Healthy Dietary Changes in Midlife Are Associated with Reduced Dementia Risk Later in Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. The CAIDE Study
2.2. Study Population
2.3. Ethical Considerations
2.4. Healthy Dietary Changes
2.5. Formation of a Healthy Diet Index
2.6. Diagnosis of Dementia in the CAIDE Study
2.7. Other Assessments
3. Statistical Analyses
4. Results
Population Characteristics
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Disease International. Dementia Statistics. Available online: https://www.Alz.Co.Uk/research/statistics (accessed on 20 October 2018).
- Norton, S.; Matthews, F.E.; Barnes, D.E.; Yaffe, K.; Brayne, C. Potential for primary prevention of alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014, 13, 788–794. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Vieitez, E.; Saint-Aubert, L.; Carter, S.F.; Almkvist, O.; Farid, K.; Scholl, M.; Chiotis, K.; Thordardottir, S.; Graff, C.; Wall, A.; et al. Diverging longitudinal changes in astrocytosis and amyloid pet in autosomal dominant Alzheimer’s disease. Brain 2016, 139, 922–936. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.B.; Wilson, R.S.; Weuve, J.; Barnes, L.L.; Evans, D.A. Cognitive impairment 18 years before clinical diagnosis of alzheimer disease dementia. Neurology 2015, 85, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R.L. The association between the Mediterranean dietary pattern and cognitive health: A systematic review. Nutrients 2017. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Tan, L.; Wang, H.F.; Jiang, T.; Zhu, X.C.; Lu, H.; Tan, M.S.; Yu, J.T. Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol. Neurobiol. 2016, 53, 6144–6154. [Google Scholar] [CrossRef] [PubMed]
- Yusufov, M.; Weyandt, L.L.; Piryatinsky, I. Alzheimer’s disease and diet: A systematic review. Int. J. Neurosci. 2017, 127, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Hardman, R.J.; Kennedy, G.; Macpherson, H.; Scholey, A.B.; Pipingas, A. Adherence to a Mediterranean-style diet and effects on cognition in adults: A qualitative evaluation and systematic review of longitudinal and prospective trials. Front. Nutr. 2016, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Barberger-Gateau, P.; Samieri, C.; Feart, C.; Plourde, M. Dietary omega 3 polyunsaturated fatty acids and Alzheimer’s disease: Interaction with apolipoprotein e genotype. Curr. Alzheimer Res. 2011, 8, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.L.; Zandi, P.P.; Tucker, K.L.; Fitzpatrick, A.L.; Kuller, L.H.; Fried, L.P.; Burke, G.L.; Carlson, M.C. Benefits of fatty fish on dementia risk are stronger for those without apoe epsilon4. Neurology 2005, 65, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Rovio, S.; Ngandu, T.; Kareholt, I.; Eskelinen, M.; Winblad, B.; Hachinski, V.; Cedazo-Minguez, A.; Soininen, H.; Tuomilehto, J.; et al. Apolipoprotein e epsilon4 magnifies lifestyle risks for dementia: A population-based study. J. Cell. Mol. Med. 2008, 12, 2762–2771. [Google Scholar] [CrossRef] [PubMed]
- Puska, P. From framingham to north karelia: From descriptive epidemiology to public health action. Prog. Cardiovasc. Dis. 2010, 53, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Morris, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The consortium to establish a registry for Alzheimer’s disease (cerad). Part I. Clinical and neuropsychological assessment of alzheimer’s disease. Neurology 1989, 39, 1159–1165. [Google Scholar] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Dsm-IV, 4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of alzheimer’s disease: Report of the nincds-adrda work group under the auspices of department of health and human services task force on alzheimer’s disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Geographical variation in the major risk factors of coronary heart disease in men and women aged 35-64 years. The who monica project. World Health Stat. Q. 1988, 41, 115–140. [Google Scholar]
- Tsukamoto, K.; Watanabe, T.; Matsushima, T.; Kinoshita, M.; Kato, H.; Hashimoto, Y.; Kurokawa, K.; Teramoto, T. Determination by pcr-rflp of apo e genotype in a japanese population. J. Lab. Clin. Med. 1993, 121, 598–602. [Google Scholar] [PubMed]
- Jacobs, D.R., Jr.; Gross, M.D.; Tapsell, L.C. Food synergy: An operational concept for understanding nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Nieves, J.W.; Stern, Y.; Luchsinger, J.A.; Scarmeas, N. Food combination and Alzheimer disease risk: A protective diet. Arch. Neurol. 2010, 67, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Orfanos, P.; Norat, T.; Bueno-de-Mesquita, B.; Ocke, M.C.; Peeters, P.H.; van der Schouw, Y.T.; Boeing, H.; Hoffmann, K.; Boffetta, P.; et al. Modified Mediterranean diet and survival: Epic-elderly prospective cohort study. BMJ 2005, 330, 991. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Himali, J.J.; Jacques, P.F.; DeCarli, C.; Satizabal, C.L.; Aparicio, H.; Vasan, R.S.; Beiser, A.S.; Seshadri, S. Sugary beverage intake and preclinical Alzheimer’s disease in the community. Alzheimers Dement. 2017, 13, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Himali, J.J.; Beiser, A.S.; Aparicio, H.J.; Satizabal, C.L.; Vasan, R.S.; Seshadri, S.; Jacques, P.F. Sugar- and artificially sweetened beverages and the risks of incident stroke and dementia: A prospective cohort study. Stroke 2017, 48, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Vartiainen, E.; Jousilahti, P.; Alfthan, G.; Sundvall, J.; Pietinen, P.; Puska, P. Cardiovascular risk factor changes in Finland, 1972–1997. Int. J. Epidemiol. 2000, 29, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crous-Bou, M.; Fung, T.T.; Prescott, J.; Julin, B.; Du, M.; Sun, Q.; Rexrode, K.M.; Hu, F.B.; De Vivo, I. Mediterranean diet and telomere length in nurses’ health study: Population based cohort study. BMJ 2014, 349, g6674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Calzon, S.; Zalba, G.; Ruiz-Canela, M.; Shivappa, N.; Hebert, J.R.; Martinez, J.A.; Fito, M.; Gomez-Gracia, E.; Martinez-Gonzalez, M.A.; Marti, A. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the predimed-navarra study: Cross-sectional and longitudinal analyses over 5 y. Am. J. Clin. Nutr. 2015, 102, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Calzon, S.; Martinez-Gonzalez, M.A.; Razquin, C.; Aros, F.; Lapetra, J.; Martinez, J.A.; Zalba, G.; Marti, A. Mediterranean diet and telomere length in high cardiovascular risk subjects from the predimed-navarra study. Clin. Nutr. 2016, 35, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Wirth, M.D.; Hurley, T.G.; Hebert, J.R. Association between the dietary inflammatory index (dii) and telomere length and c-reactive protein from the national health and nutrition examination survey-1999–2002. Mol. Nutr. Food Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, C.T.; Neville, C.E.; Temple, N.J.; Woodside, J.V. Effect of diet on vascular health. Rev. Clin. Gerontol. 2014, 24, 25–40. [Google Scholar] [CrossRef]
- Ozawa, M.; Shipley, M.; Kivimaki, M.; Singh-Manoux, A.; Brunner, E.J. Dietary pattern, inflammation and cognitive decline: The whitehall ii prospective cohort study. Clin. Nutr. 2017, 36, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Camprubi-Robles, M.; Miquel-Kergoat, S.; Andres-Lacueva, C.; Banati, D.; Barberger-Gateau, P.; Bowman, G.L.; Caberlotto, L.; Clarke, R.; Hogervorst, E.; et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res. Rev. 2017, 35, 222–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koloverou, E.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Georgousopoulou, E.N.; Grekas, A.; Christou, A.; Chatzigeorgiou, M.; Skoumas, I.; Tousoulis, D.; et al. Adherence to mediterranean diet and 10-year incidence (2002–2012) of diabetes: Correlations with inflammatory and oxidative stress biomarkers in the attica cohort study. Diabetes Metab. Res. Rev. 2016, 32, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, J.; Qiu, J.; Li, Y.; Wang, J.; Jiao, J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies. Am. J. Clin. Nutr. 2016, 103, 330–340. [Google Scholar] [CrossRef] [PubMed]
Food Item | Question | Response Options (Score in the Healthy Diet Index) Cutoff for Healthy Diet Change |
---|---|---|
Vegetables/berries | How often have you eaten vegetables or root vegetables (not potatoes) as such, grated, or as fresh salads during the past week (seven days)? | Not one (0) 1–2 days (0.33) 3–5 days (0.67) 6–7 days (1) |
How often have you eaten fresh or frozen berries or fruits during the past week? | Not one (0) 1–2 days (0.33) 3–5 days (0.67) 6–7 days (1) | |
Fats | What fat in your home is usually used for cooking? | Mostly vegetable oil (1) Mostly soft spread margarine (0.5) Mostly margarine (0.5) Mostly butter and oil mixture (0) Mostly butter (0) Food is not cooked in my home (0.5) |
What fat in your home is usually used for baking? | Mostly vegetable oil (1) Mostly soft spread margarine (0.5) Mostly margarine (0.5) Mostly butter and oil mixture (0) Mostly butter (0) I do not bake at home (0.5) | |
If you drink milk, do you usually use: | Ordinary cow’s milk (≈3.8% fat) 1 Whole milk (≈3.5% fat) 1 Semi-skimmed milk (≈1.5% fat) 1 Skimmed milk (≈0.5% fat) 1 I do not drink milk 1 | |
Do you eat the fat that is visible on the meat in your food (lard, pork fat)? | Never (1) Rarely (0.67) Often (0.33) Always (0) I do not eat pork (0.5) | |
Salt | How often do you add salt to your food at the table? | Never (1) Usually, when the food does not taste salty enough (0.5) Sometimes, before tasting (0) |
Sugar | How often do you drink sweet (sugary) soft drinks? | Never (1) Once a week or less (0.67) A few times a week (0.33) Once a day or more (0) |
How often do you eat sweets? | Never (1) Once a week or less (0.67) A few times a week (0.33) Once a day or more (0) | |
How many teaspoons of fine sugar do you use when drinking one cup of coffee or tea? How many cups of coffee/tea do you drink per day? | Space was provided to write a number, which was then multiplied by the number of cups of coffee/tea per day. Range 0–48. The total number was scaled by dividing by 10, and adding 1. Those who scored below −1 were winsorized to −1. The final score ranged from −1 to +1. |
Characteristics | n | Mean (SD) or n (%) |
---|---|---|
Baseline age (years) | 535 | 56.4 (3.8) |
Age at first follow-up (years) | 535 | 70.4 (3.5) |
Age at second follow-up (years) | 194 | 78.1 (3.2) |
Follow-up from midlife to first examination (years) | 341 | 13.8 (2.5) |
Follow-up from midlife to second examination (years) | 194 | 22.1 (2.5) |
Sex | 535 | |
Women | 327 (61.1%) | |
Education (years) | 515 | 8.7 (3.4) |
APOE ε4 allele | 526 | |
Carrier | 166 (31.6%) | |
Healthy dietary change during the past year (yes) | ||
Have modified the quality of fats | 535 | 128 (23.9%) |
Have increased the consumption of vegetables | 535 | 286 (53.5%) |
Have decreased the use of sugar | 535 | 213 (39.8%) |
Have decreased the use of salt | 535 | 159 (29.7%) |
Total healthy dietary changes (range 4–8) | 535 | 5.47 (1.3) |
Healthy diet index (range 1.7–20.9) | 458 | 6.3 (2.8) |
Midlife cardio/cerebrovascular or respiratory conditions | 535 | |
Yes | 55 (10.3%) | |
BMI (kg/m2) | 535 | 27.0 (3.7) |
Physical activity range (0–5) | 511 | 2.8 (1.4) |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Total midlife healthy dietary changes | 0.52 (0.29–0.93) | 0.53 (0.30–0.95) | 0.41 (0.20–0.85) |
Modify quality of fats | 0.45 (0.10–2.04) | 0.48 (0.10–2.17) | 0.34 (0.06–1.92) |
Increase vegetables | 0.76 (0.29–1.94) | 0.81 (0.30–2.14) | 0.98 (0.31–3.12) |
Decrease sugar | 0.36 (0.13–0.97) | 0.37 (0.14–0.99) | 0.41 (0.14–1.26) |
Decrease salt | 0.57 (0.21–1.55) | 0.61 (0.22–1.67) | 0.39 (0.12–1.35) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sindi, S.; Kåreholt, I.; Eskelinen, M.; Hooshmand, B.; Lehtisalo, J.; Soininen, H.; Ngandu, T.; Kivipelto, M. Healthy Dietary Changes in Midlife Are Associated with Reduced Dementia Risk Later in Life. Nutrients 2018, 10, 1649. https://doi.org/10.3390/nu10111649
Sindi S, Kåreholt I, Eskelinen M, Hooshmand B, Lehtisalo J, Soininen H, Ngandu T, Kivipelto M. Healthy Dietary Changes in Midlife Are Associated with Reduced Dementia Risk Later in Life. Nutrients. 2018; 10(11):1649. https://doi.org/10.3390/nu10111649
Chicago/Turabian StyleSindi, Shireen, Ingemar Kåreholt, Marjo Eskelinen, Babak Hooshmand, Jenni Lehtisalo, Hilkka Soininen, Tiia Ngandu, and Miia Kivipelto. 2018. "Healthy Dietary Changes in Midlife Are Associated with Reduced Dementia Risk Later in Life" Nutrients 10, no. 11: 1649. https://doi.org/10.3390/nu10111649
APA StyleSindi, S., Kåreholt, I., Eskelinen, M., Hooshmand, B., Lehtisalo, J., Soininen, H., Ngandu, T., & Kivipelto, M. (2018). Healthy Dietary Changes in Midlife Are Associated with Reduced Dementia Risk Later in Life. Nutrients, 10(11), 1649. https://doi.org/10.3390/nu10111649