Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Tea Polyphenolic Extraction
2.3. In Vitro Simulated Gastrointestinal Digestion
2.4. Total Phenol Content (TPC)
2.5. HPLC-DAD Analysis of Tea Polyphenols
2.6. Antioxidant Activity
2.6.1. DPPH Assay
2.6.2. ABTS Assay
2.7. Statistics
3. Results
3.1. In Vitro Bioaccessibility of Tea Polyphenols
3.2. Antioxidant Activity of Tea Polyphenolic Extract after In Vitro Digestion
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nie, S.P.; Xie, M.Y. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll. 2011, 25, 144–149. [Google Scholar] [CrossRef]
- Yang, C.S.; Zhang, J.; Zhang, L.; Huang, J.; Wang, Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2016, 60, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Malongane, F.; McGaw, L.J.; Mudau, F.N. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: A review. J. Sci. Food Agric. 2017, 97, 4679–4689. [Google Scholar] [CrossRef] [PubMed]
- Curin, Y.; Andriantsitohaina, R. Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol. Rep. 2005, 52, 97–100. [Google Scholar]
- Gormaz, J.G.; Valls, N.; Sotomayor, C.; Turner, T.; Rodrigo, R. Potential role of polyphenols in the prevention of cardiovascular diseases: Molecular bases. Curr. Med. Chem. 2016, 23, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Merino, J.; Sun, Q.; Fitò, M.; Salas-Salvadò, J. Dietary polyphenols, Mediterranean Diet, prediabetes, and type 2 diabetes: A narrative review of the evidence. Oxid. Med. Cell. Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef] [PubMed]
- Nadtochiy, S.M.; Redman, E.K. Mediterranean diet and cardioprotection: The role of nitrite, polyunsaturated fatty acids, and polyphenols. Nutrition 2011, 27, 733–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carluccio, M.A.; Siculella, L.; Ancora, M.A.; Massaro, M.; Scoditti, E.; Storelli, C.; Visioli, F.; Distante, A.; De Caterina, R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: Antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; De Caterina, R. Nutraceuticals and prevention of atherosclerosis: Focus on omega-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovasc. Ther. 2010, 28, e13–e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scoditti, E.; Capurso, C.; Capurso, A.; Massaro, M. Vascular effects of the Mediterranean diet-part II: Role of omega-3 fatty acids and olive oil polyphenols. Vascul. Pharmacol. 2014, 63, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Stiuso, P.; Campiglia, P.; Novellino, E. In vitro hypoglycaemic and hypolipidemic potential of white tea polyphenols. Food Chem. 2013, 141, 2379–2384. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Daglia, M.; Ciampaglia, R.; Novellino, E. Exploring the nutraceutical potential of polyphenols from black, green and white tea infusion—An overview. Curr. Pharm. Biotechnol. 2015, 16, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Campiglia, P.; Giannetti, D.; Novellino, E. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols. Food Chem. 2015, 169, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.M.; Green, R.J.; Janle, E.M.; Ferruzzi, M.G. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea. Food Res. Int. 2010, 43, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jilania, H.; Cilla, A.; Barberá, R.; Hamdia, M. Biosorption of green and black tea polyphenols into Saccharomyces cerevisiae improves their bioaccessibility. J. Funct. Foods 2015, 17, 11–21. [Google Scholar] [CrossRef]
- Dubeau, S.; Samson, G.; Tajmir-Riahi, H.A. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas. Food Chem. 2010, 122, 539–545. [Google Scholar] [CrossRef]
- Ye, J.; Fan, F.; Xu, X.; Liang, Y. Interactions of black and green tea polyphenols with whole milk. Food Res. Int. 2013, 53, 449–455. [Google Scholar] [CrossRef]
- Coe, S.; Fraser, A.; Ryan, L. Polyphenol Bioaccessibility and Sugar Reducing Capacity of Black, Green, and White Teas. Int. J. Food Sci. 2013, 2013, 238216. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Stevens, J.K.; Maier, C.S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev. 2016, 15, 425–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Raiola, A.; Meca, G.; Mañes, J.; Ritieni, A. Bioaccessibility of deoxynivalenol and its natural co-occurrence with ochratoxin A and aflatoxin B1 in Italian commercial pasta. Food Chem. Toxicol. 2012, 50, 280–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenore, G.C.; Campiglia, P.; Ritieni, A.; Novellino, E. In vitro bioaccessibility, bioavailability and plasma protein interaction of polyphenols from Annurca apple (M. pumila Miller cv Annurca). Food Chem. 2013, 141, 3519–3524. [Google Scholar] [CrossRef] [PubMed]
- Papillo, V.A.; Vitaglione, P.; Graziani, G.; Gokmen, V.; Fogliano, V. Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol. J. Agric. Food Chem. 2014, 62, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, A.; Nabavi, S.F.; Sureda, A.; Moghaddam, A.H.; Khanjani, S.; Arcidiaco, P.; Nabavi, S.M.; Daglia, M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol. Nutr. Food Res. 2015, 60, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Chen, H.; Deng, Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 2002, 57, 307–316. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; de Brito, E.S.; Perez-Jimenez, J.; Saura-Calixto, F.D.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of eighteen non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.B.; Tao, S.; Lee, M.J.; Hu, Q.; Meng, X.; Lin, Y.; Yang, C.S. Effects of gut microbiota and time of treatment on tissue levels of green tea polyphenols in mice. Biofactors 2018. [Google Scholar] [CrossRef] [PubMed]
- Pasinetti, G.M.; Singh, R.; Westfall, S.; Herman, F.; Faith, J.; Ho, L. The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice. J. Alzheimers Dis. 2018, 63, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Masisi, K.; Beta, T.; Moghadasian, M.H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 2016, 196, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.E.; Frederiksen, H.; Struntze Krogholm, K.; Poulsen, L. Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol. Nutr. Food Res. 2005, 49, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara, A.; Shahidi, F. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Funct. Foods 2012, 4, 226–237. [Google Scholar] [CrossRef]
- Fogliano, V.; Corollaro, M.L.; Vitaglione, P.; Napolitano, A.; Ferracane, R.; Travaglia, F.; Arlorio, M.; Costabile, A.; Klinder, A.; Gibson, G. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol. Nutr. Food Res. 2011, 55, S44–S55. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, M.; Volkova, N.; Coleman, R.; Almagor, Y.; Aviram, M. Antiatherogenicity of extra virgin olive oil and its enrichment with green tea polyphenols in the atherosclerotic apolipoprotein-E-deficient mice: Enhanced macrophage cholesterol efflux. J. Nutr. Biochem. 2008, 19, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventós, R.M.; De la Torre, M.C.; López-Sabater, M.C. The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil. Food Chem. 2002, 78, 207–211. [Google Scholar] [CrossRef]
- Alessandri, S.; Ieri, F.; Romani, A. Minor polar compounds in extra virgin olive oil: Correlation between HPLC-DAD-MS and the Folin-Ciocalteu spectrophotometric method. J. Agric. Food Chem. 2014, 62, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Nash, V.; Ranadheera, C.S.; Georgousopoulou, E.N.; Mellor, D.D.; Panagiotakos, D.B.; McKune, A.J.; Kellett, J.; Naumovski, N. The effects of grape and red wine polyphenols on gut microbiota—A systematic review. Food Res. Int. 2018, 113, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Hervert-Hernández, D.; Goñi, I. Dietary Polyphenols and Human Gut Microbiota: A Review. Food Rev. Int. 2011, 27, 154–169. [Google Scholar] [CrossRef]
- Van Duynhoven, J.; Vaughan, E.E.; van Dorsten, F.; Gomez-Roldan, V.; de Vos, R.; Vervoort, J.; van der Hooft, J.J.; Roger, L.; Draijer, R.; Jacobs, D.M. Interactions of black tea polyphenols with human gut microbiota: Implications for gut and cardiovascular health. Am. J. Clin. Nutr. 2013, 98, 1631S–1641S. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Filosa, S.; Di Meo, F.; Crispi, S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res. 2018, 13, 2055–2059. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zeng, B.; Liu, Z.; Liao, Z.; Zhong, Q.; Gu, L.; Wei, H.; Fang, X. Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High-Fat Diet Treated HFA Mice. J. Food Sci. 2018, 83, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tang, L.; Shen, C.L.; Wang, J.S. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats. J. Nutr. Biochem. 2018, 61, 68–81. [Google Scholar] [CrossRef] [PubMed]
Sample | TPC (mg/g) ± SD | |
---|---|---|
Tea Variety | Digestion Stage | |
Green | Not digested | 1005.703 ± 28.784 |
Oral stage | n.d. | |
Gastric stage | n.d. | |
Duodenal stage | 62.507 ± 2.254 a,* | |
Pronase E stage | 210.448 ± 24.479 | |
Viscozyme L stage | 42.180 ± 10.939 | |
Total colon stage | 252.628 ± 35.048 b,** | |
White | Not digested | 650.654 ± 15.848 |
Oral stage | n.d. | |
Gastric stage | n.d. | |
Duodenal stage | 82.053 ± 15.294 c,* | |
Pronase E stage | 402.221 ± 17.794 | |
Viscozyme L stage | 120.760 ± 38.581 | |
Total colon stage | 522.981 ± 55.831 d,*** | |
Black | Not digested | 814.600 ± 6.968 |
Oral stage | n.d. | |
Gastric stage | n.d. | |
Duodenal stage | 42.111 ± 1.751 e,* | |
Pronase E stage | 340.196 ± 15.132 | |
Viscozyme L stage | 78.432 ± 6.288 | |
Total colon stage | 418.628 ± 21.375 f,** |
Sample | Main Tea Polyphenols, Mean Values (mg/g) ± SD | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tea Variety | Digestion Stage | C | EC | EGCG | ECG | EGC | GC | CG | Tot. |
Green | Not digested | 112.016 ± 1.493 | 56.361 ± 0.620 | 213.260 ± 1.337 | 101.010 ± 1.322 | 280.430 ± 0.149 | 33.735 ± 1.294 | 84.106 ± 0.146 | 880.924 ± 6.309 |
Duodenal stage | 26.618 ± 1.617 | 13.314 ± 0.153 | 50.769 ± 0.535 | 24.085 ± 0.521 | 66.597 ± 0.100 | 7.980 ± 0.278 | 20.012 ± 0.018 | 209.377 ± 3.151 | |
Pronase E stage | 79.894 ± 1.747 | 39.823 ± 0.399 | 152.95 ± 0.889 | 71.910 ± 1.847 | 199.8 ± 0.163 | 25.099 ± 1.016 | 59.987 ± 0.122 | 629.466 ± 3.885 | |
Viscozyme L stage | 41.979 ± 1.617 | 20.833 ± 0.417 | 79.675 ± 0.429 | 37.894 ± 0.432 | 105.010 ± 0.287 | 12.545 ± 0.881 | 31.527 ± 0.141 | 329.469 ± 4.158 | |
White | Not digested | 88.646 ± 1.456 | 33.776 ± 0.539 | 382.790 ± 1.404 | 96.294 ± 1.849 | 98.594 ± 0.522 | 40.711 ± 1.420 | 67.486 ± 0.396 | 808.294 ± 6.662 |
Duodenal stage | 17.085 ± 1.541 | 6.432 ± 0.229 | 74.152 ± 0.369 | 18.539 ± 0.573 | 19.017 ± 0.185 | 7.981 ± 0.528 | 13.095 ± 0.024 | 156.302 ± 3.430 | |
Pronase E stage | 56.687 ± 1.902 | 21.283 ± 0.475 | 254.32 ± 1.585 | 61.615 ± 1.630 | 62.890 ± 0.187 | 25.856 ± 1.682 | 43.272 ± 0.290 | 516.925 ± 7.696 | |
Viscozyme L stage | 34.055 ± 1.564 | 12.654 ± 0.737 | 146.580 ± 1.559 | 36.856 ± 1.406 | 37.443 ± 0.349 | 15.848 ± 1.563 | 25.826 ± 0.278 | 309.259 ± 7.393 | |
Black | Not digested | 231.918 ± 2.085 | 26.266 ± 1.010 | 267.080 ± 1.254 | 92.348 ± 1.423 | 287.53 ± 0.583 | 45.322 ± 1.382 | 18.678 ± 0.483 | 969.143 ± 8.176 |
Duodenal stage | 30.177 ± 1.300 | 3.329 ± 0.297 | 34.749 ± 0.131 | 12.010 ± 0.120 | 37.447 ± 0.177 | 5.898 ± 0.115 | 2.423 ± 0.014 | 126.035 ± 2.147 | |
Pronase E stage | 170.548 ± 2.326 | 19.353 ± 0.920 | 196.540 ± 1.562 | 67.882 ± 1.704 | 211.710 ± 0.503 | 33.283 ± 1.634 | 13.720 ± 0.320 | 713.038 ± 8.966 | |
Viscozyme L stage | 89.895 ± 1.674 | 10.133 ± 0.796 | 103.090 ± 1.392 | 35.787 ± 0.290 | 111.420 ± 0.280 | 17.478 ± 0.639 | 7.164 ± 0.252 | 374.968 ± 5.274 |
Sample | Duodenal Bioaccessibility | Colon Bioaccessibility | ||
---|---|---|---|---|
Total Polyphenols (mg/g) | % | Total Polyphenols (mg/g) | % | |
Green tea | 209.377 * | 23.77 | 958.933 ** | 108.85 |
White tea | 156.302 * | 19.33 | 826.185 ** | 102.21 |
Black tea | 126.035 * | 13.00 | 1088.007 ** | 112.26 |
Sample | Antioxidant Activity (mmol TE/g ± SD) | ||
---|---|---|---|
Tea Variety | Digestion Stage | DPPH Assay | ABTS Assay |
Green | Not digested | 3.649 ± 0.342 | 4.269 ± 0.274 |
Duodenal stage | 0.325 ± 0.013 | 0.469 ± 0.187 | |
Pronase E stage | 1.339 ± 0.336 | 1.335 ± 0.403 | |
Viscozyme L stage | 0.098 ± 0.006 | 0.108 ± 0.046 | |
White | Not digested | 3.961 ± 0.453 | 4.085 ± 0.213 |
Duodenal stage | 0.338 ± 0.102 | 0.344 ± 0.140 | |
Pronase E stage | 2.244 ± 0.743 | 2.421 ± 0.779 | |
Viscozyme L stage | 0.684 ± 0.073 | 0.375 ± 0.139 | |
Black | Not digested | 2.322 ± 0.206 | 2.971 ± 0.274 |
Duodenal stage | 0.093 ± 0.014 | 0.283 ± 0.039 | |
Pronase E stage | 1.793 ± 0.094 | 2.129 ± 0.302 | |
Viscozyme L stage | 0.100 ± 0.006 | 0.564 ± 0.115 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients 2018, 10, 1711. https://doi.org/10.3390/nu10111711
Annunziata G, Maisto M, Schisano C, Ciampaglia R, Daliu P, Narciso V, Tenore GC, Novellino E. Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients. 2018; 10(11):1711. https://doi.org/10.3390/nu10111711
Chicago/Turabian StyleAnnunziata, Giuseppe, Maria Maisto, Connie Schisano, Roberto Ciampaglia, Patricia Daliu, Viviana Narciso, Gian Carlo Tenore, and Ettore Novellino. 2018. "Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion" Nutrients 10, no. 11: 1711. https://doi.org/10.3390/nu10111711
APA StyleAnnunziata, G., Maisto, M., Schisano, C., Ciampaglia, R., Daliu, P., Narciso, V., Tenore, G. C., & Novellino, E. (2018). Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients, 10(11), 1711. https://doi.org/10.3390/nu10111711