Prospective Association between Total and Specific Dietary Polyphenol Intakes and Cardiovascular Disease Risk in the Nutrinet-Santé French Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Cases Ascertainment
2.3. Data Collection
2.3.1. Sociodemographic, Lifestyle, and Anthropometric Data
2.3.2. Dietary Data and Estimation of Dietary Polyphenols Intakes
2.4. Statistical Analyses
3. Results
3.1. Description of the Study Population
3.2. Intake of Polyphenols and CVD Risk
3.3. Stratification by the Type of CVDs
3.4. Sensitivity Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Available online: http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 12 December 2017).
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.Y. Polyphenols in Health and Disease. Cell Biochem. Biophys. 2015, 73, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Vetrani, C.; Vitale, M.; Bozzetto, L.; Della, P.G.; Cocozza, S.; Costabile, G.; Mangione, A.; Cipriano, P.; Annuzzi, G.; Rivellese, A.A. Association between different dietary polyphenol subclasses and the improvement in cardiometabolic risk factors: Evidence from a randomized controlled clinical trial. Acta Diabetol. 2018, 55, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Goszcz, K.; Duthie, G.G.; Stewart, D.; Leslie, S.J.; Megson, I.L. Bioactive polyphenols and cardiovascular disease: Chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br. J. Pharmacol. 2017, 174, 1209–1225. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Mazur, A.; Scalbert, A. Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol. 2005, 16, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.F.; Monteiro, V.V.; de Souza, G.R.; do Carmo, M.M.; da Costa, G.V.; Ribera, P.C.; Monteiro, M.C. Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies. J. Transl. Med. 2016, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Natsume, M. Polyphenols: Inflammation. Curr. Pharm. Des. 2018, 24, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R. Polyphenol epidemiology: Looking back and moving forward. Am. J. Clin. Nutr. 2016, 104, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auger, C.; Said, A.; Nguyen, P.N.; Chabert, P.; Idris-Khodja, N.; Schini-Kerth, V.B. Potential of Food and Natural Products to Promote Endothelial and Vascular Health. J. Cardiovasc. Pharmacol. 2016, 68, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Schini-Kerth, V.B.; Auger, C.; Kim, J.H.; Etienne-Selloum, N.; Chataigneau, T. Nutritional improvement of the endothelial control of vascular tone by polyphenols: Role of NO and EDHF. Pflug. Arch. 2010, 459, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Habauzit, V.; Morand, C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: An update for clinicians. Ther. Adv. Chronic Dis. 2012, 3, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Tangney, C.C.; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remon, A.; Martinez-Gonzalez, M.A.; Lopez-Sabater, M.C.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; et al. Polyphenol intake and mortality risk: A re-analysis of the PREDIMED trial. BMC Med. 2014, 12, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remon, A.; Martinez-Gonzalez, M.A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora-Ros, R.; Jimenez, C.; Cleries, R.; Agudo, A.; Sanchez, M.J.; Sanchez-Cantalejo, E.; Molina-Montes, E.; Navarro, C.; Chirlaque, M.D.; María Huerta, J.; et al. Dietary flavonoid and lignan intake and mortality in a Spanish cohort. Epidemiology 2013, 24, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hemon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef] [PubMed]
- Ivey, K.L.; Hodgson, J.M.; Croft, K.D.; Lewis, J.R.; Prince, R.L. Flavonoid intake and all-cause mortality. Am. J. Clin. Nutr. 2015, 101, 1012–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hercberg, S.; Castetbon, K.; Czernichow, S.; Malon, A.; Mejean, C.; Kesse, E.; Touvier, M.; Galan, P. The Nutrinet-Sante Study: A web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 2010, 10, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergnaud, A.C.; Touvier, M.; Mejean, C.; Kesse-Guyot, E.; Pollet, C.; Malon, A.; Castetbon, K.; Hercberg, S. Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Sante study. Int. J. Public Health 2011, 56, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Peneau, S.; Touvier, M.; Julia, C.; Galan, P.; Hercberg, S.; Kesse-Guyot, E. Validity of web-based self-reported weight and height: Results of the Nutrinet-Sante study. J. Med. Internet Res. 2013, 15, e152. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; Mejean, C.; Kesse-Guyot, E.; Pollet, C.; Malon, A.; Castetbon, K.; Hercberg, S. Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur. J. Epidemiol. 2010, 25, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Castetbon, K.; Laporte, F.; Camilleri, G.M.; Deschamps, V.; Vernay, M.; Faure, P.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. Validation of a Web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. Br. J. Nutr. 2015, 113, 953–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassale, C.; Castetbon, K.; Laporte, F.; Deschamps, V.; Vernay, M.; Camilleri, G.M.; Faure, P.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. Correlations between Fruit, Vegetables, Fish, Vitamins, and Fatty Acids Estimated by Web-Based Nonconsecutive Dietary Records and Respective Biomarkers of Nutritional Status. J. Acad. Nutr. Diet. 2016, 116, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; Kesse-Guyot, E.; Mejean, C.; Pollet, C.; Malon, A.; Castetbon, K.; Hercberg, S. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br. J. Nutr. 2011, 105, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Le Moullec, N.; Deheeger, M.; Preziosi, P. Validation du manuel photos utilisé pour l’enquête alimentaire SU.VI.MAX. [Validation of the picture booklet for food portion sizes in the SU.VI.MAX study]. Cah. Nutr. Diet. 1996, 31, 158–164. [Google Scholar]
- Arnault, N. Table de Composition des Aliments, étude NutriNet-Santé. [Food Composition Table, NutriNet-Santé Study]; Les éditions INSERM/Economica: Paris, France, 2013. (In French) [Google Scholar]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the phenol-explorer database. J. Agric. Food Chem. 2010, 58, 4959–4969. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Medina-Remon, A.; Perez-Jimenez, J.; Neveu, V.; Knaze, V.; Slimani, N.; Scalbert, A. Effects of food processing on polyphenol contents: A systematic analysis using Phenol-Explorer data. Mol. Nutr. Food Res. 2015, 59, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Desquilbet, L.; Mariotti, F. Dose-response analyses using restricted cubic spline functions in public health research. Stat. Med. 2010, 29, 1037–1057. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Liu, Y.J.; Huang, Y.; Yu, H.J.; Yuan, S.; Tang, B.W.; Wang, P.G.; He, Q.Q. Dietary total flavonoids intake and risk of mortality from all causes and cardiovascular disease in the general population: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Mursu, J.; Voutilainen, S.; Nurmi, T.; Tuomainen, T.P.; Kurl, S.; Salonen, J.T. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2008, 100, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Rimm, E.B.; O’Reilly, E.J.; Logroscino, G.; Kay, C.; Chiuve, S.E.; Rexrode, K.M. Dietary flavonoids and risk of stroke in women. Stroke 2012, 43, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Hertog, M.G.; Sweetnam, P.M.; Fehily, A.M.; Elwood, P.C.; Kromhout, D. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: The Caerphilly Study. Am. J. Clin. Nutr. 1997, 65, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Hertog, M.G.; Feskens, E.J.; Kromhout, D. Antioxidant flavonols and coronary heart disease risk. Lancet 1997, 349, 699. [Google Scholar] [CrossRef]
- McCullough, M.L.; Peterson, J.J.; Patel, R.; Jacques, P.F.; Shah, R.; Dwyer, J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012, 95, 454–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponzo, V.; Goitre, I.; Fadda, M.; Gambino, R.; De, F.A.; Soldati, L.; Gentile, L.; Magistroni, P.; Cassader, M.; Bo, S. Dietary flavonoid intake and cardiovascular risk: A population-based cohort study. J. Transl. Med. 2015, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Choi, S.W. Antioxidants in food: Content, measurement, significance, action, cautions, caveats, and research needs. Adv. Food Nutr. Res. 2014, 71, 1–53. [Google Scholar] [PubMed]
- Franzini, L.; Ardigo, D.; Valtuena, S.; Pellegrini, N.; Del, R.D.; Bianchi, M.A.; Scazzina, F.; Piatti, P.M.; Brighenti, F.; Zavaroni, I. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Valtuena, S.; Pellegrini, N.; Franzini, L.; Bianchi, M.A.; Ardigo, D.; Del Rio, D.; Piatti, P.; Scazzina, F.; Zavaroni, I.; Brighenti, F. Food selection based on total antioxidant capacity can modify antioxidant intake, systemic inflammation, and liver function without altering markers of oxidative stress. Am. J. Clin. Nutr. 2008, 87, 1290–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64 (Suppl. 3), S112–S120. [Google Scholar] [CrossRef] [PubMed]
- Mink, P.J.; Scrafford, C.G.; Barraj, L.M.; Harnack, L.; Hong, C.P.; Nettleton, J.A.; Jacobs, D.R. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am. J. Clin. Nutr. 2007, 85, 895–909. [Google Scholar] [CrossRef] [PubMed]
- Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdu-Queralt, A. Dietary Polyphenols in the Prevention of Stroke. Oxid. Med. Cell Longev. 2017, 2017, 7467962. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016, 104, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Gao, Y.T.; Yang, G.; Li, H.; Cai, Q.; Xiang, Y.B.; Ji, B.T.; Frank, A.A.; Zheng, W.; Shu, X.O. Urinary isoflavonoids and risk of coronary heart disease. Int. J. Epidemiol. 2012, 41, 1367–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhagwat, S.A.; Haytowitz, D.B.; Wasswa-Kintu, S.I.; Pehrsson, P.R. Process of formulating USDA’s Expanded Flavonoid Database for the Assessment of Dietary intakes: A new tool for epidemiological research. Br. J. Nutr. 2015, 114, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Burkholder-Cooley, N.M.; Rajaram, S.S.; Haddad, E.H.; Oda, K.; Fraser, G.E.; Jaceldo-Siegl, K. Validating polyphenol intake estimates from a food-frequency questionnaire by using repeated 24-h dietary recalls and a unique method-of-triads approach with 2 biomarkers. Am. J. Clin. Nutr. 2017, 105, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Rothwell, J.A.; Scalbert, A.; Knaze, V.; Romieu, I.; Slimani, N.; Fagherazzi, G.; Perquier, F.; Touillaud, M.; Molina-Montes, E.; et al. Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2013, 110, 1500–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollman, P.C.; Katan, M.B. Health effects and bioavailability of dietary flavonols. Free Radic. Res. 1999, 2000, S75–S80. [Google Scholar] [CrossRef]
- Hollman, P.C.; Geelen, A.; Kromhout, D. Dietary flavonol intake may lower stroke risk in men and women. J. Nutr. 2010, 140, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Bonnefont-Rousselot, D. Resveratrol and Cardiovascular Diseases. Nutrients 2016, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Lim, J.H.; Youn, H.H.; Hong, Y.A.; Yang, K.S.; Park, H.S.; Chung, S.; Koh, S.H.; Shin, S.J.; Choi, B.S.; et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia 2013, 56, 204–217. [Google Scholar]
- Shin, J.A.; Lee, K.E.; Kim, H.S.; Park, E.M. Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem. Res. 2012, 37, 2686–2696. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Tuor, U.I.; Thompson, R.; Institoris, A.; Kulynych, A.; Zhang, X.; Kinniburgh, D.W.; Bari, F.; Busija, D.W.; Barber, P.A. Protection against recurrent stroke with resveratrol: Endothelial protection. PLoS ONE 2012, 7, e47792. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Pounis, G.; Cerletti, C.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Mediterranean diet, dietary polyphenols and low-grade inflammation: Results from the moli-sani study. Br. J. Clin. Pharmacol. 2016, 83, 107–113. [Google Scholar] [CrossRef] [PubMed]
Polyphenol Subclasses | Mean ± Standard Deviation | Main Food Contributors2 to the Intake of Subclasses of Polyphenols |
---|---|---|
Anthocyanins | 41.8 ± 51.9 | Cherries (30%), Strawberries (20%), Red wine (16%), other fruits (13%), Jam and fruit pies (5%) |
Dihydrochalcones | 2.7 ± 3.4 | Apples (95%) and Apple products (5%) |
Dihydroflavonols | 2.1 ± 3.7 | Red wine (86%), Grapes (7%), White wine (3%), Rosé wine (3%) |
Flavanones | 30.3 ± 31.6 | Orange juice (60%), Oranges (13%), other citrus and citrus juices (11%), Red wine (2%), Tomatoes (1%) |
Flavones | 25.6 ± 13.5 | Bread (43%), Oranges (20%), Wheat products (12%) Orange juices (5%) |
Flavonols | 66.6 ± 40.4 | Tea (26%), Other fruits and vegetables (25%), Onions (15%), Spinach (10%), Red wine (3%) |
Isoflavonoids | 7.6 ± 26.3 | Soy beverages (37%), Soy desserts (25%), Soy yoghurt (23%), Soybeans (4%) |
Hydroxybenzoic acids | 55.8 ± 75.2 | Tea (48%), Chestnut and chestnut products (15%), Chicories (13%), Red wine (6%), Raspberries (5%) |
Hydroxycinnamic acids | 534 ± 418 | Coffee (70%), Other fruits and vegetables (7%), Potatoes (3%), Apples (3%) |
Stilbenes | 1.5 ± 2.4 | Wine (95%), Grape (3%), Strawberries (2%) |
Lignans | 1.8 ± 3.1 | Multicereal bread (75%), flaxseeds (11%), Olive oil (6%) |
Catechins | 128 ± 145 | Tea (75%), Herbal teas (5%), Chocolate and derivatives (3%), Apples (3%), Red wine (2%) |
Theaflavins | 17.8 ± 27.8 | Tea (100%) |
Proanthocyanidins | 52.9 ± 39.5 | Tea (35%), Red wine (22%), Apples and apple juices (22%), Chocolate and derivatives (14%) |
Total polyphenols (sum of individual polyphenols) | 999.3 ± 484.4 | Coffee (49%), Tea (23%), Fruits (17%), Vegetables (8%), Wine (5%) |
Total polyphenols (Folin assay) | 2083.9 ± 989.9 | Coffee (25%), Fruits (22%), Tea (14%), Lentils (9%), Chocolate (3%), Wine (2%) |
Sex-Specific Tertiles 4 of Total Polyphenol | |||||||||
---|---|---|---|---|---|---|---|---|---|
All | T1 | T2 | T3 | p2 | |||||
N | 84,158 | 28,052 | 28,053 | 28,053 | |||||
Age (years) | 44.1 | (14.5) | 37.1 | (14.4) | 45.9 | (14.1) | 49.3 | (12.8) | <0.0001 |
Sex | 1.00 | ||||||||
Men | 17,931 | (21.3) | 5977 | (21.3) | 5977 | (21.3) | 5977 | (21.3) | |
Women | 66,227 | (78.7) | 22,075 | (78.7) | 22,076 | (78.7) | 22,076 | (78.7) | |
Educational level | <0.0001 | ||||||||
<high-school degree | 29,848 | (35.5) | 11,078 | (39.5) | 9811 | (35.0) | 8959 | (31.9) | |
≥high-school degree | 54,310 | (64.5) | 16,974 | (60.5) | 18,242 | (65.0) | 19,094 | (68.1) | |
Smoking status | <0.0001 | ||||||||
Non smokers | 42,572 | (50.6) | 16,079 | (57.3) | 13,935 | (49.7) | 9012 | (32.1) | |
Former smokers | 28,533 | (33.9) | 7522 | (26.8) | 9904 | (35.3) | 10,642 | (37.9) | |
Current smokers | 13,053 | (15.5) | 4451 | (15.9) | 4214 | (15.0) | 4936 | (17.6) | |
Categories of BMI 3 (kg/m2) | <0.0001 | ||||||||
<25 kg/m2 | 59,395 | (70.6) | 19,498 | (69.5) | 19,695 | (70.2) | 20,202 | (72.0) | |
≥25 to <30 kg/m2 | 17,594 | (20.9) | 5816 | (20.7) | 6069 | (21.6) | 5709 | (20.4) | |
≥30 kg/m2 | 7169 | (8.52) | 2738 | (9.76) | 2289 | (8.16) | 2142 | (7.64) | |
Family history of cardiovascular disease (yes) | <0.0001 | ||||||||
No | 66,234 | (78.7) | 23,317 | (83.2) | 21,769 | (77.6) | 21,148 | (75.4) | |
Yes | 17,924 | (21.3) | 4735 | (16.9) | 6284 | (22.4) | 6905 | (24.6) | |
Energy without alcohol (Kcal/day) | 1869 | (467) | 1731 | (431) | 1870 | (439) | 2007 | (495) | <0.0001 |
Alcohol (g/day) | 7.89 | (11.4) | 5.49 | (9.51) | 8.26 | (11.0) | 9.91 | (13.1) | <0.0001 |
Physical activity 5 | <0.0001 | ||||||||
High | 23,847 | (28.3) | 6802 | (24.3) | 8033 | (28.6) | 9012 | (32.1) | |
Moderate | 31,152 | (37.0) | 10,005 | (35.7) | 10,505 | (37.5) | 10,642 | (37.9) | |
Low | 17,145 | (20.4) | 6563 | (23.4) | 5646 | (20.1) | 4936 | (17.6) | |
Missing data | 12,014 | (14.3) | 4682 | (16.7) | 3869 | (13.8) | 3463 | (12.3) | |
Number of 24 h dietary records | 6.61 | (2.85) | 6.13 | (2.77) | 6.80 | (2.83) | 6.90 | (2.87) | <0.0001 |
Categories of Polyphenols | Total CVD | CHD | Strokes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tertile | Cases/Non Cases | HR | CI 95% | p-Value * p-Trend | Cases/Non Cases | HR | CI 95% | p-Value * p-Trend | Cases/Non Cases | HR | CI 95% | p-Value * p-Trend |
Anthocyanins | 0.98 | (0.96–0.99) | 0.03 * | 0.97 | (0.94–0.99) | 0.04 * | 0.99 | (0.96–1.01) | 0.30 * | |||
T1 | 150/27,902 | 0.0003 | 75/27,977 | 0.03 | 75/27,977 | 0.003 | ||||||
T2 | 215/27,838 | 0.83 | (0.67–1.03) | 110/27,943 | 0.86 | (0.64–1.17) | 105/27,948 | 0.80 | (0.59–0.80) | |||
T3 | 237/27,816 | 0.66 | (0.52–0.83) | 124/27,929 | 0.71 | (0.51–0.98) | 113/27,940 | 0.61 | (0.44–0.61) | |||
Dihydrochalcones | 0.81 | (0.63–1.04) | 0.11 * | 0.74 | (0.50–1.02) | 0.08 * | 0.93 | (0.65–1.32) | 0.68 * | |||
T1 | 180/27,872 | 0.03 | 96/27,956 | 0.06 | 84/27,968 | 0.29 | ||||||
T2 | 224/27,829 | 0.98 | (0.80–1.20) | 116/27,937 | 0.98 | (0.74–1.29) | 108/27,945 | 0.98 | (0.73–0.98) | |||
T3 | 198/27,855 | 0.801 | (0.65–0.99) | 97/27,956 | 0.75 | (0.56–1.02) | 101/27,952 | 0.86 | (0.63–0.86) | |||
Dihydroflavonols | 0.87 | (0.68–1.12) | 0.30 * | 0.89 | (0.65–1.22) | 0.52 * | 0.84 | (0.57–1.25) | 0.41 * | |||
T1 | 136/27,917 | 0.04 | 67/27,986 | 0.27 | 69/27,984 | 0.07 | ||||||
T2 | 200/27,852 | 0.84 | (0.67–1.06) | 99/27,953 | 0.82 | (0.60–1.13) | 101/27,951 | 0.86 | (0.63–0.86) | |||
T3 | 266/27,787 | 0.76 | (0.59–0.98) | 143/27,910 | 0.81 | (0.57–1.15) | 123/27,930 | 0.72 | (0.50–0.72) | |||
Catechins | 0.98 | (0.96–0.99) | 0.02 * | 0.97 | (0.94–0.99) | 0.007 * | 1.00 | (0.96–1.01) | 0.45 * | |||
T1 | 192/27,860 | 0.004 | 99/27,953 | 0.12 | 93/27,959 | 0.01 | ||||||
T2 | 217/27,836 | 0.91 | (0.74–1.11) | 108/27,945 | 0.88 | (0.66–1.17) | 109/27,944 | 0.93 | (0.70–0.93) | |||
T3 | 193/27,860 | 0.74 | (0.60–0.91) | 102/27,951 | 0.79 | (0.59–1.05) | 91/27,962 | 0.66 | (0.51–0.69) | |||
Theaflavins | 0.98 | (0.94–1.00) | 0.16 * | 0.96 | (0.91–1.01) | 0.15 * | 0.99 | (0.95–1.03) | 0.54 * | |||
T1 | 258/32,924 | 0.22 | 143/33,039 | 0.36 | 115/33,067 | 0.40 | ||||||
T2 | 141/22,774 | 0.92 | (0.74–1.14) | 63/22,852 | 0.89 | (0.65–1.21) | 78/22,837 | 0.953 | (0.71–0.95) | |||
T3 | 203/27,858 | 0.89 | (0.74–1.07) | 103/27,958 | 0.89 | (0.69–1.15) | 100/27,961 | 0.889 | (0.68–0.89) | |||
Proanthocyanidins | 0.97 | (0.95–0.99) | 0.18 * | 0.96 | (0.93–0.99) | 0.03 * | 0.98 | (0.95–1.02) | 0.29 * | |||
T1 | 166/27,886 | 0.04 | 84/27,968 | 0.14 | 82/27,970 | 0.28 | ||||||
T2 | 211/27,842 | 1.02 | (0.83–1.25) | 112/27,941 | 1.10 | (0.82–1.46) | 99/27,954 | 0.98 | (0.72–0.98) | |||
T3 | 225/27,828 | 0.81 | (0.65–1.00) | 113/27,940 | 0.80 | (0.58–1.10) | 112/27,941 | 0.85 | (0.62–0.85) | |||
Flavanones | 1.00 | (0.97–1.03) | 0.87 * | 1.01 | (0.97–1.05) | 0.62 * | 0.98 | (0.94–1.03) | 0.43 * | |||
T1 | 206/27,846 | 0.89 | 101/27,951 | 0.20 | 105/27,947 | 0.25 | ||||||
T2 | 228/27,825 | 1.06 | (0.88–1.28) | 113/27,940 | 1.10 | (0.84–1.44) | 115/27,938 | 1.02 | (0.78–1.02) | |||
T3 | 168/27,885 | 1.01 | (0.82–1.24) | 95/27,958 | 1.21 | (0.91–1.60) | 73/27,980 | 0.83 | (0.61–0.83) | |||
Flavones | 1.03 | (0.97–1.09) | 0.36 * | 1.03 | (0.95–1.11) | 0.46 * | 1.03 | (0.94–1.12) | 0.57 * | |||
T1 | 192/27,860 | 0.29 | 103/27,949 | 0.44 | 89/27,963 | 0.48 | ||||||
T2 | 213/27,840 | 1.138 | (0.93–1.39) | 104/27,949 | 1.048 | (0.79–1.39) | 109/27,944 | 1.24 | (0.93–1.24) | |||
T3 | 197/27,856 | 1.124 | (0.90–1.10) | 102/27,951 | 1.128 | (0.83–1.53) | 95/27,958 | 1.12 | (0.82–1.12) | |||
Flavonols | 0.94 | (0.90–0.99) | 0.02 * | 0.97 | (0.94–1.01) | 0.15 * | 0.97 | (0.94–1.00) | 0.05 * | |||
T1 | 165/27,887 | 0.006 | 85/27,967 | 0.22 | 80/27,972 | 0.008 | ||||||
T2 | 232/27,821 | 0.971 | (0.79–1.19) | 112/27,941 | 0.919 | (0.69–1.23) | 120/27,933 | 1.02 | (0.76–1.02) | |||
T3 | 205/27,848 | 0.753 | (0.61–0.94) | 112/27,941 | 0.831 | (0.62–1.12) | 93/27,960 | 0.68 | (0.49–0.68) | |||
Isoflavonoids | 1.00 | (0.96–1.03) | 0.98 * | 0.97 | (0.92–1.03) | 0.40 * | 1.02 | (0.98–1.06) | 0.44 * | |||
T1 | 204/33,878 | 0.75 | 97/34,259 | 0.85 | 114/34,242 | 0.43 | ||||||
T2 | 195/24,847 | 0.90 | (0.74–1.11) | 108/21,641 | 1.15 | (0.87–1.53) | 71/21,678 | 0.72 | (0.53–0.72) | |||
T3 | 203/24,831 | 0.96 | (0.79–1.18) | 104/27,949 | 1.04 | (0.78–1.38) | 108/27,945 | 0.89 | (0.68–0.89) | |||
Hydroxybenzoics acids | 1.00 | (0.99–1.01) | 0.80 * | 0.99 | (0.98–1.01) | 0.64 * | 1.00 | (0.99–1.02) | 0.94 | |||
T1 | 162/27,890 | 0.01 | 84/27,968 | 0.07 | 78/27,974 | 0.09 | ||||||
T2 | 212/27,841 | 0.85 | (0.69–1.05) | 110/27,943 | 0.84 | (0.63–1.13) | 102/27,951 | 0.86 | (0.64–0.86) | |||
T3 | 228/27,825 | 0.76 | (0.62–0.94) | 115/27,938 | 0.76 | (0.56–1.02) | 113/27,940 | 0.77 | (0.57–0.77) | |||
Hydroxycinnamics acids | 1.00 | (1.00–1.00) | 0.40 * | 1.00 | (1.00–1.00) | 0.48 * | 1.00 | (1.00–1.00) | 0.64 * | |||
T1 | 130/27,922 | 0.36 | 54/27,998 | 0.18 | 76/27,976 | 0.95 | ||||||
T2 | 223/27,830 | 1.07 | (0.86–1.33) | 127/27,926 | 1.42 | (1.03–1.96) | 96/27,957 | 0.80 | (0.59–0.80) | |||
T3 | 249/27,804 | 1.11 | (0.89–1.38) | 128/27,925 | 1.32 | (0.95–1.83) | 121/27,932 | 0.95 | (0.71–0.95) | |||
Stilbenes | 0.76 | (0.51–1.13) | 0.19 * | 0.81 | (0.49–1.35) | 0.47 * | 0.68 | (0.36–1.28) | 0.24 * | |||
T1 | 140/27,912 | 0.02 | 67/27,985 | 0.34 | 73/27,979 | 0.01 | ||||||
T2 | 200/27,853 | 0.85 | (0.68–1.06) | 99/27,954 | 0.86 | (0.63–1.19) | 101/27,952 | 0.83 | (0.61–0.83) | |||
T3 | 262/27,791 | 0.73 | (0.57–0.94) | 143/27,910 | 0.84 | (0.59–1.19) | 119/27,934 | 0.64 | (0.45–0.64) | |||
Lignans | 0.80 | (0.60–1.08) | 0.17 * | 0.80 | (0.53–1.20) | 0.33 * | 0.80 | (0.52–1.23) | 0.32 * | |||
T1 | 202/27,850 | 0.14 | 111/27,941 | 0.06 | 91/27,961 | 0.93 | ||||||
T2 | 172/27,881 | 0.73 | (0.59–0.90) | 91/27,962 | 0.71 | (0.53–0.95) | 81/27,972 | 0.75 | (0.55–0.75) | |||
T3 | 228/27,825 | 0.84 | (0.69–1.03) | 107/27,946 | 0.75 | (0.56–0.99) | 121/27,932 | 0.95 | (0.71–0.95) | |||
Sum of total individual polyphenols | 1.00 | (1.00–1.00) | 0.35 * | 1.00 | (1.00–1.00) | 0.12 * | 1.00 | (1.00–1.00) | 0.82 * | |||
T1 | 127/27,925 | 0.22 | 88/27,964 | 0.11 | 73/27,979 | 0.93 | ||||||
T2 | 234/27,819 | 0.99 | (0.80–1.23) | 114/27,939 | 1.00 | (0.74–1.33) | 111/27,942 | 1.13 | (0.82–1.13) | |||
T3 | 241/27,812 | 0.880 | (0.70–1.10) | 107/27,946 | 0.79 | (0.57–1.08) | 109/27,944 | 0.954 | (0.68–0.95) | |||
(Total polyphenols) | 1.00 | (1.00–1.00) | 0.11 * | 1.00 | (1.00–1.00) | 0.13 * | 1.00 | (1.00–1.00) | 0.49 * | |||
T1 | 161/27,891 | 0.03 | 78/27,974 | 0.05 | 68/27,984 | 0.30 | ||||||
T2 | 225/27,828 | 0.86 | (0.69–1.06) | 123/27,930 | 0.80 | (0.60–1.07) | 106/27,947 | 0.926 | (0.68–0.93) | |||
T3 | 216/27,837 | 0.78 | (0.62–0.97) | 108/27,945 | 0.73 | (0.53–0.99) | 119/27,934 | 0.843 | (0.61–0.84) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adriouch, S.; Lampuré, A.; Nechba, A.; Baudry, J.; Assmann, K.; Kesse-Guyot, E.; Hercberg, S.; Scalbert, A.; Touvier, M.; Fezeu, L.K. Prospective Association between Total and Specific Dietary Polyphenol Intakes and Cardiovascular Disease Risk in the Nutrinet-Santé French Cohort. Nutrients 2018, 10, 1587. https://doi.org/10.3390/nu10111587
Adriouch S, Lampuré A, Nechba A, Baudry J, Assmann K, Kesse-Guyot E, Hercberg S, Scalbert A, Touvier M, Fezeu LK. Prospective Association between Total and Specific Dietary Polyphenol Intakes and Cardiovascular Disease Risk in the Nutrinet-Santé French Cohort. Nutrients. 2018; 10(11):1587. https://doi.org/10.3390/nu10111587
Chicago/Turabian StyleAdriouch, Solia, Aurélie Lampuré, Anouar Nechba, Julia Baudry, Karen Assmann, Emmanuelle Kesse-Guyot, Serge Hercberg, Augustin Scalbert, Mathilde Touvier, and Léopold K. Fezeu. 2018. "Prospective Association between Total and Specific Dietary Polyphenol Intakes and Cardiovascular Disease Risk in the Nutrinet-Santé French Cohort" Nutrients 10, no. 11: 1587. https://doi.org/10.3390/nu10111587
APA StyleAdriouch, S., Lampuré, A., Nechba, A., Baudry, J., Assmann, K., Kesse-Guyot, E., Hercberg, S., Scalbert, A., Touvier, M., & Fezeu, L. K. (2018). Prospective Association between Total and Specific Dietary Polyphenol Intakes and Cardiovascular Disease Risk in the Nutrinet-Santé French Cohort. Nutrients, 10(11), 1587. https://doi.org/10.3390/nu10111587