | |
Reformulated | 0.427 | 80 | 0.036 | 7 | 0.068 | 13 | 0.531 | −13% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, A.; Marinangeli, C.P.F.; Tremorin, D.; Mathys, A. Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products. Nutrients 2018, 10, 490. https://doi.org/10.3390/nu10040490
Chaudhary A, Marinangeli CPF, Tremorin D, Mathys A. Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products. Nutrients. 2018; 10(4):490. https://doi.org/10.3390/nu10040490
Chicago/Turabian StyleChaudhary, Abhishek, Christopher P. F. Marinangeli, Denis Tremorin, and Alexander Mathys. 2018. "Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products" Nutrients 10, no. 4: 490. https://doi.org/10.3390/nu10040490