Dietary Magnesium Intake and Hyperuricemia among US Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Study Variables
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Feig, D.I.; Kang, D.H.; Johnson, R.J. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Rosei, E.A.; Bardin, T.; Dawson, J.; Dominiczak, A.; Kielstein, J.T.; Manolis, A.J.; Perez-Ruiz, F.; Mancia, G. Serum uric acid and the risk of cardiovascular and renal disease. J. Hypertens 2015, 33, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Alderman, M.H. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. JAMA 2000, 283, 2404–2410. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, J.; Song, N.; Chen, R.; Zhang, T.; Ding, X. Hyperuricemia increases the risk of acute kidney injury: A systematic review and meta-analysis. BMC Nephrol. 2017, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Yuan, J.; Yao, P.; Yang, B.; Gui, L.; Zhang, X.; Guo, H.; Wang, Y.; Chen, W.; Wei, S. Association between serum uric acid and the metabolic syndrome among a middle- and old-age Chinese population. Eur. J. Epidemiol. 2013, 28, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.; Blaha, M.J.; Nasir, K.; Silverman, M.G.; Tota-Maharaj, R.; Carvalho, J.A.; Conceicao, R.D.; Blumenthal, R.S.; Santos, R.D. Relation of uric acid to serum levels of high-sensitivity c-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis. Am. J. Cardiol. 2012, 110, 1787–1792. [Google Scholar] [CrossRef] [PubMed]
- Sluijs, I.; Beulens, J.W.; Dl, V.D.A.; Spijkerman, A.M.; Schulze, M.B.; Yt, V.D.S. Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. J. Nutr. 2013, 143, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Wallace, K.L.; Riedel, A.A.; Josephridge, N.; Wortmann, R. Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J. Rheumatol. 2004, 31, 1582–1587. [Google Scholar] [PubMed]
- Liu, H.; Zhang, X.M.; Wang, Y.L.; Liu, B.C. Prevalence of hyperuricemia among Chinese adults: A national cross-sectional survey using multistage, stratified sampling. J. Nephrol. 2014, 27, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Uaratanawong, S.; Suraamornkul, S.; Angkeaw, S.; Uaratanawong, R. Prevalence of hyperuricemia in bangkok population. Clin. Rheumatol. 2011, 30, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Usa, I.O.M. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, Andfluoride; National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- De Baaij, J.H.; Hoenderop, J.G.; Bindels, R.J. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Dibaba, D.T.; Xun, P.; He, K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: Meta-analysis and systematic review. Eur. J. Clin. Nutr. 2014, 68, 510–516. [Google Scholar] [CrossRef] [PubMed]
- King, D.E.; Geesey, M.E.; Ellis, T. Magnesium intake and serum C-reactive protein levels in children. Magnes. Res. 2007, 20, 32–36. [Google Scholar] [PubMed]
- Song, Y.; Li, T.Y.; Dam, R.M.V.; Manson, J.A.E.; Hu, F.B. Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women. Am. J. Clin. Nutr. 2007, 85, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- King, D.E.; Rd, M.A.; Geesey, M.E.; Woolson, R.F. Dietary magnesium and C-reactive protein levels. J. Am. Coll. Nutr. 2005, 24, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ridker, P.M.; Manson, J.E.; Cook, N.R.; Buring, J.E.; Liu, S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older US Women. Diabetes Care 2005, 28, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Ishimitsu, T.; Minami, J.; Ono, H.; Ohrui, M.; Matsuoka, H. Relations of plasma high-sensitivity C-reactive protein to traditional cardiovascular risk factors. Atherosclerosis 2003, 167, 73–79. [Google Scholar] [CrossRef]
- Fröhlich, M.; Imhof, A.; Berg, G.; Hutchinson, W.L.; Pepys, M.B.; Boeing, H.; Muche, R.; Brenner, H.; Koenig, W. Association between C-reactive protein and features of the metabolic syndrome: A population-based study. Diabetes Care 2000, 23, 1835–1839. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Cherubini, A.; Ble, A.; Bos, A.J.G.; Maggio, M.; Dixit, V.D.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. Uric acid and inflammatory markers. Eur. Heart J. 2006, 27, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Lyngdoh, T.; Marquesvidal, P.; Paccaud, F.; Preisig, M.; Waeber, G.; Bochud, M.; Vollenweider, P. Elevated serum uric acid is associated with high circulating inflammatory cytokines in the population-based colaus study. PLoS ONE 2011, 6, e19901. [Google Scholar] [CrossRef] [PubMed]
- Navin, S.; Krishnamurthy, N.; Ashakiran, S.; Dayanand, C.D. The association of hypomagnesaemia, high normal uricaemia and dyslipidaemia in the patients with diabetic retinopathy. J. Clin. Diagn. Res. 2013, 7, 1852–1854. [Google Scholar]
- Wang, Y.; Zeng, C.; Wei, J.; Yang, T.; Li, H.; Deng, Z.; Yang, Y.; Zhang, Y.; Ding, X.; Xie, D. Association between dietary magnesium intake and hyperuricemia. PLoS ONE 2015, 10, e0141079. [Google Scholar] [CrossRef] [PubMed][Green Version]
- National Health and Nutrition Examination Survey Data. Centers for Disease Control and Prevention (CDC). Available online: http://www.cdc.gov/NCHS/nhanes.htm (accessed on 30 August 2017).
- NCHS Research Ethics Review Board (ERB) Approval. Centers for Disease Control and Prevention (CDC). Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 7 June 2017).
- US Department of Health & Human Services. Office of Extramural Research. Available online: http://grants.nih.gov/grants/policy/hs/hs_policies.htm (accessed on 30 August 2017).
- United States Department of Agriculture (USDA), Agriculture Research Service FSRG. Food and Nutrient Database for Dietary Studies, 5.0. Available online: http://www.ars.usda.gov/ba/bhnrc/fsrg (accessed on 30 August 2017).
- National Health and Nutrition Examination Survey (NHANES). MEC In-Person Dietary Interviewers Procedures Manual. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/dietary_mec.pdf (accessed on 30 August 2017).
- Muneyyirci-Delale, O.; Nacharaju, V.L.; Dalloul, M.; Altura, B.M.; Altura, B.T. Serum ionized magnesium and calcium in women after menopause: Inverse relation of estrogen with ionized magnesium. Fertil. Steril. 1999, 71, 869–872. [Google Scholar] [CrossRef]
- Huang, H.Y.; Appel, L.J.; Choi, M.J.; Gelber, A.C.; Charleston, J.; Norkus, E.P.; Miller, E.R. The effects of vitamin C supplementation on serum concentrations of uric acid: Results of a randomized controlled trial. Arthritis Rheum. 2005, 52, 1843–1847. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; Wong, S.; Gamble, G.D.; Horne, A.; Mason, B.; Pool, B.; Fairbanks, L.; Mcqueen, F.M.; Cornish, J.; Reid, I.R. Acute effect of milk on serum urate concentrations: A randomised controlled crossover trial. Ann. Rheum. Dis. 2010, 69, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Garrel, D.R.; Verdy, M.; Petitclerc, C.; Martin, C.; Brulé, D.; Hamet, P. Milk- and soy-protein ingestion: Acute effect on serum uric acid concentration. Am. J. Clin. Nutr. 1991, 53, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Ghadirian, P.; Shatenstein, B.; Verdy, M.; Hamet, P. The influence of dairy products on plasma uric acid in women. Eur. J. Epidemiol. 1995, 11, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Villegas, R.; Xiang, Y.B.; Elasy, T.; Xu, W.H.; Cai, H.; Cai, Q.; Linton, M.F.; Fazio, S.; Zheng, W.; Shu, X.O. Purine-rich foods, protein intake, and the prevalence of hyperuricemia: The Shanghai men’s health study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K. A prescription for lifestyle change in patients with hyperuricemia and gout. Curr. Opin. Rheumatol. 2010, 22, 165–172. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health Office of Dietary Supplements. Magnesium Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/ (accessed on 10 August 2017).
- Freedman, M.R.; Keast, D.R. White potatoes, including French fries, contribute shortfall nutrients to children’s and adolescents’ diets. Nutr. Res. 2011, 31, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Magnesium, inflammation, and obesity in chronic disease. Nutr. Rev. 2010, 68, 333–340. [Google Scholar] [CrossRef] [PubMed]
- King, D.E.; Mainous, A.G., III; Geesey, M.E.; Egan, B.M.; Rehman, S. Magnesium supplement intake and c-reactive protein levels in adults. Nutr. Res. 2006, 26, 193–196. [Google Scholar] [CrossRef]
- Chacko, S.A.; Song, Y.; Nathan, L.; Tinker, L.; Boer, I.H.D.; Tylavsky, F.; Wallace, R.; Liu, S. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care 2010, 33, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodríguez-Morán, M. Relationship between serum magnesium levels and C-reactive protein concentration, in non-diabetic, non-hypertensive obese subjects. Int. J. Obes. 2002, 26, 469. [Google Scholar] [CrossRef]
- Leyva, F.; Anker, S.D.; Godsland, I.F.; Teixeira, M.; Hellewell, P.G.; Kox, W.J.; Poole-Wilson, P.A.; Coats, A.J. Uric acid in chronic heart failure: A marker of chronic inflammation. Eur. Heart J. 1998, 19, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Cherubini, A.; Edgar Miller, I.; Maggio, M.; Najjar, S.S.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. Usefulness of uric acid to predict changes in C-reactive protein and interleukin-6 in 3-year period in italians aged 21 to 98 years. Am. J. Cardiol. 2007, 100, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Kirilmaz, B.; Asgun, F.; Alioglu, E.; Ercan, E.; Tengiz, I.; Turk, U.; Saygi, S.; Özerkan, F. High inflammatory activity related to the number of metabolic syndrome components. J. Clin. Hypertens. 2010, 12, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.M.; Burke, A.E.; Glass, R.M. Jama patient page. Gout. J. Am. Med. Assoc. 2010, 304, 2314. [Google Scholar] [CrossRef] [PubMed]
- Hunsicker, L.G.; Adler, S.; Caggiula, A.; England, B.K.; Greene, T.; Kusek, J.W.; Rogers, N.L.; Teschan, P.E. Predictors of the progression of renal disease in the modification of diet in renal disease study. Kidney Int. 1997, 51, 1908–1919. [Google Scholar] [CrossRef] [PubMed]
- Yamori, Y.; Taguchi, T.; Mori, H.; Mori, M. Low cardiovascular risks in the middle aged males and females excreting greater 24-h urinary taurine and magnesium in 41 who-cardiac study populations in the world. J. Biomed. Sci. 2010, 17, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; O’Donnell, C.J.; Jacques, P.F.; Meigs, J.B.; Hoffmann, U.; Mckeown, N.M. Magnesium intake is inversely associated with coronary artery calcification: The Framingham heart study. JACC Cardiovasc. Imaging 2014, 7, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Magnesium intake and risk of type 2 diabetes: A meta-analysis. J. Intern. Med. 2007, 262, 208–214. [Google Scholar] [CrossRef] [PubMed]
Age (Years) | RDAs for Magnesium (mg/Day) | Magnesium Intake (mg/Day) | p |
---|---|---|---|
20–30 a | 400.00 | 301.00 (215.00, 414.00) | <0.0001 |
31–85 a | 420.00 | 299.00 (217.00, 400.00) | <0.0001 |
20–30 b | 310.00 | 226.00 (164.00, 306.50) | <0.0001 |
31–85 b | 320.00 | 234.00 (173.00, 314.00) | <0.0001 |
Characteristic | Male | p | Female | p | ||
---|---|---|---|---|---|---|
Non-Hyperuricemia (n = 10,679) | Hyperuricemia (n = 3128) | Non-Hyperuricemia (n = 10,668) | Hyperuricemia (n = 2321) | |||
Age (years) | 48.00 (34.00, 63.00) | 50.00 (35.00, 66.00) | <0.0001 | 47.00 (34.00, 62.00) | 61.00 (48.00, 72.00) | <0.0001 |
Race/ethnicity (n, %) | <0.0001 | <0.0001 | ||||
Non-Hispanic white | 5224 (48.92) | 1603 (51.25) | 0.1846 c | 5190 (48.65) | 1195 (51.49) | 0.1506 c |
Non-Hispanic black | 1986 (18.60) | 698 (22.31) | 0.0002 c | 1942 (18.20) | 602 (25.94) | <0.0001 c |
Mexican American | 1984 (18.58) | 399 (12.76) | <0.0001 c | 1872 (17.55) | 254 (10.94) | <0.0001 c |
Others a | 1485 (13.91) | 428 (13.68) | 0.7824 c | 1664 (15.60) | 270 (11.63) | <0.0001 c |
Education background (n, %) | 0.0120 | <0.0001 | ||||
>High School | 5200 (48.69) | 1597 (51.05) | 0.1772 d | 5709 (53.52) | 1081 (46.57) | 0.0006 d |
High school or GED b | 2571 (24.08) | 760 (24.30) | 0.8423 d | 2352 (22.05) | 613 (26.41) | 0.0004 d |
<High School | 2908 (27.23) | 771 (24.65) | 0.0279 d | 2607 (24.44) | 627 (27.01) | 0.0450 d |
Marital status (n, %) | 0.3895 | <0.0001 | ||||
Married or living with partner | 7138 (66.84) | 2065 (66.02) | 5987 (56.12) | 1118 (48.17) | 0.0001 e | |
Living alone | 3541 (33.16) | 1063 (33.98) | 4681 (43.88) | 1203 (51.83) | <0.0001 e | |
Drinking status (n, %) | 0.1323 | <0.0001 | ||||
Never | 786 (7.36) | 217 (6.94) | 2032 (19.05) | 522 (22.49) | 0.0021 d | |
Current | 8895 (83.29) | 2651 (84.75) | 6615 (62.01) | 1291 (55.62) | 0.0043 d | |
Former | 998 (9.35) | 260 (8.31) | 2021 (18.94) | 508 (21.89) | 0.0082 d | |
Smoking status (n, %) | <0.0001 | <0.0001 | ||||
Never | 4721 (44.21) | 1371 (43.83) | 0.8153 d | 6656 (62.39) | 1304 (56.18) | 0.0058 d |
Current | 2823 (26.44) | 661 (21.13) | <0.0001 d | 2024 (18.97) | 384 (16.54) | 0.0228 d |
Former | 3135 (29.36) | 1096 (35.04) | <0.0001 d | 1988 (18.64) | 633 (27.27) | <0.0001 d |
Magnesium intake (mg/day) | 305.00 (223.00, 408.00) | 278.00 (199.00, 380.50) | <0.0001 | 237.00 (174.00, 317.00) | 213.00 (158.00, 289.00) | <0.0001 |
BMI (kg/m2) | 27.10 (24.10, 30.44) | 29.69 (26.59, 33.66) | <0.0001 | 27.11 (23.40, 31.91) | 31.64 (27.42, 37.10) | <0.0001 |
Creatinine (mg/dL) | 0.97 (0.86, 1.10) | 1.04 (0.91, 1.20) | <0.0001 | 0.73 (0.65, 0.82) | 0.90 (0.75, 1.08) | <0.0001 |
Hypertension status (n, %) | 2245 (21.02) | 877 (28.04) | <0.0001 | 2109 (19.77) | 755 (32.53) | <0.0001 |
Diabetes status (n, %) | 1183 (11.08) | 369 (11.80) | 0.2630 | 976 (9.15) | 492 (21.20) | <0.0001 |
Characteristic | Magnesium Intake (mg/Day) | p | ||||
---|---|---|---|---|---|---|
Q1 (<176) | Q2 (176–234) | Q3 (235–298) | Q4 (299–387) | Q5 (≥388) | ||
(n = 5406) | (n = 5394) | (n = 5335) | (n = 5324) | (n = 5337) | ||
Age (years) | 51.00 (34.00, 67.00) | 51.00 (36.00, 66.00) | 50.00 (35.00, 65.00) | 48.50 (35.00, 63.00) | 45.00 (33.00, 59.00) | <0.0001 |
Male (n, %) | 1935 (35.79) | 2281 (42.29) | 2654 (49.75) | 3102 (58.26) | 3835 (71.86) | <0.0001 |
Race/ethnicity (n, %) | <0.0001 | |||||
Non-Hispanic white | 2377 (43.97) | 2612 (48.42) | 2664 (49.93) | 2774 (52.10) | 2785 (52.18) | |
Non-Hispanic black | 1524 (28.19) | 1165 (21.60) | 957 (17.94) | 835 (15.68) | 747 (14.00) | |
Mexican American | 790 (14.61) | 815 (15.11) | 931 (17.45) | 948 (17.81) | 1025 (19.21) | |
Others a | 715 (13.23) | 802 (14.87) | 783 (14.68) | 767 (14.41) | 780 (14.61) | |
Education background (n, %) | <0.0001 | |||||
>High School | 2113 (39.09) | 2620 (48.57) | 2737 (51.30) | 2997 (56.29) | 3120 (58.46) | |
High school or GED b | 1444 (26.71) | 1338 (24.81) | 1266 (23.73) | 1145 (21.51) | 1103 (20.67) | |
<High School | 1849 (34.20) | 1436 (26.62) | 1332 (24.97) | 1182 (22.20) | 1114 (20.87) | |
Marital status (n, %) | <0.0001 | |||||
Married or living with partner | 2921 (54.03) | 3177 (58.90) | 3313 (62.10) | 3432 (64.46) | 3465 (64.92) | |
Living alone | 2485 (45.97) | 2217 (41.10) | 2022 (37.90) | 1892 (35.54) | 1872 (35.08) | |
Drinking status (n, %) | <0.0001 | |||||
Never | 962 (17.80) | 826 (15.31) | 722 (13.53) | 571 (10.73) | 476 (8.92) | |
Current | 3411 (63.10) | 3721 (68.98) | 3858 (72.31) | 4116 (77.31) | 4346 (81.43) | |
Former | 1033 (19.11) | 847 (15.70) | 755 (14.15) | 637 (11.96) | 515 (9.65) | |
Smoking status (n, %) | <0.0001 | |||||
Never | 2776 (51.35) | 2909 (53.93) | 2891 (54.19) | 2797 (52.54) | 2679 (50.20) | |
Current | 1417 (26.21) | 1136 (21.06) | 1057 (19.81) | 1096 (20.59) | 1186 (22.22) | |
Former | 1213 (22.44) | 1349 (25.01) | 1387 (26.00) | 1431 (26.88) | 1472 (27.58) | |
Hypertension status (n, %) | 1416 (26.19) | 1305 (24.19) | 1180 (22.12) | 1134 (21.30) | 951 (17.82) | <0.0001 |
Diabetes status (n, %) | 770 (14.24) | 669 (12.40) | 566 (10.61) | 563 (10.57) | 452 (8.47) | <0.0001 |
Hyperuricemia (n, %) | 1312 (24.27) | 1176 (21.80) | 1035 (19.40) | 990 (18.60) | 936 (17.54) | <0.0001 |
Magnesium Intake (mg/Day) | p for Trend | ||||||
---|---|---|---|---|---|---|---|
Q1 (<200) | Q2 (200–265) | Q3 (266–334) | Q4 (335–432) | Q5 (≥433) | |||
(n = 2771) | (n = 2753) | (n = 2761) | (n = 2776) | (n = 2746) | |||
Male (n = 13,807) | Model 1 a,d | Reference | 0.80 (0.71, 0.90) | 0.71 (0.62, 0.80) | 0.73 (0.64, 0.82) | 0.61 (0.53, 0.69) | <0.0001 |
Model 2 b,d | Reference | 0.78 (0.69, 0.88) | 0.69 (0.61, 0.78) | 0.70 (0.62, 0.80) | 0.59 (0.51, 0.67) | <0.0001 | |
Model 3 c,d | Reference | 0.83 (0.72, 0.95) | 0.74 (0.64, 0.85) | 0.78 (0.67, 0.90) | 0.70 (0.58, 0.84) | 0.0003 | |
Model 4 a,e | 1.38 (1.22, 1.56) | 1.10 (0.97, 1.25) | 0.97 (0.85, 1.10) | Reference | 0.84 (0.73, 0.95) | ||
Model 5 b,e | 1.43 (1.26, 1.62) | 1.11 (0.98, 1.26) | 0.98 (0.86, 1.11) | Reference | 0.84 (0.73, 0.96) | ||
Model 6 c,e | 1.29 (1.11, 1.50) | 1.07 (0.93, 1.23) | 0.95 (0.83, 1.09) | Reference | 0.91 (0.78, 1.05) | ||
Q1 (<158) | Q2 (158–207) | Q3 (208–260) | Q4 (261–336) | Q5 (≥337) | |||
(n = 2631) | (n = 2625) | (n = 2542) | (n = 2616) | (n = 2575) | |||
Female (n = 12,989) | Model 1 a,d | Reference | 0.92 (0.80, 1.06) | 0.79 (0.68, 0.91) | 0.66 (0.57, 0.76) | 0.66 (0.57, 0.77) | <0.0001 |
Model 2 b,d | Reference | 0.93 (0.81, 1.06) | 0.80 (0.70, 0.93) | 0.68 (0.58, 0.79) | 0.69 (0.59, 0.80) | <0.0001 | |
Model 3 c,d | Reference | 0.95 (0.81, 1.11) | 0.86 (0.73, 1.02) | 0.75 (0.62, 0.90) | 0.87 (0.70, 1.08) | 0.0242 | |
Model 4 a,e | 1.52 (1.31, 1.76) | 1.40 (1.21, 1.62) | 1.20 (1.03, 1.39) | Reference | 1.01 (0.86, 1.18) | ||
Model 5 b,e | 1.48 (1.27, 1.72) | 1.37 (1.18, 1.59) | 1.19 (1.02, 1.39) | Reference | 1.02 (0.87, 1.20) | ||
Model 6 c,e | 1.33 (1.11, 1.61) | 1.27 (1.07, 1.50) | 1.15 (0.97, 1.35) | Reference | 1.16 (0.98, 1.39) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qiu, H. Dietary Magnesium Intake and Hyperuricemia among US Adults. Nutrients 2018, 10, 296. https://doi.org/10.3390/nu10030296
Zhang Y, Qiu H. Dietary Magnesium Intake and Hyperuricemia among US Adults. Nutrients. 2018; 10(3):296. https://doi.org/10.3390/nu10030296
Chicago/Turabian StyleZhang, Yiying, and Hongbin Qiu. 2018. "Dietary Magnesium Intake and Hyperuricemia among US Adults" Nutrients 10, no. 3: 296. https://doi.org/10.3390/nu10030296
APA StyleZhang, Y., & Qiu, H. (2018). Dietary Magnesium Intake and Hyperuricemia among US Adults. Nutrients, 10(3), 296. https://doi.org/10.3390/nu10030296