Diets Rich in Fruits and Vegetables Are Associated with Lower Cardiovascular Disease Risk in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects Protections
2.2. Anthropometrics
2.3. Blood Pressure
2.4. Blood Lipids
2.5. Diet Recalls
2.6. Diet Quality
2.7. Socioeconomic Status
2.8. Statistics
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of obesity and trends in body mass index among us children and adolescents, 1999–2010. JAMA 2012, 307, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity among Adults and Youth: United States, 2015–2016; National Center for Health Statistics: Hyattsville, MD, USA, 2017.
- Hiza, H.A.B.; Guenther, P.M.; Rihane, C.I. Diet Quality of Children Age 2–17 Years as Measured by the Healthy Eating Index-2010; Nutrition Insights; United States Department of Agriculture Center for Nutrition Policy and Promotion: Alexandria, VA, USA, 2013.
- Fungwe, T.; Guenther, P.M.; Juan, W.; Hiza, H.A.B.; Lino, M. The Quality of Children’s Diets in 2003–04 as Measured by the Healthy Eating Index-2005; Nutrition Insights; United States Department of Agriculture Center for Nutrition Policy and Promotion: Alexandria, VA, USA, 2009.
- O’Neil, C.E.; Nicklas, T.A.; Zanovec, M.; Fulgoni, V.L. Diet quality is positively associated with 100% fruit juice consumption in children and adults in the United States: NHANES 2003–2006. Nutr. J. 2011, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Powell, L.M.; Chen, X.; Wang, Y. Food prices are associated with dietary quality, fast food consumption, and body mass index among U.S. children and adolescents. J. Nutr. 2011, 141, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.t.; Pietinen, P.; Viikari, J. Consistent dietary patterns identified from childhood to adulthood: The cardiovascular risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Bastien, M.; Poirier, P.; Lemieux, I.; Després, J.-P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 2014, 56, 369–381. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Rodriguez-Colon, S.; Fernandez-Mendoza, J.; Vgontzas, A.N.; Bixler, E.O.; Berg, A.; Imamura Kawasawa, Y.; Sawyer, M.D.; Liao, D. Abdominal obesity and metabolic syndrome burden in adolescents—Penn State Children Cohort study. J. Clin. Densitom. 2015, 18, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Després, J.-P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, A.C.F.; Fadoni, R.P.; Ricardi, L.M.; Souza, T.C.; Rosaneli, C.F.; Nakashima, A.T.A.; Falcão, M.C. Prevalence of abdominal obesity in adolescents: A systematic review. Obes. Rev. 2011, 12, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Prevalence of abnormal lipid levels among youths-United States, 1999–2006. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 29–33. [Google Scholar]
- May, A.L.; Kuklina, E.V.; Yoon, P.W. Prevalence of cardiovascular disease risk factors among US adolescents, 1999−2008. Pediatrics 2012, 129, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Ostchega, Y.; Carroll, M.; Prineas, R.J.; McDowell, M.A.; Louis, T.; Tilert, T. Trends of elevated blood pressure among children and adolescents: Data from the National Health and Nutrition Examination Survey 1988–2006. Am. J. Hypertens. 2009, 22, 59–67. [Google Scholar] [CrossRef] [PubMed]
- McNiece, K.L.; Poffenbarger, T.S.; Turner, J.L.; Franco, K.D.; Sorof, J.M.; Portman, R.J. Prevalence of hypertension and pre-hypertension among adolescents. J. Pediatr. 2007, 150, 640–644.e1. [Google Scholar] [CrossRef] [PubMed]
- Acosta, A.A.; Samuels, J.A.; Portman, R.J.; Redwine, K.M. Prevalence of persistent prehypertension in adolescents. J. Pediatr. 2012, 160, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Sorof, J.M.; Lai, D.; Turner, J.; Poffenbarger, T.; Portman, R.J. Overweight, ethnicity, and the prevalence of hypertension in school-aged children. Pediatrics 2004, 113, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R. Atherogenesis in children: Implications for the prevention of athersclerosis. Adv. Pediatr. 2000, 47, 55–78. [Google Scholar]
- Celermajer, D.S. Endothelial dysfunction: Does it matter? Is it reversible? J. Am. Coll. Cardiol. 1997, 30, 325–333. [Google Scholar] [CrossRef]
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P., 3rd; Tracy, R.E.; Wattigney, W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.H.; Gordy, C.C.; Raynor, H.A.; Beddome, M.; Kilanowski, C.K.; Paluch, R. Increasing fruit and vegetable intake and decreasing fat and sugar intake in families at risk for childhood obesity. Obesity 2001, 9, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Peterson, K.E.; Gortmaker, S.L. Relation between consumption of sugar-sweetened drinks and childhood obesity: A prospective, observational analysis. Lancet 2001, 357, 505–508. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Pereira, M.A.; Kroenke, C.H. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA 1999, 282, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Kartashov, A.I.; Ebbeling, C.B.; Van Horn, L.; Slattery, M.L.; Jacobs D.R., Jr.; Ludwig, D.S. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005, 365, 36–42. [Google Scholar] [CrossRef]
- Collison, K.S.; Zaidi, M.Z.; Subhani, S.N.; Al-Rubeaan, K.; Shoukri, M.; Al-Mohanna, F.A. Sugar-sweetened carbonated beverage consumption correlates with BMI, waist circumference, and poor dietary choices in school children. BMC Public Health 2010, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Striegel-Moore, R.H.; Thompson, D.; Affenito, S.G.; Franko, D.L.; Obarzanek, E.; Barton, B.A.; Schreiber, G.B.; Daniels, S.R.; Schmidt, M.; Crawford, P.B. Correlates of beverage intake in adolescent girls: The National Heart, Lung, and Blood Institute Growth and Health Study. J. Pediatr. 2006, 148, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Libuda, L.; Alexy, U.; Sichert-Hellert, W.; Stehle, P.; Karaolis-Danckert, N.; Buyken, A.E.; Kersting, M. Pattern of beverage consumption and long-term association with body-weight status in German adolescents—Results from the DONALD study. Br. J. Nutr. 2008, 99, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Francis, D.K.; Van den Broeck, J.; Younger, N.; McFarlane, S.; Rudder, K.; Gordon-Strachan, G.; Grant, A.; Johnson, A.; Tulloch-Reid, M.; Wilks, R. Fast-food and sweetened beverage consumption: Association with overweight and high waist circumference in adolescents. Public Health Nutr. 2009, 12, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, L.M.; Marini, M.; Francis, L.A.; Smiciklas-Wright, H.; Birch, L.L. Beverage intake of girls at age 5 y predicts adiposity and weight status in childhood and adolescence. Am. J. Clin. Nutr. 2009, 90, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Gillis, L.J.; Bar-Or, O. Food away from home, sugar-sweetened drink consumption and juvenile obesity. J. Am. Coll. Nutr. 2003, 22, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 2009, 154, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Martin-Calvo, N.; Martínez-González, M.-A.; Bes-Rastrollo, M.; Gea, A.; Ochoa, M.C.; Marti, A.; GENOI Members. Sugar-sweetened carbonated beverage consumption and childhood/adolescent obesity: A case-control study. Public Health Nutr. 2014, 17, 2185–2193. [Google Scholar] [CrossRef] [PubMed]
- Pollock, N.K.; Bundy, V.; Kanto, W.; Davis, C.L.; Bernard, P.J.; Zhu, H.; Gutin, B.; Dong, Y. Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents. J. Nutr. 2012, 142, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Niinikoski, H.; Jula, A.; Viikari, J.; Rönnemaa, T.; Heino, P.; Lagström, H.; Jokinen, E.; Simell, O. Blood pressure is lower in children and adolescents with a low-saturated-fat diet since infancy. The Special Turku Coronary Risk Factor Intervention Project. Hypertension 2009, 53, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Washi, S.A.; Ageib, M.B. Poor diet quality and food habits are related to impaired nutritional status in 13- to 18-year-old adolescents in Jeddah. Nutr. Res. 2010, 30, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.J.; Eisenmann, J.C.; Norman, G.J.; Ortiz, K.A.; Young, P.C. Dietary fiber and nutrient density are inversely associated with the metabolic syndrome in US adolescents. J. Am. Diet. Assoc. 2011, 111, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Alexander, K.E.; Ventura, E.E.; Toledo-Corral, C.M.; Goran, M.I. Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am. J. Clin. Nutr. 2009, 90, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Ardalan, G.; Gheiratmand, R.; Gouya, M.M.; Razaghi, E.M.; Delavari, A.; Majdzadeh, R.; Heshmat, R.; Motaghian, M.; Barekati, H.; et al. Association of physical activity and dietary behaviours in relation to the body mass index in a national sample of Iranian children and adolescents: CASPIAN study. Bull. World Health Organ. 2007, 85, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Moore, L.L. Food group intake and central obesity among children and adolescents in the Third National Health and Nutrition Examination Survey (NHANES III). Public Health Nutr. 2010, 13, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Bradlee, M.L.; Singer, M.R.; Daniels, S.R.; Moore, L.L. Eating patterns and lipid levels in older adolescent girls. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.L.; Singer, M.R.; Qureshi, M.M.; Bradlee, M.L. Dairy intake and anthropometric measures of body fat among children and adolescents in NHANES. J. Am. Coll. Nutr. 2008, 27, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Bel-Serrat, S.; Mouratidou, T.; Jiménez-Pavón, D.; Huybrechts, I.; Cuenca-García, M.; Mistura, L.; Gottrand, F.; González-Gross, M.; Dallongeville, J.; Kafatos, A.; et al. Is dairy consumption associated with low cardiovascular disease risk in European adolescents? Results from the HELENA study. Pediatr. Obes. 2014, 9, 401–410. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Marrero, N.M.; MacGregor, G.A. Salt and blood pressure in children and adolescents. J. Hum. Hypertens. 2007, 22, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Buckman, D.W.; Dodd, K.W.; Casavale, K.O.; Carroll, R.J. The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J. Nutr. 2014, 144, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Onvani, S.; Haghighatdoost, F.; Surkan, P.J.; Larijani, B.; Azadbakht, L. Adherence to the Healthy Eating Index and Alternative Healthy Eating Index dietary patterns and mortality from all causes, cardiovascular disease and cancer: A meta-analysis of observational studies. J. Hum. Nutr. Diet. 2017, 30, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Hollingshead, A. Four Factor Index of Social Status; Yale University: New Haven, CT, USA, 1975. [Google Scholar]
- Wideman, L.; Calkins, S.D.; Janssen, J.A.; Lovelady, C.A.; Dollar, J.M.; Keane, S.P.; Perrin, E.M.; Shanahan, L. Rationale, design and methods for the RIGHT Track Health study: Pathways from childhood self-regulation to cardiovascular risk in adolescence. BMC Public Health 2016, 16, 459. [Google Scholar] [CrossRef] [PubMed]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar]
- Guenther, P.M.; Casavale, K.O.; Reedy, J.; Kirkpatrick, S.I.; Hiza, H.A.B.; Kuczynski, K.J.; Kahle, L.L.; Krebs-Smith, S.M. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. 2013, 113, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Mitchell, D.C.; Harala, P.L.; Pettit, J.M.; Smiciklas-Wright, H.; Hartman, T.J. Development and evaluation of a method for calculating the Healthy Eating Index-2005 using the Nutrition Data System for research. Public Health Nutr. 2011, 14, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Glass, G.V.; Peckham, P.D.; Sanders, J.R. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Rev. Educ. Res. 1972, 42, 237–288. [Google Scholar] [CrossRef]
- Harwell, M.R.; Rubinstein, E.N.; Hayes, W.S.; Olds, C.C. Summarizing monte carlo results in methodological research: The one- and two-factor fixed effects ANOVA cases. J. Educ. Stat. 1992, 17, 315–339. [Google Scholar] [CrossRef]
- Lix, L.M.; Keselman, J.C.; Keselman, H.J. Consequences of Assumption Violations Revisited: A quantitative review of alternatives to the one-way analysis of variance F Test. Rev. Educ. Res. 1996, 66, 579–619. [Google Scholar]
- Landy, D.C.; Lipsitz, S.R.; Kurtz, J.M.; Hinkle, A.S.; Constine, L.S.; Adams, M.J.; Lipshultz, S.E.; Miller, T.L. Dietary quality, caloric intake, and adiposity of childhood cancer survivors and their siblings: An analysis from the cardiac risk factors in childhood cancer survivors study. Nutr. Cancer 2013, 65, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Hurley, K.M.; Oberlander, S.E.; Merry, B.C.; Wrobleski, M.M.; Klassen, A.C.; Black, M.M. The healthy eating index and youth healthy eating index are unique, nonredundant measures of diet quality among low-income, African American adolescents. J. Nutr. 2009, 139, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Hiza, H.A.B.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Banfield, E.C.; Liu, Y.; Davis, J.S.; Chang, S.; Frazier-Wood, A.C. Poor adherence to US dietary guidelines for children and adolescents in the national health and nutrition examination survey population. J. Acad. Nutr. Diet. 2016, 116, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, G.L.; Huang, R.-C.; Mori, T.A.; Hands, B.P.; O’Sullivan, T.A.; de Klerk, N.H.; Beilin, L.J.; Oddy, W.H. Dietary patterns and markers for the metabolic syndrome in Australian adolescents. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Field, A.E.; Gillman, M.W.; Rosner, B.; Rockett, H.R.; Colditz, G.A. Association between fruit and vegetable intake and change in body mass index among a large sample of children and adolescents in the United States. Int. J. Obes. 2003, 27, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Rolls, B.J.; Ello-Martin, J.A.; Tohill, B.C. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr. Rev. 2004, 62, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tohill, B.C.; Seymour, J.; Serdula, M.; Kettel-Khan, L.; Rolls, B.J. What epidemiologic studies tell us about the relationship between fruit and vegetable consumption and body weight. Nutr. Rev. 2004, 62, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [PubMed]
- Galobardes, B.; Morabia, A.; Bernstein, M.S. Diet and socioeconomic position: Does the use of different indicators matter? Int. J. Epidemiol. 2001, 30, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Lallukka, T.; Laaksonen, M.; Rahkonen, O.; Roos, E.; Lahelma, E. Multiple socio-economic circumstances and healthy food habits. Eur. J. Clin. Nutr. 2006, 61, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.R.; Obarzanek, E.; Franko, D.L.; Barton, B.A.; Morrison, J.; Biro, F.M.; Daniels, S.R.; Striegel-Moore, R.H. Childhood overweight and cardiovascular disease risk factors: The National Heart, Lung, and Blood Institute Growth and Health Study. J. Pediatr. 2007, 150, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Harshfield, G.A.; Alpert, B.S.; Willey, E.S.; Somes, G.W.; Murphy, J.K.; Dupaul, L.M. Race and gender influence ambulatory blood pressure patterns of adolescents. Hypertension 1989, 14, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C.; Miller, J.Z.; Grim, C.E.; Fineberg, N.S.; Christian, J.C.; Daugherty, S.A.; Weinberger, M.H. Salt sensitivity and resistance of blood pressure. Age and race as factors in physiological responses. Hypertension 1991, 17, I102. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Khoury, P.R.; Morrison, J.A. The utility of body mass index as a measure of body fatness in children and adolescents: differences by race and gender. Pediatrics 1997, 99, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Gortmaker, S.L.; Taveras, E.M. Trends and racial/ethnic disparities in severe obesity among US children and adolescents, 1976–2006. Int. J. Pediatr. Obes. 2011, 6, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, I.; Kotchen, T. Regional variations of blood pressure in the united states are associated with regional variations in dietary intakes: The NHANES-III data. J. Nutr. 2003, 133, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Obisesan, T.O.; Vargas, C.M.; Gillum, R.F. Geographic variation in stroke risk in the United States. Region, urbanization, and hypertension in the Third National Health and Nutrition Examination survey. Stroke 2000, 31, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Glazer, G. Atherogenic effects of anabolic steroids on serum lipid levels: A literature review. Arch. Intern. Med. 1991, 151, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Connelly, P.; Petrasovits, A.; Stachenko, S.; MacLean, D.; Little, J.; Chockalingam, A. Prevalence of high plasma triglyceride combined with low HDL-c levels and its association with smoking, hypertension, obesity, diabetes, sedentariness and LDL-c levels in the Canadian population. Canadian Heart Health Surveys Research Group. Can. J. Cardiol. 1999, 15, 428–433. [Google Scholar] [PubMed]
- Millán, J.; Pintó, X.; Muñoz, A.; Zúñiga, M.; Rubiés-Prat, J.; Pallardo, L.F.; Masana, L.; Mangas, A.; Hernández-Mijares, A.; González-Santos, P.; et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 2009, 5, 757–765. [Google Scholar] [PubMed]
- Kit, B.K.; Kuklina, E.; Carroll, M.D.; Ostchega, Y.; Freedman, D.S.; Ogden, C.L. Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999–2012. JAMA Pediatr. 2015, 169, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas-Melo, F.; Sereno, J.; Teixeira-Lemos, E.; Marado, D.; Palavra, F.; Pinto, R.; Rocha-Pereira, P.; Teixeira, F.; Reis, F. Implication of low HDL-c levels in patients with average LDL-c levels: A focus on oxidized LDL, large HDL subpopulation, and adiponectin. Mediat. Inflamm. 2013, 2013, 612038. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas-Melo, F.; Sereno, J.; Teixeira-Lemos, E.; Ribeiro, S.; Rocha-Pereira, P.; Cotterill, E.; Teixeira, F.; Reis, F. Markers of increased cardiovascular risk in postmenopausal women: Focus on oxidized-LDL and HDL subpopulations. Dis. Markers 2013, 35, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas-Melo, F.; Marado, D.; Palavra, F.; Sereno, J.; Coelho, Á.; Pinto, R.; Teixeira-Lemos, E.; Teixeira, F.; Reis, F. Diabetes abrogates sex differences and aggravates cardiometabolic risk in postmenopausal women. Cardiovasc. Diabetol. 2013, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Mohseni-Takalloo, S.; Mirmiran, P.; Hosseini-Esfahani, F.; Mehrabi, Y.; Azizi, F. Metabolic syndrome and its association with Healthy Eating Index-2005 in adolescents: Tehran lipid and glucose study. J. Food Nutr. Res. 2014, 2, 155–161. [Google Scholar] [CrossRef]
- Moore, L.L.; Singer, M.R.; Bradlee, M.L.; Djouss, L.; Proctor, M.H.; Cupples, L.A.; Ellison, R.C. Intake of fruits, vegetables, and dairy products in early childhood and subsequent blood pressure change. Epidemiology 2005, 16, 4–11. [Google Scholar] [CrossRef] [PubMed]
Obesity Status | Hypertension Status | Lipid Status | |||||
---|---|---|---|---|---|---|---|
Total Sample | Non-Obese BMI | Obese BMI | Non-Hypertensive | Hypertensive | Normal Blood Lipids | Dyslipidemic | |
Gender | |||||||
Male, n, (%) | 65 (40%) | 53 | 11 | 50 (91%) | 5 (9%) | 14 (34%) | 27 (66%) |
Female, n, (%) | 97 (60%) | 83 | 14 | 77 (89%) | 10 (11%) | 13 (23%) | 43 (77%) |
Race | |||||||
White, n, (%) | 106 (65%) | 95 * | 11 * | 83 (89%) | 10 (11%) | 16 (27%) | 44 (73%) |
Nonwhite, n, (%) | 56 (35%) | 41 * | 14 * | 44 (90%) | 5 (10%) | 11 (30%) | 26 (70%) |
Socioeconomic Status (SES) | 43.5 (14.4) | 44.0 * (14.1) | 41.3 * (16.6) | 43.7 (14.3) | 40.4 (16.0) | 43.1 (15.5) | 44.9 (12.5) |
Body Mass Index (BMI), kg/m2 | 24.5 (6.3) | 22.2 ‡ (3.1) | 35.9 ‡ (6.2) | 23.7 ‡ (5.4) | 28.5 ‡ (8.7) | 25.9 (7.5) | 23.8 (5.2) |
Waist Circumference (WC), cm | 78.6 (14.2) | 74.5 ‡ (8.4) | 103.4 ‡ (17.1) | 77.5 ‡ (12.7) | 88.3 ‡ (22.0) | 84.7 * (20.7) | 77.0 * (11.3) |
Systolic Blood Pressure (SBP), mmHg | 114 (10) | 113 ‡ (10) | 120 ‡ (9) | 112 ‡ (8) | 130 ‡ (8) | 115 (10) | 113 (10) |
Diastolic Blood Pressure (DBP), mmHg | 69 (9) | 68 ‡ (9) | 76 ‡ (7) | 68 ‡ (8) | 79 ‡ (11) | 69 (8) | 69 (10) |
High Density Lipoprotein (HDL), mg/dL | 63 (22) | 63 (23) | 64 (17) | 63 (22) | 62 (24) | 67 (11) | 61 (25) |
Low Density Lipoprotein (LDL), mg/dL | 107 (39) | 107 (40) | 105 (32) | 105 (38) | 122 (45) | 81 ‡ (18) | 117 ‡ (40) |
Total Cholesterol (TC), mg/dL | 210 (45) | 214 * (47) | 187 * (22) | 209 (44) | 217 (57) | 173 ‡ (19) | 224 ‡ (44) |
Triglycerides (TG), mg/dL | 118 (49) | 120 (51) | 109 (37) | 114 ‡ (46) | 155 ‡ (61) | 114 (34) | 120 (54) |
Score Range | Total Sample | Non-Obese BMI | Obese BMI | Recommendation/1000 kcal (Max Score) | Non-Obese Meeting Recommendation (%) | Obese Meeting Recommendation (%) | |
---|---|---|---|---|---|---|---|
Total Fruit | 0–5 | 1.5 (1.5) | 1.5 (1.5) | 1.1 (1.4) | ≥0.8 c | 5 | 4 |
Whole Fruit | 0–5 | 1.5 (1.8) | 1.5 (1.8) | 1.4 (1.7) | ≥0.4 c | 9 | 8 |
Total Vegetables | 0–5 | 2.7 (1.4) | 2.7 (1.4) | 2.7 (1.2) | ≥1.1 c | 12 | 4 |
Greens and Beans | 0–5 | 1.6 (2.0) | 1.7 (2.1) | 1.3 (1.9) | ≥0.4 c | 18 | 16 |
Whole Grains | 0–10 | 3.7 (3.0) | 3.8 (3.0) | 2.8 (2.8) | ≥1.5 oz | 7 | 4 |
Dairy | 0–10 | 6.4 (3.1) | 6.5 (3.1) | 5.9 (3.1) | ≥1.3 c | 26 | 12 |
Total Protein Foods | 0–5 | 4.4 (1.0) | 4.3 (1.0) | 4.7 (0.6) | ≥2.5 oz | 57 | 68 |
Seafood and Plant Proteins | 0–5 | 1.7 (2.0) | 1.7 (2.0) | 1.6 (2.0) | ≥0.8 oz | 17 | 20 |
Fatty Acids | 0–10 | 4.9 (3.1) | 4.9 (3.2) | 5.1 (2.6) | (MUFAs + PUFAs)/SFAs ≥ 2.5 | 10 | 4 |
Refined Grains | 0-10 | 4.1 (3.4) | 4.3 (3.5) | 3.4 (3.0) | ≤1.8 oz | 9 | 0 |
Sodium | 0–10 | 3.6 (2.9) | 3.7 (3.0) | 3.0 (2.8) | ≤1.1 g | 4 | 0 |
Empty Calories | 0–20 | 13.1 (5.0) | 13.3 (5.0) | 12.3 (5.2) | ≤19% of total kcal | 12 | 12 |
Total HEI-2010 Score | 0–100 | 49.2 (12.0) | 50.0 (12.1) | 45.2 (10.5) | ≥80 (100) | 1 | 0 |
Score Range | Total Sample | Non-HTN | HTN | Recommendation/1000 kcal (Max Score) | Non-HTN Meeting Recommendation (%) | HTN Meeting Recommendation (%) | |
---|---|---|---|---|---|---|---|
Total Fruit | 0–5 | 1.5 (1.5) | 1.5 (1.5) | 1.1 (1.1) | ≥0.8 c | 5 | 0 |
Whole Fruit | 0–5 | 1.5 (1.8) | 1.4 (1.7) | 1.8 (2.0) | ≥0.4 c | 9 | 7 |
Total Vegetables | 0–5 | 2.7 (1.3) | 2.8 (1.4) | 2.3 (1.0) | ≥1.1 c | 11 | 0 |
Greens and Beans | 0–5 | 1.7 (2.0) | 1.7 (2.0) | 1.3 (1.9) | ≥0.4 c | 18 | 13 |
Whole Grains | 0–10 | 3.6 (3.0) | 3.5 (3.0) | 4.4 (3.5) | ≥1.5 oz | 6 | 13 |
Dairy | 0–10 | 6.5 (3.0) | 6.4 (3.1) | 7.5 (2.7) | ≥1.3 c | 22 | 40 |
Total Protein Foods | 0–5 | 4.4 (1.0) | 4.3 * (1.0) | 4.9 * (0.2) | ≥2.5 oz | 57 | 67 |
Seafood and Plant Proteins | 0–5 | 1.7 (2.0) | 1.8 (2.0) | 1.6 (2.0) | ≥0.8 oz | 17 | 20 |
Fatty Acids | 0–10 | 4.9 (3.0) | 4.8 (3.1) | 5.1 (3.0) | (MUFAs + PUFAs)/SFAs ≥ 2.5 | 9 | 0 |
Refined Grains | 0–10 | 4.1 (3.4) | 4.1 (3.5) | 4.3 (3.0) | ≤1.8 oz | 7 | 7 |
Sodium | 0–10 | 3.5 (2.9) | 3.6 (2.9) | 2.9 (2.6) | ≤1.1 g | 2 | 0 |
Empty Calories | 0–20 | 13.3 (4.7) | 13.2 (4.8) | 14.4 (3.8) | ≤19% of total kcal | 11 | 13 |
Total HEI-2010 Score | 0–100 | 49.4 (11.8) | 49.1 (11.8) | 51.7 (11.8) | ≥80 (100) | 2 | 0 |
Score Range | Total Sample | Normal Blood Lipids | Dyslipidemic | Recommendation/1000 kcal (Max Score) | Normal Blood Lipids Meeting Recommendation (%) | Dyslipidemic Meeting Recommendation (%) | |
---|---|---|---|---|---|---|---|
Total Fruit | 0–5 | 1.5 (1.5) | 1.7 (1.7) | 1.3 (1.4) | ≥0.8 c | 7 | 1 |
Whole Fruit | 0–5 | 1.5 (1.8) | 1.6 (1.9) | 1.3 (1.7) | ≥0.4 c | 15 | 4 |
Total Vegetables | 0–5 | 2.7 (1.3) | 2.8 (1.2) | 2.7 (1.4) | ≥1.1 c | 7 | 13 |
Greens and Beans | 0–5 | 1.7 (2.0) | 2.3 (2.3) | 1.4 (1.9) | ≥0.4 c | 33 * | 13 * |
Whole Grains | 0–10 | 3.6 (3.0) | 3.2 (2.5) | 3.3 (3.0) | ≥1.5 oz | 4 | 6 |
Dairy | 0–10 | 6.5 (3.0) | 7.1 (2.6) | 6.0 (3.2) | ≥1.3 c | 26 | 20 |
Total Protein Foods | 0–5 | 4.4 (1.0) | 4.4 (1.0) | 4.4 (1.0) | ≥2.5 oz | 63 | 59 |
Seafood and Plant Proteins | 0–5 | 1.7 (2.0) | 1.7 (1.9) | 1.5 (2.0) | ≥0.8 oz | 11 | 16 |
Fatty Acids | 0–10 | 4.9 (3.0) | 4.6 (2.9) | 4.9 (3.1) | (MUFAs + PUFAs)/SFAs ≥ 2.5 | 7 | 9 |
Refined Grains | 0–10 | 4.1 (3.4) | 4.1 (3.0) | 4.0 (3.4) | ≤1.8 oz | 7 | 7 |
Sodium | 0–10 | 3.5 (2.9) | 4.1 (3.2) | 3.4 (2.7) | ≤1.1 g | 0 | 3 |
Empty Calories | 0–20 | 13.3 (4.7) | 13.1 (4.8) | 13.3 (4.9) | ≤19% of total kcal | 4 | 11 |
Total HEI-2010 Score | 0–100 | 49.4 (11.8) | 50.6 (9.2) | 47.4 (10.8) | ≥80 (100) | 0 | 0 |
Dependent Variables | Independent Variables | Beta | R2 |
---|---|---|---|
BMI | Race (0 nonwhite, 1 white) | −0.270 * | 0.135 |
Gender (0 female, 1 male) | −0.041 | ||
SES | −0.047 | ||
Total Fruit (c) | −0.203 * | ||
WC | Race (0 nonwhite, 1 white) | −0.188 * | 0.125 |
Gender (0 female, 1 male) | 0.303 * | ||
SES | −0.101 | ||
Total Protein (oz eq.) | −0.234 * | ||
SBP | Race (0 nonwhite, 1 white) | −0.146 | 0.077 |
Gender (0 female, 1 male) | 0.100 | ||
SES | −0.054 | ||
Total Vegetables (c) | −0.198 * | ||
DBP | Race (0 nonwhite, 1 white) | −0.031 | 0.126 |
Gender (0 female, 1 male) | 0.245 * | ||
SES | −0.158 | ||
Whole Fruit (c) | −0.193 * | ||
Total Protein (oz eq.) | −0.190 * | ||
HDL | Race (0 nonwhite, 1 white) | 0.095 | 0.103 |
Gender (0 female, 1 male) | −0.047 | ||
SES | 0.229 * | ||
Whole Grains (oz eq.) | −0.218 * | ||
LDL | Race (0 nonwhite, 1 white) | −0.132 | 0.100 |
Gender (0 female, 1 male) | −0.147 | ||
SES | 0.016 | ||
Greens and Beans (c) | −0.233 * | ||
TC | Race (0 nonwhite, 1 white) | −0.120 | 0.144 |
Gender (0 female, 1 male) | −0.211 * | ||
SES | 0.238 * | ||
Greens and Beans (c) | −0.251 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellendick, K.; Shanahan, L.; Wideman, L.; Calkins, S.; Keane, S.; Lovelady, C. Diets Rich in Fruits and Vegetables Are Associated with Lower Cardiovascular Disease Risk in Adolescents. Nutrients 2018, 10, 136. https://doi.org/10.3390/nu10020136
Mellendick K, Shanahan L, Wideman L, Calkins S, Keane S, Lovelady C. Diets Rich in Fruits and Vegetables Are Associated with Lower Cardiovascular Disease Risk in Adolescents. Nutrients. 2018; 10(2):136. https://doi.org/10.3390/nu10020136
Chicago/Turabian StyleMellendick, Kevan, Lilly Shanahan, Laurie Wideman, Susan Calkins, Susan Keane, and Cheryl Lovelady. 2018. "Diets Rich in Fruits and Vegetables Are Associated with Lower Cardiovascular Disease Risk in Adolescents" Nutrients 10, no. 2: 136. https://doi.org/10.3390/nu10020136
APA StyleMellendick, K., Shanahan, L., Wideman, L., Calkins, S., Keane, S., & Lovelady, C. (2018). Diets Rich in Fruits and Vegetables Are Associated with Lower Cardiovascular Disease Risk in Adolescents. Nutrients, 10(2), 136. https://doi.org/10.3390/nu10020136