Effect of Collagen Hydrolysates from Silver Carp Skin (Hypophthalmichthys molitrix) on Osteoporosis in Chronologically Aged Mice: Increasing Bone Remodeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Collagen Hydrolysates (CHs)
2.3. Molecular Weight (MW) Distribution
2.4. Amino Acid Composition
2.5. Animals, Diets, and Treatments
2.6. Bone Mineral Density (BMD)
2.7. Measurement of Bone Hydroxyproline (Hyp) Content
2.8. Serum Biochemical Analysis
2.9. Histological Analysis
2.10. Western Blotting Analysis
2.11. Statistical Analysis
3. Results
3.1. Characteristics of Collagen Hydrolysates (CHs)
3.2. Viscera Index and Body Weight
3.3. BMD and Hyp Content
3.4. Serum Biochemical Markers
3.5. Histological Analysis
3.6. Effect of CHs on TGF-β/Smad Signaling Pathway
3.7. Effect of CHs on the Expression of Integrin α2β1
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gallagher, J.; Riggs, B.; Eisman, J. Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1994, 90, 646–650. [Google Scholar]
- Klibanski, A.; Adams-Campbell, L.; Bassford, T.; Blair, S.N.; Boden, S.D.; Dickersin, K.; Gifford, D.R.; Glasse, L.; Goldring, S.R.; Hruska, K. Osteoporosis prevention, diagnosis, and therapy. J. Am. Med. Assoc. 2001, 285, 785–795. [Google Scholar]
- Orsini, L.S.; Rousculp, M.D.; Long, S.R.; Wang, S. Health care utilization and expenditures in the united states: A study of osteoporosis-related fractures. Osteoporos. Int. 2005, 16, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Delmas, P. Biochemical markers of bone turnover for the clinical investigation of osteoporosis. Osteoporos. Int. 1993, 3, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.; Vagula, R.; Devi, S.S. Osteoporosis, an understated complication of diabetes. US Pharm. 2009, 34, 14–16. [Google Scholar]
- Chau, D.L.; Edelman, S.V.; Chandran, M. Osteoporosis and diabetes. Curr. Diabetes Rep. 2003, 3, 37–42. [Google Scholar] [CrossRef]
- Vahle, J.L.; Sato, M.; Long, G.G.; Young, J.K.; Francis, P.C.; Engelhardt, J.A.; Westmore, M.S.; Ma, Y.L.; Nold, J.B. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol. Pathol. 2002, 30, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Aleksynienė, R.; Hvid, I. Parathyroid hormone-possible future drug for orthopedic surgery. Medicina 2004, 40, 842–849. [Google Scholar] [PubMed]
- Daneault, A.; Prawitt, J.; Fabien Soulé, V.; Coxam, V.; Wittrant, Y. Biological effect of hydrolyzed collagen on bone metabolism. Crit. Rev. Food Sci. Nutr. 2017, 57, 1922–1937. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.F.; Yang, T.S.; Chiu, W.C.; Hsu, C.Y.; Chou, C.L.; Su, Y.J.; Lai, H.M.; Chen, Y.C.; Chen, C.J.; Cheng, T.T. Non-adherence to anti-osteoporotic medications in Taiwan: Physician specialty makes a difference. J. Bone Miner. Metab. 2013, 31, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Currey, J.D. Role of collagen and other organics in the mechanical properties of bone. Osteoporos. Int. 2003, 14, 29–36. [Google Scholar] [CrossRef]
- Viguet-Carrin, S.; Garnero, P.; Delmas, P. The role of collagen in bone strength. Osteoporos. Int. 2006, 17, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Tzaphlidou, M. The role of collagen in bone structure: An image processing approach. Micron 2005, 36, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Lee, B.J.; Kim, S.K. Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br. J. Nutr. 2006, 95, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillerminet, F.; Fabien-Soulé, V.; Even, P.; Tomé, D.; Benhamou, C.L.; Roux, C.; Blais, A. Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice. Osteoporos. Int. 2012, 23, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dong, Y.; Qi, B.; Liu, L.; Zhou, G.; Bai, X.; Yang, C.; Zhao, D.; Zhao, Y. Preventive effects of collagen peptide from deer sinew on bone loss in ovariectomized rats. Evid.-Based Complement. Altern. Med 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- König, D.; Oesser, S.; Scharla, S.; Zdzieblik, D.; Gollhofer, A. Specific collagen peptides improve bone mineral density and bone markers in postmenopausal women—A randomized controlled study. Nutrients 2018, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guillén, M.; Giménez, B.; López-Caballero, M.A.; Montero, M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Meng, M.; Cheng, X.; Li, B.; Wang, C. The effect of collagen hydrolysates from silver carp (Hypophthalmichthys molitrix) skin on UV-induced photoaging in mice: Molecular weight affects skin repair. Food Funct. 2017, 8, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, Y.; Cheng, X.; Meng, M.; Luo, Y.; Li, B. The anti-photoaging effect of antioxidant collagen peptides from silver carp (Hypophthalmichthys molitrix) skin is preferable to tea polyphenols and casein peptides. Food Funct. 2017, 8, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zhao, M.; Regenstein, J.M.; Ren, J. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chem. 2010, 120, 810–816. [Google Scholar] [CrossRef]
- Watanabe-Kamiyama, M.; Shimizu, M.; Kamiyama, S.; Taguchi, Y.; Sone, H.; Morimatsu, F.; Shirakawa, H.; Furukawa, Y.; Komai, M. Absorption and effectiveness of orally administered low molecular weight collagen hydrolysate in rats. J. Agric. Food Chem. 2009, 58, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, M.G.; Leem, K.H. Osteogenic activity of collagen peptide via ERK/MAPK pathway mediated boosting of collagen synthesis and its therapeutic efficacy in osteoporotic bone by back-scattered electron imaging and microarchitecture analysis. Molecules 2013, 18, 15474–15489. [Google Scholar] [CrossRef] [PubMed]
- Guillerminet, F.; Beaupied, H.; Fabien-Soulé, V.; Tomé, D.; Benhamou, C.-L.; Roux, C.; Blais, A. Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: An in vitro and in vivo study. Bone 2010, 46, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wang, Y.; Jiang, Y.; Han, T.; Nie, Y.; Zhao, L.; Zhang, Q.; Qin, L. Comparative effects of er-xian decoction, epimedium herbs, and icariin with estrogen on bone and reproductive tissue in ovariectomized rats. Evid.-Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Shuster, S. Osteoporosis, a unitary hypothesis of collagen loss in skin and bone. Med. Hypotheses 2005, 65, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, M.G.; Leem, K.H. Collagen hydrolysates increased osteogenic gene expressions via a mapk signaling pathway in mg-63 human osteoblasts. Food Funct. 2014, 5, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Yoshizawa, Y.; Kawakubo, A.; Ikeda, T.; Yanagiguchi, K.; Hayashi, Y. Early gene and protein expression associated with osteoblast differentiation in response to fish collagen peptides powder. Dent. Mater. J. 2013, 32, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, S.; Nagaoka, H.; Terajima, M.; Tsuda, N.; Hayashi, Y.; Yamauchi, M. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent. Mater. J. 2013, 32, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, P.; Camps, J.; About, I. BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int. Endod. J. 2012, 45, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, H.; Okada, S.; Saito, A.; Hoshi, K.; Yamashita, H.; Takato, T.; Azuma, T. Inhibition of insulin-like growth factor-1 (IGF-1) expression by prolonged transforming growth factor-β1 (TGF-β1) administration suppresses osteoblast differentiation. J. Biol. Chem. 2012, 287, 22654–22661. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Cao, Z.; Zhang, Q.; Li, M.; Han, L.; Li, Y. Aluminum trichloride inhibits osteoblast mineralization via TGF-β1/smad signaling pathway. Chem.-Biol. Interact. 2016, 244, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Sowa, H.; Kaji, H.; Yamaguchi, T.; Sugimoto, T.; Chihara, K. Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells. J. Bone Miner. Res. 2002, 17, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Kuboki, Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J. Biochem. 2001, 129, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Suzawa, M.; Tamura, Y.; Fukumoto, S.; Miyazono, K.; Fujita, T.; Kato, S.; Takeuchi, Y. Stimulation of Smad1 transcriptional activity by Ras-extracellular signal-regulated kinase pathway: A possible mechanism for collagen-dependent osteoblastic differentiation. J. Bone Miner. Res. 2002, 17, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Fujisawa, R.; Kuboki, Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-α2β1 integrin interaction. J. Cell. Physiol. 2000, 184, 207–213. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Song, S.; Ma, M.; Si, S.; Wang, Y.; Xu, B.; Feng, K.; Wu, J.; Guo, Y. Bovine collagen peptides compounds promote the proliferation and differentiation of MC3T3-E1 pre-osteoblasts. PLoS ONE 2014, 9, e99920. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Habermann, B.; Eberhardt, C.; Feld, M.; Zichner, L.; Kurth, A. Tartrate-resistant acid phosphatase 5b (TRAP 5b) as a marker of osteoclast activity in the early phase after cementless total hip replacement. Acta Orthop. 2007, 78, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uehara, K.; Takahashi, A.; Watanabe, M.; Nomura, Y. Shark protein improves bone mineral density in ovariectomized rats and inhibits osteoclast differentiation. Nutrition 2014, 30, 719–725. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, J.D.; Mandl, I.; Howes, E.L. Bacterial digestion of collagen. J. Clin. Investing. 1953, 32, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Bouglé, D.; Bouhallab, S. Dietary bioactive peptides: Human studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Kendall, C.; Vidgen, E.; Augustin, L.; Parker, T.; Faulkner, D.; Vieth, R.; Vandenbroucke, A.; Josse, R. Effect of high vegetable protein diets on urinary calcium loss in middle-aged men and women. Eur. J. Clin. Nutr. 2003, 57, 376. [Google Scholar] [CrossRef] [PubMed]
Sample 1 | Molecular Weight Distribution (%) | ||||
---|---|---|---|---|---|
<500 Da | 500–1000 Da | 1000–3000 Da | 3000–5000 Da | >5000 Da | |
ACH | 56.42 ± 0.000 | 28.62 ± 0.160 | 12.15 ± 0.339 | 2.15 ± 0.179 | 0.66 ± 0.000 |
CCH | 54.47 ± 0.588 | 33.47 ± 0.312 | 11.94 ± 0.303 | 0.11 ± 0.027 | 0.01 ± 0.000 |
Amino Acid | Relative Content 1,2 (g/100g) | Amino Acid | Relative Content (g/100g) | ||
---|---|---|---|---|---|
ACH | CCH | ACH | CCH | ||
Asp | 2.37 ± 0.01 | 2.52 ± 0.03 | Tyr | 2.60 ± 0.03 | 1.51 ± 0.04 |
Glu | 12.87 ± 0.06 | 12.80 ± 0.03 | Val | 0.62 ± 0.04 | 1.20 ± 0.03 |
Ser | 3.01 ± 0.03 | 2.91 ± 0.04 | Met | 1.73 ± 0.15 | 0.62 ± 0.06 |
Gly | 22.37 ± 0.19 | 22.57 ± 0.28 | Cys | 0.08 ± 0.00 | 1.05 ± 0.03 |
His | 3.23 ± 0.06 | 3.38 ± 0.02 | Ile | 2.03 ± 0.08 | 2.01 ± 0.20 |
Thr | 8.95 ± 0.06 | 8.89 ± 0.01 | Leu | 1.80 ± 0.06 | 1.68 ± 0.03 |
Ala | 5.95 ± 0.42 | 5.84 ± 0.05 | Phe | 3.53 ± 0.42 | 3.43 ± 0.08 |
Pro | 10.29 ± 0.62 | 10.57 ± 0.07 | Lys | 3.76 ± 0.16 | 3.94 ± 0.08 |
Arg | 8.56 ± 0.16 | 8.44 ± 0.39 | Hyp | 6.26 ± 0.25 | 6.63 ± 0.12 |
Group 1 | Body Weight (g) | SI 2 (mg/g·bw) | TI 2 (mg/g·bw) | ||||
---|---|---|---|---|---|---|---|
Week 0 | Week 2 | Week 4 | Week 6 | Week 8 | |||
YC | 28.28 ± 0.73 * | 30.27 ± 1.62 * | 31.71 ± 1.30 * | 32.63 ± 1.91 * | 32.70 ± 1.60 * | 3.48 ± 0.69 | 1.82 ± 0.38 |
M | 45.72 ± 5.51 | 45.55 ± 4.67 | 46.33 ± 5.76 | 46.52 ± 3.58 | 46.33 ± 4.01 | 3.83 ± 1.14 | 1.55 ± 0.53 |
MP | 47.24 ± 5.40 | 46.96 ± 6.14 | 46.32 ± 5.86 | 47.65 ± 6.22 | 47.44 ± 6.00 | 3.64 ± 1.04 | 2.02 ± 0.87 |
LACH | 46.21 ± 5.78 | 45.36 ± 3.92 | 44.65 ± 3.94 | 45.46 ± 3.38 | 45.56 ± 4.52 | 4.07 ± 1.01 | 1.31 ± 0.80 |
MACH | 46.33 ± 5.62 | 44.92 ± 3.57 | 44.48 ± 2.64 | 46.22 ± 3.68 | 45.48 ± 2.27 | 4.22 ± 0.63 | 1.85 ± 0.97 |
HACH | 46.72 ± 5.20 | 45.90 ± 5.27 | 46.67 ± 5.71 | 47.63 ± 5.60 | 46.84 ± 5.24 | 3.4 ± 0.73 | 2.01 ± 0.81 |
MCCH | 46.88 ± 5.22 | 46.36 ± 5.36 | 45.13 ± 5.53 | 46.45 ± 5.25 | 45.81 ± 5.39 | 3.51 ± 0.92 | 1.45 ± 0.48 |
Group 1 | Dose (mg/kg·bw) | ALP Content (ng/mL) | TRAP-5b Activity (U/L) |
---|---|---|---|
YC | - | 15.00 ± 1.33 * | 44.27 ± 4.28 |
M | - | 8.12 ± 1.50 | 52.16 ± 4.21 |
MP | 400 | 7.81 ± 0.60 | 49.77 ± 4.97 |
LACH | 200 | 8.38 ± 1.21 | 45.36 ± 2.06 |
MACH | 400 | 10.67 ± 0.52 * | 40.00 ± 1.35 * |
HACH | 800 | 9.16 ± 0.65 | 41.09 ± 1.44 * |
MCCH | 400 | 8.46 ± 1.23 | 42.02 ± 0.96 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, S.; Song, H.; Li, B. Effect of Collagen Hydrolysates from Silver Carp Skin (Hypophthalmichthys molitrix) on Osteoporosis in Chronologically Aged Mice: Increasing Bone Remodeling. Nutrients 2018, 10, 1434. https://doi.org/10.3390/nu10101434
Zhang L, Zhang S, Song H, Li B. Effect of Collagen Hydrolysates from Silver Carp Skin (Hypophthalmichthys molitrix) on Osteoporosis in Chronologically Aged Mice: Increasing Bone Remodeling. Nutrients. 2018; 10(10):1434. https://doi.org/10.3390/nu10101434
Chicago/Turabian StyleZhang, Ling, Siqi Zhang, Hongdong Song, and Bo Li. 2018. "Effect of Collagen Hydrolysates from Silver Carp Skin (Hypophthalmichthys molitrix) on Osteoporosis in Chronologically Aged Mice: Increasing Bone Remodeling" Nutrients 10, no. 10: 1434. https://doi.org/10.3390/nu10101434
APA StyleZhang, L., Zhang, S., Song, H., & Li, B. (2018). Effect of Collagen Hydrolysates from Silver Carp Skin (Hypophthalmichthys molitrix) on Osteoporosis in Chronologically Aged Mice: Increasing Bone Remodeling. Nutrients, 10(10), 1434. https://doi.org/10.3390/nu10101434