Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bacillus spp.
2.2. Preparation of Standardized Chungkookjang
2.3. Isoflavonoid Contents
2.4. γ-PGA Contents
2.5. Analysis of Free Amino Acid Contents
2.6. Cell Culture
2.7. Cell Viability
2.8. Insulin-Stimulated Glucose Uptake
2.9. Triglyceride Accumulation in 3T3-L1 Adipocytes and Min6 Insulinoma Cells
2.10. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-γ) Agonist Activity
2.11. Glucose-Stimulated Insulin Secretion
2.12. Gene Expression
2.13. Immunoblot Analysis
2.14. Statistical Analyses
3. Results
3.1. Isoflavone Contents of Water Extracts of Chungkookjang
3.2. Amino Acid and γ-PGA Contents of Water Extracts of Chungkookjang
3.3. Bacterial Survival Rates in Low Acidity and High Concentration of Bile Salts
3.4. Insulin-Stimulated Glucose Uptake in 3T3-L1 Adipocytes
3.5. Triglyceride Accumulation and Expression of Genes Related to Fatty Acid Synthesis in 3T3-L1 Adipocytes
3.6. PPAR-γ Activity
3.7. Glucose-Stimulated Insulin Secretion and Cell Viability in Min6 Insulinoma Cells
3.8. Differentiated Neuronal Cell Survival
3.9. Insulin Signaling Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.R.; Lyra, E.S.N.M.; Figueiredo, C.P.; Frozza, R.L.; Ledo, J.H.; Beckman, D.; Katashima, C.K.; Razolli, D.; Carvalho, B.M.; Frazao, R.; et al. Alzheimer-associated abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol. Med. 2015, 7, 190–210. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, D.S.; Kang, S.; Moon, N.R. Beta-amyloid-induced cognitive dysfunction impairs glucose homeostasis by increasing insulin resistance and decreasing beta-cell mass in non-diabetic and diabetic rats. Metabolism 2013, 62, 1749–1760. [Google Scholar] [CrossRef] [PubMed]
- Calsolaro, V.; Edison, P. Neuroinflammation in alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014, 20, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, D.S.; Kang, S.; Moon, B.R. Fermented soybeans, chungkookjang, prevent hippocampal cell death and beta-cell apoptosis by decreasing pro-inflammatory cytokines in gerbils with transient artery occlusion. Exp. Biol. Med. 2016, 241, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Park, S. Long-term consumption of fermented soybean-derived chungkookjang attenuates hepatic insulin resistance in 90% pancreatectomized diabetic rats. Horm. Metab. Res. 2007, 39, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Daily, J.W., 3rd; Kim, H.J.; Park, S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 2010, 30, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Kwon, D.Y.; Moon, N.R.; Kim, M.J.; Kang, H.J.; Jung, D.Y.; Park, S. Soybean fermentation with bacillus licheniformis increases insulin sensitizing and insulinotropic activity. Food Funct. 2013, 4, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Jang, J.S.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Park, H.R.; Park, S. Long-term consumption of fermented soybean-derived chungkookjang enhances insulinotropic action unlike soybeans in 90% pancreatectomized diabetic rats. Eur. J. Nutr. 2007, 46, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Pichiah, P.B.; Kim, M.J.; Cha, Y.S. Cheonggukjang, a soybean paste fermented with b. Licheniformis-67 prevents weight gain and improves glycemic control in high fat diet induced obese mice. J. Clin. Biochem. Nutr. 2016, 59, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.Y.; Xiong, X.Y.; Tian, Y.; Li, Z.L.; Gong, Y.C.; Li, Y.P. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv. 2016, 23, 1882–1891. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Ji, B.; Huang, W.; Wang, D.; Tong, G.; Su, Y.; Zhu, X.; Yan, D. Preparation of pixantrone/poly(gamma-glutamic acid) nanoparticles through complex self-assembly for oral chemotherapy. Macromol. Biosci. 2012, 12, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Jang, J.S.; Lee, J.E.; Kim, Y.S.; Shin, D.H.; Park, S. The isoflavonoid aglycone-rich fractions of chungkookjang, fermented unsalted soybeans, enhance insulin signaling and peroxisome proliferator-activated receptor-gamma activity in vitro. Biofactors 2006, 26, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ahn, I.S.; Kim, J.H.; Lee, M.R.; Kim, J.S.; Kim, H.J. Glyceollins, one of the phytoalexins derived from soybeans under fungal stress, enhance insulin sensitivity and exert insulinotropic actions. J. Agric. Food Chem. 2010, 58, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.J.; Ryan, D.A.; Hollis, F.J.; Harris, A.M.; Miller, A.K.; Vousden, M.; Cowley, H. Absorption, disposition, and metabolism of rosiglitazone, a potent thiazolidinedione insulin sensitizer, in humans. Drug Metab. Dispos. 2000, 28, 772–780. [Google Scholar] [PubMed]
- Scheen, A.J. Diabetes mellitus in the elderly: Insulin resistance and/or impaired insulin secretion? Diabetes Metab. 2005, 31, 5s27–5s34. [Google Scholar] [CrossRef]
- Kedia, G.; Hill, D.; Hill, R.; Radecka, I. Production of poly-gamma-glutamic acid by bacillus subtilis and bacillus licheniformis with different growth media. J. Nanosci. Nanotechnol. 2010, 10, 5926–5934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, Y.; Gao, W.; Feng, J.; Cao, M.; Yang, C.; Song, C.; Wang, S. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in b. Amyloliquefaciens ll3. J. Ind. Microbiol. Biotechnol. 2015, 42, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Karmaker, S.; Saha, T.K.; Sakurai, H. Investigation of a Cu(II)-poly(gamma-glutamic acid) complex in aqueous solution and its insulin-mimetic activity. Macromol. Biosci. 2007, 7, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Karmaker, S.; Saha, T.K.; Yoshikawa, Y.; Sakurai, H. Amelioration of hyperglycemia and metabolic syndromes in type 2 diabetic kka(y) mice by poly(gamma-glutamic acid)oxovanadium(iv) complex. Chem. Med. Chem. 2007, 2, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, H.J.; Qiao, J.; Gao, X.; Borriss, R. Novel routes for improving biocontrol activity of bacillus based bioinoculants. Front. Microbiol. 2015, 6, 1395. [Google Scholar] [CrossRef] [PubMed]
- Geeraerts, S.; Ducatelle, R.; Haesebrouck, F.; Van Immerseel, F. Bacillus amyloliquefaciens as prophylactic treatment for clostridium difficile-associated disease in a mouse model. J. Gastroenterol. Hepatol. 2015, 30, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Liu, M.; Wei, X.; Li, X.; Wang, Q.; Nomura, C.T.; Chen, S. Use of bacillus amyloliquefaciens hz-12 for high-level production of the blood glucose lowering compound, 1-deoxynojirimycin (dnj), and nutraceutical enriched soybeans via fermentation. Appl. Biochem. Biotechnol. 2017, 181, 1108–1122. [Google Scholar] [CrossRef] [PubMed]
- Byun, M.S.; Yu, O.K.; Cha, Y.S.; Park, T.S. Korean traditional Chungkookjang improves body composition, lipid profiles and atherogenic indices in overweight/obese subjects: A double-blind, randomized, crossover, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016, 70, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer | Melting Temperature (°C) | Product Size (bp) | Gene Bank Number | ||
---|---|---|---|---|---|---|
Rat | BDNF | F | ATGCCGAACTACCCAATCGT | 56 | 79 | NM_001270638.1 |
R | TGTACATACACAGGAAGTGTC | |||||
CNTF | F | CTCTGTAGCCGCTCTATCTG | 59 | 105 | NM_170786 | |
R | GGTACACCATCCACTGAGTC | |||||
Tau | F | AAGACAGACCATGGAGCAGAAATC | 62 | 118 | NM_017212.2 | |
R | CGGCTAACGTGGCAAGCT | |||||
GAPDH | F | ATGACTCTACCCACGGCAAG | 58 | 67 | NM_017008.4 | |
R | GGAAGATGGTGATGGGTTTC | |||||
Mouse | ACC1 | F | TGGGCACAGACCGTGGTAGT | 61 | 123 | NM_133360.2 |
R | GCCTGCTGGATTATCTTGGC | |||||
FAS | F | AAGTTGCCCGAGTCAGAGAACC | 65 | 82 | NM_007988.3 | |
R | ATCCATAGAGCCCAGCCTTCCATC | |||||
TNF-α | F | GGAACTGGCAGAAGAGGCACTC | 64 | 65 | NM_013693.3 | |
R | GCAGGAATGAGAAGAGGCTGAGAC | |||||
GAPDH | F | CAGCAATGCATCCTGCACC | 64 | 76 | NM_001289726.1 | |
R | TGGACTGTGGTCATGAGCCC |
Ingredients | CSB | BA730 | BA731 |
---|---|---|---|
Daidzin | 469 ± 34 a | 154 ± 25 b | 87.6 ± 13 c |
Glycitin | 197 ± 22 a | 32.7 ± 2.9 c | 61.4 ± 7.1 b |
Genistin | 344 ± 26 a | 180 ± 1.4 b | 108 ± 13 c |
Malonyl daidzin | 125 ± 11.4 a | 47.3 ± 3.8 b | 50.3 ± 5.4 b |
Malonyl genistin | 150 ± 13.7 a | 73.2 ± 6.3 b | 81.6 ± 6.8 b |
Acetyl daidzin | 103 ± 1.3 a | 15.2 ± 1.7 b | 12.9 ± 1.7 b |
Acetyl glyctin | 60.2 ± 5.8 a | 1.24 ± 0.23 b | 1.06 ± 1.21 b |
Acetyl genistin | 151 ± 11.5 a | 0.25 ± 0.01 b | 0.16 ± 0.02 b |
Glycitein | 12.6 ± 1.0 b | 19.6 ± 2.1 a | 22.5 ± 2.5 a |
Daidzein | 25.0 ± 2.7 c | 1085 ± 101 b | 1352 ± 124 a |
Genistein | 5.9 ± 0.7 c | 12.8 ± 1.5 b | 25.5 ± 2.1 a |
Isoflavonoid aglycones | 43.5 ± 4.9 c | 1117 ± 123 b | 1400 ± 159 a |
Total isoflavonoids | 2123 ± 198 a | 1671 ± 161 b | 1803 ± 173 b |
Ingredients | CSB | BA730 | BA731 | Ingredients | CSB | BA730 | BA731 |
---|---|---|---|---|---|---|---|
Phosphoserine | - | 125.1 ± 0.14 | 128.4 ± 0.30 | Leucine | 0.84 ± 0.07 c | 22.2 ± 0.44 b | 42.0 ± 0.28 a |
Urea | - | - | 232.9 ± 0.28 | Tyrosine | 1.06 ± 0.09 c | 28.3 ± 0.12 b | 58.1 ± 0.33 a |
Aspartic acid | 0.55 ± 0.12 b | 5.20 ± 0.28 b | 6.02 ± 0.42 a | Phenylalanine | 1.33 ± 0.10 b | 43.4 ± 0.28 a | - |
Threonine | 0.22 ± 0.05 c | 4.26 ± 0.34 b | 7.75 ± 0.14 a | α-aminobutyric acid | - | 3.68 ± 0.13 b | 6.97 ± 0.21 a |
Glutamic acid | 1.46 ± 0.21 | - | - | β-aminoisobutyric acid | - | 20.4 ± 0.05 b | 36.3 ± 0.24 a |
α-aminoadipic acid | - | 65.8 ± 0.29 b | 78.8 ± 0.12 a | γ-Aminobutyric acid | 1.33 ± 0.21 c | 10.2 ± 0.14 b | 28.7 ± 0.21 a |
Glycine | 0.61 ± 0.09 c | 10.7 ± 0.35 b | 20.2 ± 0.16 a | Ethanolamine | 0.10 ± 0.03 c | 2.47 ± 0.09 b | 11.8 ± 0.15 a |
Alanine | 1.59 ± 0.11 c | 19.3 ± 0.19 b | 29.8 ± 0.22 a | Ammonia | 1.60 ± 0.05 c | 12.2 ± 0.08 b | 20.3 ± 0.09 a |
β-Alanine | 1.22 ± 0.14 c | 29.7 ± 0.11 b | 47.6 ± 0.29 a | Ornithine | - | 1.51 ± 0.15 | 1.51 ± 0.14 |
Citrulline | - | 13.2 ± 0.24 b | 20.2 ± 0.16 a | Lysine | 0.68 ± 0.02 | 0.54 ± 0.08 | 0.99 ± 0.05 |
Valine | 2.17 ± 0.24 c | 12.7 ± 0.27 b | 24.4 ± 0.21 a | 1-methylhistidine | 0.27 ± 0.09 c | 10.0 ± 0.18 b | 14.6 ± 0.16 a |
Cysteine | - | 40.0 ± 0.11 b | 53.3 ± 0.14 a | Histidine | 0.27 ± 0.10 b | 10.1 ± 0.14 a | 9.01 ± 0.27 a |
Methionine | 0.93 ± 0.08 a | 19.6 ± 0.13 b | 28.3 ± 0.33 a | Asparagine | - | - | 22.8 ± 0.35 |
Isoleucine | 0.86 ± 0.15 c | 6.56 ± 0.14 b | 15.1 ± 0.10 a | Arginine | 3.53 ± 0.14 | 27.3 ± 0.21 a | 23.2 ± 0.22 b |
Identification | γ-PGA (cm) | pH (%) | Bile Salt (%) | ||
---|---|---|---|---|---|
7.0 | 2.0 | Oxgall 0.3% | Oxgall 0.6% | ||
CSB | 0 b | - | - | - | - |
BA730 | 27.0 ± 3.0 a | 100 | 1.4 ± 0.94 b | 35.0 ± 0.85 a | 58.0 ± 1.33 a |
BA731 | 30.0 ± 2.0 a | 100 | 6.9 ± 1.21 a | 20.2 ± 1.02 b | 18.8 ± 0.91 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-Y.; Jeong, D.Y.; Kim, D.S.; Park, S. Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells. Nutrients 2018, 10, 1588. https://doi.org/10.3390/nu10111588
Jeong S-Y, Jeong DY, Kim DS, Park S. Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells. Nutrients. 2018; 10(11):1588. https://doi.org/10.3390/nu10111588
Chicago/Turabian StyleJeong, Seong-Yeop, Do Yeon Jeong, Da Sol Kim, and Sunmin Park. 2018. "Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells" Nutrients 10, no. 11: 1588. https://doi.org/10.3390/nu10111588
APA StyleJeong, S.-Y., Jeong, D. Y., Kim, D. S., & Park, S. (2018). Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells. Nutrients, 10(11), 1588. https://doi.org/10.3390/nu10111588