Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease
Abstract
:1. Introduction
2. Methods
3. Glycemic Index/Glycemic Load and Satiety
3.1. Acute Effects of Meals with Different GI
3.2. Effects of Chronic Intake of Diets with Different Glycemic Index
4. Glycemic Index/Glycemic Load and Body Weight
4.1. Cross-Sectional Evidence Regarding the GI/GL and Body Weight
4.2. Intervention Studies Assessing the Effects of GI/GL on Body Weight
5. Glycemic Index/Glycemic Load and Cardiometabolic Disease Risk
5.1. Epidemiological Evidence Regarding GI/GL and Markers of Glucose Homeostasis
5.1.1. Cross-Sectional Studies
5.1.2. Prospective Studies
5.2. Intervention Studies Assessing the Effects of GI/GL on Markers of Glucose Homeostasis
5.3. Epidemiological Evidence Regarding GI/GL and Cardiovascular Disease Risk Factors
5.3.1. Cross-Sectional Studies
5.3.2. Prospective Studies
5.4. Intervention Studies Assessing the Effects of GI/GL on Cardiovascular Disease Risk Factors
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Triplitt, C.L. Examining the mechanisms of glucose regulation. Am. J. Manag. Care 2012, 18, S4–S10. [Google Scholar] [PubMed]
- Jenkins, D.; Wolever, T.; Barker, H.; Fielden, H.; Baldwin, J.; Bowling, A.; Newman, H.; Jenkins, A.; Goff, D. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, J.; Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997, 227, 472–477. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Ghafari, H.; Wolever, T.M.S.; Taylor, R.H.; Jenkins, A.L.; Barker, H.M.; Fielden, H.; Bowling, A.C. Relationship between rate of digestion of foods and post-prandial glycaemia. Diabetologia 1982, 22, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.M.; Tan, T.M.; Bloom, S.R. Gastrointestinal hormones and their role in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Strader, A.D.; Woods, S.C. Gastrointestinal hormones and food intake. Gastroenterology 2005, 128, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Torrance, G.W.; Feeny, D.; Furlong, W. Visual analog scales: Do they have a role in the measurement of preferences for health states? Med. Decis. Mak. 2001, 21, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.S.; Jenkins, D.J.A.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Louie, J.C.; Markovic, T.P.; Ross, G.P.; Foote, D.; Brand-Miller, J.C. Timing of peak blood glucose after breakfast meals of different glycemic index in women with gestational diabetes. Nutrients 2013, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Makris, A.P.; Borradaile, K.E.; Oliver, T.L.; Cassim, N.G.; Rosenbaum, D.L.; Boden, G.H.; Homko, C.J.; Foster, G.D. The individual and combined effects of glycemic index and protein on glycemic response, hunger, and energy intake. Obesity 2011, 19, 2365–2373. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.M.; Kramer, C.K.; Crispim, D.; Azevedo, M.J. A high-glycemic index, low-fiber breakfast affects the postprandial plasma glucose, insulin, and ghrelin responses of patients with type 2 diabetes in a randomized clinical trial. J. Nutr. 2015, 145, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Lobos, D.R.; Vicuna, I.A.; Novik, V.; Vega, C.A. Effect of high and low glycemic index breakfast on postprandial metabolic parameters and satiety in subjects with type 2 diabetes mellitus under intensive insulin therapy: Controlled clinical trial. Clin. Nutr. ESPEN 2017, 20, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Png, W.; Bhaskaran, K.; Sinclair, A.J.; Aziz, A.R. Effects of ingesting low glycemic index carbohydrate food for the sahur meal on subjective, metabolic and physiological responses, and endurance performance in ramadan fasted men. Int. J. Food Sci. Nutr. 2014, 65, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.D.; Gonzalez, J.T.; Rumbold, P.L.; Walker, M.; Shaw, J.A.; Stevenson, E.J.; West, D.J. Comparison of appetite responses to high- and low-glycemic index postexercise meals under matched insulinemia and fiber in type 1 diabetes. Am. J. Clin. Nutr. 2015, 101, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.C.; Stockmann, K.S.; Atkinson, F.S.; Denyer, G.S.; Brand-Miller, J.C. Effect of the glycemic index of carbohydrates on day-long (10 h) profiles of plasma glucose, insulin, cholecystokinin and ghrelin. Eur. J. Clin. Nutr. 2009, 63, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.G.; Most, M.M.; Brashear, M.M.; Johnson, W.D.; Cefalu, W.T.; Greenway, F.L. Reducing the glycemic index or carbohydrate content of mixed meals reduces postprandial glycemia and insulinemia over the entire day but does not affect satiety. Diabetes Care 2012, 35, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.H.; Miller, J.C.; Petocz, P.; Farmakalidis, E. A satiety index of common foods. Eur. J. Clin. Nutr. 1995, 49, 675–690. [Google Scholar] [PubMed]
- Pal, S.; Lim, S.; Egger, G. The effect of a low glycaemic index breakfast on blood glucose, insulin, lipid profiles, blood pressure, body weight, body composition and satiety in obese and overweight individuals: A pilot study. J. Am. Coll. Nutr. 2008, 27, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.T.; Lampe, J.W.; Schwarz, Y.; Breymeyer, K.L.; Noar, K.A.; Song, X.; Neuhouser, M.L. Low glycemic load experimental diet more satiating than high glycemic load diet. Nutr. Cancer 2012, 64, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Brownley, K.A.; Heymen, S.; Hinderliter, A.L.; Galanko, J.; Macintosh, B. Low-glycemic load decreases postprandial insulin and glucose and increases postprandial ghrelin in white but not black women. J. Nutr. 2012, 142, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Krog-Mikkelsen, I.; Sloth, B.; Dimitrov, D.; Tetens, I.; Bjorck, I.; Flint, A.; Holst, J.J.; Astrup, A.; Elmstahl, H.; Raben, A. A low glycemic index diet does not affect postprandial energy metabolism but decreases postprandial insulinemia and increases fullness ratings in healthy women. J. Nutr. 2011, 141, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Aston, L.M.; Stokes, C.S.; Jebb, S.A. No effect of a diet with a reduced glycaemic index on satiety, energy intake and body weight in overweight and obese women. Int. J. Obes. 2008, 32, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Gilhooly, C.H.; Golden, J.K.; Pittas, A.G.; Fuss, P.J.; Cheatham, R.A.; Tyler, S.; Tsay, M.; McCrory, M.A.; Lichtenstein, A.H.; et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in calerie: A 1-y randomized controlled trial. Am. J. Clin. Nutr. 2007, 85, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Juanola-Falgarona, M.; Salas-Salvado, J.; Ibarrola-Jurado, N.; Rabassa-Soler, A.; Diaz-Lopez, A.; Guasch-Ferre, M.; Hernandez-Alonso, P.; Balanza, R.; Bullo, M. Effect of the glycemic index of the diet on weight loss, modulation of satiety, inflammation, and other metabolic risk factors: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 100, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sluijs, I.; Beulens, J.W.; van der Schouw, Y.T.; van der, A.D.; Buckland, G.; Kuijsten, A.; Schulze, M.B.; Amiano, P.; Ardanaz, E.; Balkau, B.; et al. Dietary glycemic index, glycemic load, and digestible carbohydrate intake are not associated with risk of type 2 diabetes in eight European countries. J. Nutr. 2013, 143, 93–99. [Google Scholar] [PubMed]
- Krishnan, S.; Rosenberg, L.; Singer, M.; Hu, F.B.; Djousse, L.; Cupples, L.A.; Palmer, J.R. Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in us black women. Arch. Intern. Med. 2007, 167, 2304–2309. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Tobias, D.K.; Malik, V.S.; Pan, A.; Hruby, A.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and risk of type 2 diabetes: Results from 3 large us cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014, 100, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Villegas, R.; Liu, S.; Gao, Y.T.; Yang, G.; Li, H.; Zheng, W.; Shu, X.O. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch. Intern. Med. 2007, 167, 2310–2316. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.A.; Covas, M.I.; Marrugat, J.; Vila, J.; Schroder, H. Glycemic load, glycemic index, and body mass index in spanish adults. Am. J. Clin. Nutr. 2009, 89, 316–322. [Google Scholar] [PubMed]
- Hosseinpour-Niazi, S.; Sohrab, G.; Asghari, G.; Mirmiran, P.; Moslehi, N.; Azizi, F. Dietary glycemic index, glycemic load, and cardiovascular disease risk factors: Tehran lipid and glucose study. Arch. Iran. Med. 2013, 16, 401–407. [Google Scholar] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Rogers, G.; Yoshida, M.; Saltzman, E.; Jacques, P.F. Dietary carbohydrates and cardiovascular disease risk factors in the framingham offspring cohort. J. Am. Coll. Nutr. 2009, 28, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sasaki, S.; Okubo, H.; Takahashi, Y.; Hosoi, Y.; Itabashi, M. Dietary fiber intake, dietary glycemic index and load, and body mass index: A cross-sectional study of 3931 Japanese women aged 18–20 years. Eur. J. Clin. Nutr. 2007, 61, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Gellar, L.; Nathanson, B.H.; Pbert, L.; Ma, Y.; Ockene, I.; Rosal, M.C. Decrease in glycemic index associated with improved glycemic control among latinos with type 2 diabetes. J. Acad. Nutr. Diet. 2015, 115, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.M.; Steemburgo, T.; de Mello, V.D.F.; Tonding, S.F.; Gross, J.L.; Azevedo, M.J. High dietary glycemic index and low fiber content are associated with metabolic syndrome in patients with type 2 diabetes. J. Am. Coll. Nutr. 2011, 30, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Homayouni, F.; Shokoohi, M.; Fallah, A.; Farvid, M.S. Glycemic index, glycemic load and their association with glycemic control among patients with type 2 diabetes. Eur. J. Clin. Nutr. 2014, 68, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Milton, J.E.; Briche, B.; Brown, I.J.; Hickson, M.; Robertson, C.E.; Frost, G.S. Relationship of glycaemic index with cardiovascular risk factors: Analysis of the national diet and nutrition survey for people aged 65 and older. Public Health Nutr. 2007, 10, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Castro-Quezada, I.; Artacho, R.; Molina-Montes, E.; Serrano, F.A.; Ruiz-Lopez, M.D. Dietary glycaemic index and glycaemic load in a rural elderly population (60–74 years of age) and their relationship with cardiovascular risk factors. Eur. J. Nutr. 2015, 54, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Cosentino, L.; Rosafio, G.; Morgana, M.; Mattina, A.; Sprini, D.; Verga, S.; Rini, G.B. Effects of hypocaloric diets with different glycemic indexes on endothelial function and glycemic variability in overweight and in obese adult patients at increased cardiovascular risk. Clin. Nutr. 2013, 32, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Philippou, E.; McGowan, B.M.; Brynes, A.E.; Dornhorst, A.; Leeds, A.R.; Frost, G.S. The effect of a 12-week low glycaemic index diet on heart disease risk factors and 24 h glycaemic response in healthy middle-aged volunteers at risk of heart disease: A pilot study. Eur. J. Clin. Nutr. 2008, 62, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Abete, I.; Parra, D.; Martinez, J.A. Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clin. Nutr. 2008, 27, 545–551. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sichieri, R.; Moura, A.S.; Genelhu, V.; Hu, F.; Willett, W.C. An 18-mo randomized trial of a low-glycemic-index diet and weight change in Brazilian women. Am. J. Clin. Nutr. 2007, 86, 707–713. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Karl, J.P.; Cheatham, R.A.; Das, S.K.; Hyatt, R.R.; Gilhooly, C.H.; Pittas, A.G.; Lieberman, H.R.; Lerner, D.; Roberts, S.B.; Saltzman, E. Effect of glycemic load on eating behavior self-efficacy during weight loss. Appetite 2014, 80, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Roberts, S.B.; Schaefer, E.J.; Gleason, J.A.; Fuss, P.; Rasmussen, H.; Saltzman, E.; Das, S.K. Effects of carbohydrate quantity and glycemic index on resting metabolic rate and body composition during weight loss. Obesity 2015, 23, 2190–2198. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Juanola-Falgarona, M.; Ibarrola-Jurado, N.; Salas-Salvado, J.; Rabassa-Soler, A.; Bullo, M. Design and methods of the glyndiet study; assessing the role of glycemic index on weight loss and metabolic risk markers. Nutr. Hosp. 2013, 28, 382–390. [Google Scholar] [PubMed]
- Van Aerde, M.A.; Witte, D.R.; Jeppesen, C.; Soedamah-Muthu, S.S.; Bjerregaard, P.; Jorgensen, M.E. Glycemic index and glycemic load in relation to glucose intolerance among greenland’s inuit population. Diabetes Res. Clin. Pract. 2012, 97, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Okubo, H.; Hosoi, Y.; Horiguchi, H.; Oguma, E.; Kayama, F. Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am. J. Clin. Nutr. 2006, 83, 1161–1169. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dominguez Coello, S.; Cabrera de Leon, A.; Rodriguez Perez, M.C.; Borges Alamo, C.; Carrillo Fernandez, L.; Almeida Gonzalez, D.; Garcia Yanes, J.; Gonzalez Hernandez, A.; Brito Diaz, B.; Aguirre-Jaime, A. Association between glycemic index, glycemic load, and fructose with insulin resistance: The CDC of the canary islands study. Eur. J. Nutr. 2010, 49, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Tinker, L.F.; Neuhouser, M.L.; Ma, Y.; Patterson, R.E.; Phillips, L.S.; Liu, S.; Redden, D.T. Association of glycemic load with cardiovascular disease risk factors: The women’s health initiative observational study. Nutrition 2010, 26, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Davis, E.J.; Dhawan, A.; Liese, A.D.; Teff, K.; Schulz, M. Towards understanding of glycaemic index and glycaemic load in habitual diet: Associations with measures of glycaemia in the insulin resistance atherosclerosis study. Br. J. Nutr. 2006, 95, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Giles, G.G. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004, 27, 2701–2706. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, J.; Ascherio, A.; Rimm, E.B.; Colditz, G.A.; Spiegelman, D.; Jenkins, D.J.A.; Stampfer, M.J.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Liu, S.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am. J. Clin. Nutr. 2004, 80, 348–356. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stevens, J.; Ahn, K.; Juhaeri; Houston, D.; Steffan, L.; Couper, D. Dietary fiber intake and glycemic index and incidence of diabetes in African-American and white adults. Diabetes Care 2002, 25, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Halton, T.L.; Liu, S.; Manson, J.E.; Hu, F.B. Low-carbohydrate-diet score and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2008, 87, 339–346. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sakurai, M.; Nakamura, K.; Miura, K.; Takamura, T.; Yoshita, K.; Morikawa, Y.; Ishizaki, M.; Kido, T.; Naruse, Y.; Suwazono, Y.; et al. Dietary glycemic index and risk of type 2 diabetes mellitus in middle-aged Japanese men. Metabolism 2012, 61, 47–55. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Simila, M.E.; Kontto, J.P.; Valsta, L.M.; Mannisto, S.; Albanes, D.; Virtamo, J. Carbohydrate substitution for fat or protein and risk of type 2 diabetes in male smokers. Eur. J. Clin. Nutr. 2012, 66, 716–721. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Barclay, A.W.; Flood, V.M.; Rochtchina, E.; Mitchell, P.; Brand-Miller, J.C. Glycemic index, dietary fiber, and risk of type 2 diabetes in a cohort of older Australians. Diabetes Care 2007, 30, 2811–2813. [Google Scholar] [CrossRef] [PubMed]
- Mosdol, A.; Witte, D.R.; Frost, G.; Marmot, M.G.; Brunner, E.J. Dietary glycemic index and glycemic load are associated with high-density-lipoprotein cholesterol at baseline but not with increased risk of diabetes in the whitehall ii study. Am. J. Clin. Nutr. 2007, 86, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Sluijs, I.; van der Schouw, Y.T.; van der, A.D.; Spijkerman, A.M.; Hu, F.B.; Grobbee, D.E.; Beulens, J.W. Carbohydrate quantity and quality and risk of type 2 diabetes in the European prospective investigation into cancer and nutrition-Netherlands (EPIC-NL) study. Am. J. Clin. Nutr. 2010, 92, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Van Woudenbergh, G.J.; Kuijsten, A.; Sijbrands, E.J.; Hofman, A.; Witteman, J.C.; Feskens, E.J. Glycemic index and glycemic load and their association with C-reactive protein and incident type 2 diabetes. J. Nutr. Metab. 2011, 2011, 623076. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sahyoun, N.R.; Anderson, A.L.; Tylavsky, F.A.; Lee, J.S.; Sellmeyer, D.E.; Harris, T.B. Dietary glycemic index and glycemic load and the risk of type 2 diabetes in older adults. Am. J. Clin. Nutr. 2008, 87, 126–131. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Botero, D.; Ebbeling, C.B.; Blumberg, J.B.; Ribaya-Mercado, J.D.; Creager, M.A.; Swain, J.F.; Feldman, H.A.; Ludwig, D.S. Acute effects of dietary glycemic index on antioxidant capacity in a nutrient-controlled feeding study. Obesity 2009, 17, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.; Miller, E.R., 3rd; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA 2014, 312, 2531–2541. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Phadke, R.P.; Redden, D.T.; Gower, B.A. Effects of low- and high-glycemic index/glycemic load diets on coronary heart disease risk factors in overweight/obese men. Metabolism 2009, 58, 1793–1801. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Runchey, S.S.; Pollak, M.N.; Valsta, L.M.; Coronado, G.D.; Schwarz, Y.; Breymeyer, K.L.; Wang, C.; Wang, C.Y.; Lampe, J.W.; Neuhouser, M.L. Glycemic load effect on fasting and post-prandial serum glucose, insulin, IGF-1 and IGFBP-3 in a randomized, controlled feeding study. Eur. J. Clin. Nutr. 2012, 66, 1146–1152. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jenkins, D.J.; Kendall, C.W.; McKeown-Eyssen, G.; Josse, R.G.; Silverberg, J.; Booth, G.L.; Vidgen, E.; Josse, A.R.; Nguyen, T.H.; Corrigan, S.; et al. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: A randomized trial. JAMA 2008, 300, 2742–2753. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.; Mehling, C.; Chiasson, J.L.; Josse, R.; Leiter, L.; Maheux, P.; Rabasa-Lhoret, R.; Rodger, N.; Ryan, E. Low glycaemic index diet and disposition index in type 2 diabetes (the Canadian trial of carbohydrates in diabetes): A randomised controlled trial. Diabetologia 2008, 51, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Gibbs, A.L.; Mehling, C.; Chiasson, J.L.; Connelly, P.W.; Josse, R.G.; Leiter, L.A.; Maheux, P.; Rabasa-Lhoret, R.; Rodger, N.W.; et al. The Canadian trial of carbohydrates in diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: No effect on glycated hemoglobin but reduction in C-reactive protein. Am. J. Clin. Nutr. 2008, 87, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.V.; Costa Jde, A.; Alfenas Rde, C. Effect of glycemic index on obesity control. Arch. Endocrinol. MeTable 2015, 59, 245–251. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gomes, J.M.G.; Fabrini, S.P.; Alfenas, R.C.G. Low glycemic index diet reduces body fat and attenuates inflammatory and metabolic responses in patients with type 2 diabetes. Arch. Endocrinol. Metab. 2017, 61, 137–144. [Google Scholar] [CrossRef] [PubMed][Green Version]
- American Diabetes Association. 3. Foundations of care and comprehensive medical evaluation. Diabetes Care 2016, 39, S23–S35. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.; Ojo, O.O.; Adebowale, F.; Wang, X.H. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2018, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejia, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Cook, N.R.; Stampfer, M.J.; Ridker, P.M.; Rexrode, K.M.; Buring, J.E.; Manson, J.E.; Liu, S. Dietary glycemic index, dietary glycemic load, blood lipids, and c-reactive protein. Metabolism 2008, 57, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Gilliard, T.; Schulz, M.; D’Agostino, R.B., Jr.; Wolever, T.M. Carbohydrate nutrition, glycaemic load, and plasma lipids: The insulin resistance atherosclerosis study. Eur. Heart J. 2007, 28, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Juanola-Falgarona, M.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Ros, E.; Fito, M.; Recondo, J.; Gomez-Gracia, E.; Fiol, M.; et al. Dietary glycemic index and glycemic load are positively associated with risk of developing metabolic syndrome in middle-aged and elderly adults. J. Am. Geriatr. Soc. 2015, 63, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Wada, K.; Tsuji, M.; Kawachi, T.; Nakamura, K. Dietary glycaemic index and glycaemic load in relation to all-cause and cause-specific mortality in a Japanese community: The takayama study. Br. J. Nutr. 2014, 112, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- Burger, K.N.; Beulens, J.W.; van der Schouw, Y.T.; Sluijs, I.; Spijkerman, A.M.; Sluik, D.; Boeing, H.; Kaaks, R.; Teucher, B.; Dethlefsen, C.; et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS ONE 2012, 7, e43127. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Mittleman, M.A.; Wolk, A. Dietary glycemic index, dietary glycemic load and mortality among men with established cardiovascular disease. Eur. J. Clin. Nutr. 2009, 63, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Mittleman, M.A.; Hakansson, N.; Wolk, A. Dietary glycemic index, dietary glycemic load, and cardiovascular disease in middle-aged and older Swedish men. Am. J. Clin. Nutr. 2007, 85, 1521–1526. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, D.; Shu, X.O.; Li, H.; Xiang, Y.B.; Yang, G.; Gao, Y.T.; Zheng, W.; Zhang, X. Dietary carbohydrates, refined grains, glycemic load, and risk of coronary heart disease in Chinese adults. Am. J. Epidemiol. 2013, 178, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Burger, K.N.; Beulens, J.W.; Boer, J.M.; Spijkerman, A.M.; van der, A.D. Dietary glycemic load and glycemic index and risk of coronary heart disease and stroke in Dutch men and women: The EPIC-MORGEN study. PLoS ONE 2011, 6, e25955. [Google Scholar] [CrossRef] [PubMed]
- Hardy, D.S.; Hoelscher, D.M.; Aragaki, C.; Stevens, J.; Steffen, L.M.; Pankow, J.S.; Boerwinkle, E. Association of glycemic index and glycemic load with risk of incident coronary heart disease among whites and African Americans with and without type 2 diabetes: The atherosclerosis risk in communities study. Ann. Epidemiol. 2010, 20, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Sieri, S.; Krogh, V.; Berrino, F.; Evangelista, A.; Agnoli, C.; Brighenti, F.; Pellegrini, N.; Palli, D.; Masala, G.; Sacerdote, C.; et al. Dietary glycemic load and index and risk of coronary heart disease in a large Italian cohort: The EPICOR study. Arch. Intern. Med. 2010, 170, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.; de Bruijne, L.M.; Stolk, R.P.; Peeters, P.H.; Bots, M.L.; Grobbee, D.E.; van der Schouw, Y.T. High dietary glycemic load and glycemic index increase risk of cardiovascular disease among middle-aged women: A population-based follow-up study. J. Am. Coll. Cardiol. 2007, 50, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Mittleman, M.A.; Wolk, A. Dietary glycaemic index, dietary glycaemic load and incidence of myocardial infarction in women. Br. J. Nutr. 2010, 103, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Mittleman, M.A.; Wolk, A. Dietary glycemic index, dietary glycemic load, and incidence of heart failure events: A prospective study of middle-aged and elderly women. J. Am. Coll. Nutr. 2010, 29, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Y.; Liu, J.P.; Song, Z.Y. Glycemic load, glycemic index and risk of cardiovascular diseases: Meta-analyses of prospective studies. Atherosclerosis 2012, 223, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Neuhouser, M.L.; Schwarz, Y.; Wang, C.; Breymeyer, K.; Coronado, G.; Wang, C.-Y.; Noar, K.; Song, X.; Lampe, J.W. A low-glycemic load diet reduces serum C-reactive protein and modestly increases adiponectin in overweight and obese adults. J. Nutr. 2012, 142, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Philippou, E.; Bovill-Taylor, C.; Rajkumar, C.; Vampa, M.L.; Ntatsaki, E.; Brynes, A.E.; Hickson, M.; Frost, G.S. Preliminary report: The effect of a 6-month dietary glycemic index manipulation in addition to healthy eating advice and weight loss on arterial compliance and 24-hour ambulatory blood pressure in men: A pilot study. Metabolism 2009, 58, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Gogebakan, O.; Kohl, A.; Osterhoff, M.A.; van Baak, M.A.; Jebb, S.A.; Papadaki, A.; Martinez, J.A.; Handjieva-Darlenska, T.; Hlavaty, P.; Weickert, M.O.; et al. Effects of weight loss and long-term weight maintenance with diets varying in protein and glycemic index on cardiovascular risk factors: The diet, obesity, and genes (diogenes) study: A randomized, controlled trial. Circulation 2011, 124, 2829–2838. [Google Scholar] [CrossRef] [PubMed]
- De Rougemont, A.; Normand, S.; Nazare, J.A.; Skilton, M.R.; Sothier, M.; Vinoy, S.; Laville, M. Beneficial effects of a 5-week low-glycaemic index regimen on weight control and cardiovascular risk factors in overweight non-diabetic subjects. Br. J. Nutr. 2007, 98, 1288–1298. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McMillan-Price, J.; Petocz, P.; Atkinson, F.; O’Neill, K.; Samman, S.; Steinbeck, K.; Caterson, I.; Brand-Miller, J. Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: A randomized controlled trial. Arch. Intern. Med. 2006, 166, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Vega-López, S.; Mayol-Kreiser, S. Use of the glycemic index for weight loss and glycemic control: A review of recent evidence. Curr. Diab. Rep. 2009, 9, 379–388. [Google Scholar] [CrossRef]
- Kristo, A.S.; Matthan, N.R.; Lichtenstein, A.H. Effect of diets differing in glycemic index and glycemic load on cardiovascular risk factors: Review of randomized controlled-feeding trials. Nutrients 2013, 5, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X. Do glycemic index, glycemic load, and fiber play a role in insulin sensitivity, disposition index, and type 2 diabetes? Diabetes Care 2005, 28, 2978–2979. [Google Scholar] [CrossRef] [PubMed]
- Vega-López, S.; Ausman, L.M.; Griffith, J.L.; Lichtenstein, A.H. Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. Diabetes Care 2007, 30, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.H.; Soeandy, C.D.; Smith, C.E. White vegetables: Glycemia and satiety. Adv. Nutr. 2013, 4, 356S–367S. [Google Scholar] [CrossRef] [PubMed]
Study | Sample | Design | Duration | Intervention | Treatment Effects (Low vs. High GI) | Greater Fiber (Low GI) |
---|---|---|---|---|---|---|
Louie et al. [9] | 10 women w/GDM 30–32 weeks gestation 18–45 years | R; X | 2 h PP responses to breakfast meal | LGI HGI | ↓ PP Glucose ↔ Satiety (subj) | No |
Makris et al. [10] | 16 sedentary adults 38 ± 11 years 30.9 ± 3.7 kg/m2 | R; X | 4 h PP responses to breakfast | HGI-Hprot HGI-Lprot LGI-Hprot LGI-Lprot | ↓ Glucose, insulin No protein effects No GI × protein effects ↔ Ad libitum energy intake ↔ Hunger (subj) ↔ Satiety (subj) | No |
Silva et al. [11] | 14 adults w/T2D 66 ± 5 years 27.2 ± 3.1 kg/m2 HbA1c: 6.6 ± 0.9% | R; X | 3 h PP responses to breakfast meal | HGI-HF HGI-LF LGI-HF LGI-LF | ↓ Glucose LGIHF vs. HGILF ↓ Ins HGIHF vs. HGILF ↓ Ghrelin LGIHF @ 180 min ↔ Appetite (subj) | NA |
Lobos et al. [12] | 10 obese adults w/T2D and intensive insulin therapy 55 ± 6 years 34.7 ± 2.4 kg/m2 | R; X | 2 h PP responses to breakfast meal | LGI breakfast HGI breakfast | ↔ Satiety (subj) ↓ Glucose | Yes |
Png et al. [13] | 12 Muslim adult men 28 ± 7 years 51 ± 9 kg | R; X | 12 h PP after ingestion of the last meal before fast during Ramadan | LGI (37) Control (GI ~57) | ↔ Satiety, appetite, fullness (all subj) | NR |
Campbell et al. [14] | 10 men with T1D 27 ± 1 years 25.5 ± 0.03 kg/m2 | R; X | Postprandial responses to postexercise meal | LGI meal HGI meal | ↓ Glucose AUC ↔ Glucose, insulin, glucagon, GLP-1 ↔ Appetite (subj) | No |
Reynolds et al. [15] | 12 adults 23 ± 3 years 23.1 ± 1.9 kg/m2 | R; X | 10 h PP responses to 4 consecutive meals | Low-GI diet High-GI diet | ↓ Glucose, insulin ↔ CCK, ghrelin | No |
Liu et al. [16] | 26 overweight/ obese adults 44 ± 15 years 29.1 ± 2.8 kg/m2 | R; X | PP responses over 12 h including std breakfast/lunch/dinner | HGI-HCHO HGI-LCHO LGI-HCHO LGI-LCHO | ↓ Glucose all vs. HGI-HCHO ↓ Insulin all vs. HGI-HCHO ↔ Hunger (subj) | No |
Study | Sample | Design | Duration | Intervention | Treatment Effects (Low vs. High GI) | Greater Fiber (Low GI) |
---|---|---|---|---|---|---|
Pal et al. [18] | 21 overweight/obese adults Age: 25–65 years | R; X | 21 days | LGI breakfast replacement HGI breakfast replacement | ↓ Glucose ↔ TG, insulin, LDL-C, HDL-C ↑ Satiety (subj) | Yes for breakfast replacement No for overall diet (self-reported) |
Chang et al. [19] | 80 overweight/obese adults 18–45 years 27.5 ± 5.9 kg/m2 | R; X | 4 weeks | LGL diet HGL diet | ↑ Satiety (subj) ↓ Food cravings ↔ Leptin | Yes |
Brownley et al. [20] | 40 women 20 normal weight, 20 obese ≥18 years | R; X | 4.5 days 3h PP Responses to last std meal assessed | LGL diet HGL diet | ↓ Glucose, insulin ↑ Ghrelin ↔ Desire to eat (subj) Significant results only in White women | NR |
Krog-Mikkelsen et al. [21] | 29 overweight women 31 ± 7 years 27.6 ± 1.5 kg/m2 | R; = | 10 weeks 4 h PP Responses to last high or low GI breakfast assessed | LGI diet HGI diet | ↓ Glucose, insulin, GLP-1 ↑ Fullness (subj) ↓ Desire to eat fatty food(sub) ↔ GLP-2, glucagon, leptin, ghrelin ↔ Ad libitum energy intake ↔ Substrate oxidation rates | No |
Aston et al. [22] | 19 women 34–65 years 25–47 kg/m2 | R; X | 12-week/phase No washout | LGI staples HGI staples Ad libitum | ↔ Body wt, body composition, waist circumference ↔ Hunger, fullness (both subj) ↔ Energy intake | Yes |
Das et al. [23] | 34 overweight adults 24–42 years 25–30 kg/m2 | R; = | 12 months | LGL diet HGL diet 30% energy restriction | ↔ Body wt, % Body fat ↔ Hunger, satiety (both subj) | No |
Juanola-Falgarona et al. [24] | 122 overweight or obese adults 30–60 years 27–35 kg/m2 | R; = | 6 months | LGI HGI HGI-LFat 500 kcal energy restriction | ↔ BMI ↔ Hunger, satiety (both subj) | No |
Study | Sample | Association Trends | |||
---|---|---|---|---|---|
GI | GL | Fiber | CHO | ||
Mendez et al. [29] | 8195 Spanish adults 35–74 years 18.5–60 kg/m2 | ↔ BMI (men) - BMI (women) | (-) BMI | (-) GI (+) GL | (+) GL (men) ↔ GI (women) (+) GL |
Hosseinpour-Niazi et al. [30] | 2457 adults 19–84 years | (+) BMI ↔ WC, Glucose, total-C, LDL-C, BP (-) HDL-C (among obese) (+) TG (among obese) | ↔ BMI, WC, Total-C, LDL-C, HDL-C, TG, BP (-) Glucose, 2-h glucose (among non-obese) | NR | NR |
McKeown et al. [31] | 2941 adults 27.2 kg/m2 | + Insulin ↔ Glucose | NR | NR | + Fiber ↔ Glucose, insulin |
Murakami et al. [32] | 3931 Japanese women 18–20 years | + Glucose, HbA1c, BMI | + Glucose ↔ BMI | - BMI, GI, GL | NR |
Wang et al. [33] | 238 low income Latino adults w/T2D 45–67 years 33–36 kg/m2 | ↔ WC (+) HbA1c ↔ Glucose | (+) WC ↔ Glucose, HbA1c | - GI | NR |
Silva et al. [34] | 175 adults w/T2D 52–71 years | (+) MetS (+) WC | NR | (+) MetS (+) WC | NR |
Farvid et al. [35] | 640 adults w/T2D 28–75 years | ↔ Glucose ↔ HbA1c | (+) Glucose (+) HbA1c ↔ BMI | (-) Glucose ↔ HbA1c ↔ BMI | (+) Glucose (+) HbA1c (when substitutes CHO for prot or fat) |
Milton et al. [36] | 1152 older adults (>65 years) | ↔ BMI, W/H ↔ TC, LDL-C, HDL-C, TG, BP | NR | NR | NR |
Castro-Quezada et al. [37] | 343 rural Spanish older adults Age: 60–74 years | ↔ BMI, WC | ↔ BMI, WC | NR | NR |
Study | Sample | Duration | Intervention | Treatment Effects (Low vs. High GI) | Greater Fiber (Low GI) |
---|---|---|---|---|---|
Buscemi et al. [38] | 40 obese adults 20–60 years 25–49.9 kg/m2 | 3 months | LGI diet, hypocaloric HGI diet, hypocaloric | ↔ Weight loss ↔ WC ↔ BMI | No |
Philippou et al. [39] | 18 adults at risk for heart disease 35–65 years 27–35 kg/m2 | 12 weeks | LGI diet HGI diet Deficit 500 kcal/day | ↔ Weight loss ↔ BMI | No |
Abete et al. [40] | 32 obese Spanish adults 36 ± 7 years 32.5 ± 4.3 kg/m2 | 8 weeks | LGI diet HGI diet 30% energy restriction | ↓ Body weight | Yes |
Das et al. [23] | 34 overweight adults 24–42 years 25–30 kg/m2 | 12 months | LGL diet HGL diet 30% energy restriction | ↔ Weight loss, % Body fat ↔ Hunger, satiety (both subj) | No |
Sichieri et al. [41] | 203 women 25–45 years 23–30 kg/m2 | 18 months | LGI diet HGI diet Deficit 100–300 kcal/day | ↔ Weight loss | No |
Juanola-Falgarona et al. [24] | 122 overweight or obese adults 30–60 years 27–35 kg/m2 | 6 months | LGI HGI HGI-LFat 500 kcal energy restriction | ↔ Weight loss, WC ↔ BMI ↔ Hunger, satiety (both subj) | No |
Karl et al. [42] | 46 overweight adults 20–42 years 25–29.9 kg/m2 | 12 months | LGL-10% energy restriction HGL-10% energy restriction LGL-30% energy restriction HGL-30% energy restriction | ↔ Weight loss | No |
Karl et al. [43] | 91 obese adults | 17 weeks | LGI-55% CHO HGI-55% CHO LGI-70% CHO HGI-70% CHO | ↔ Weight loss, body composition | No |
Study | Sample | Association Trends | |||
---|---|---|---|---|---|
GI | GL | Fiber | CHO | ||
Farvid et al. [35] | 640 adults w/T2D 28–75 years | ↔ Glucose ↔ HbA1c | (+) Glucose (+) HbA1c ↔ BMI | (-) Glucose ↔ HbA1c ↔ BMI | (+) Glucose (+) HbA1c (when substitutes CHO for prot or fat) |
Wang et al. [33] | 238 low income Latino adults w/T2D 45–67 years 33–36 kg/m2 | ↔ WC (+) HbA1c ↔ Glucose | (+) WC ↔ Glucose, HbA1c | - GI | NR |
van Aerde et al. [45] | 2078 Inuit adults 28–62 years 21–33 kg/m2 | (+) Glucose ↔ 2 h-Glucose, HbA1c, HOMA | ↔ Glucose, 2 h-Glucose, IGT, HbA1c (+) HOMA | NR | NR |
Hosseinpour-Niazi et al. [30] | 2457 adults 19–84 years | (+) BMI ↔ WC, Glucose, Total-C, LDL-C, BP (-) HDL-C (among obese) (+) TG (among obese) | ↔ BMI, WC, Total-C, LDL-C, HDL-C, TG, BP (-) Glucose, 2-h glucose (among non-obese) | NR | NR |
McKeown et al. [31] | 2941 adults 27.2 kg/m2 | (+) Insulin, TG (-) HDL-C ↔ Glucose, Total-C, LDL-C ↔ WC | NR | NR | (+) Fiber ↔ Glucose, insulin |
Murakami et al. [46] | 3931 Japanese women 18–20 years | (+) Glucose, HbA1c, BMI | (+) Glucose ↔ BMI | (-) BMI, GI, GL | NR |
Dominguez Coello et al. [47] | 668 adults 18–75 years | ↔ HOMA | (+) HOMA; null when adjusted for fructose | (+) HOMA for fruit fiber (-) HOMA for cereal and vegetable fiber | (+) HOMA for fructose |
Shikany et al. [48] | 878 postmenopausal women 63.8 ± 7.3 years 26.9 ± 5.2 kg/m2 | NR | (-) HDL-C (+) TG ↔ TC, LDL-C, glucose, insulin, HOMA | NR | NR |
Mayer-Davis et al. [49] | 1255 adults with/without IR or T2D 55.3±8.5 years 29.1±5.9 kg/m2 | ↔ Glucose | ↔ Glucose, 2 h-Glucose | NR | NR |
Study | Sample | F/U, y | Type 2 Diabetes Risk | |||
---|---|---|---|---|---|---|
GI | GL | Fiber | CHO | |||
Halton et al. [54] | 85,059 women | 20 | NR | ↑ | NR | ↑ |
Villegas et al. [28] | 64,227 middle-aged Chinese women | 4.6 | ↑ | ↑ | NR | ↑ |
Sakurai et al. [55] | 1995 adult Japanese male | 6 | ↑ | ↔ | ↔ (total fiber) | NR |
Simila et al. [56] | 25,943 male smokers 50–69 years | 12 | ↔ | ↔ | ↔ | ↓ (total CHO) |
Barclay et al. [57] | 2123 Australian adults | 10 | ↔ | NR | ↔ (total fiber) | ↔ (total CHO, sugar, or starch) |
Mosdol et al. [58] | 7321 Caucasian adults | 13 | ↔ | ↑ | NR | NR |
Sluijs et al. [59] | 37,843 Netherlands adults 21–70 years | 10 | ↑ | ↑ | ↓ | ↑ (starch) |
Van Woudenbergh et al. [60] | 4366 Netherlands adults ≥55 years | 12 | ↔ | ↔ | NR | NR |
Sluijs et al. [25] | 16,835 adults | 12 | ↔ | ↔ | NR | ↔ |
Sahyoun et al. [61] | 1898 older adults 70–79 years | 4 | ↔ | ↔ | NR | NR |
Study | Sample | Design | Duration | Intervention | Treatment Effects (Low vs. High GI) | Greater Fiber (Low GI) |
---|---|---|---|---|---|---|
Botero et al. [62] | 12 overweight and obese males 18–35 years 27–45 kg/m2 | R; X | 10 days/phase | LGL HGL | ↓ Glucose, insulin | No |
Pal et al. [18] | 21 overweight and obese adults 25–65 years | R; X | 21 days/phase | LGI breakfast replacement HGI breakfast replacement | ↓ Glucose ↔ Insulin, HOMA | Yes |
Sacks et al. [63] | 163 overweight adults 53 ± 11 years 32 ± 6 kg/m2 | R; X | 5 weeks/phase | HGI-HCHO HGI-LCHO LGI-HCHO LGI-LCHO | ↓ Glucose, insulin sensitivity (only with HCHO) | Yes |
Shikany et al. [64] | 24 overweight and obese men 34.5 ± 8.1 years 27.8 ± 3.5 kg/m2 | R; X | 4 weeks/phase | LGI/GL HGI/GL | ↔ Weight, BMI ↔ Glucose, insulin ↔ CRP, IL-6, TNF-a, TNF-RII, PAI-1, Fibrinogen ↑ Total-C, LDL-C, HDL-C | No |
Runchey et al. [65] | 80 adults 29.6 ± 8.2 years 27.4 ± 5.9 kg/m2 | R; X | 4 weeks/phase | LGL HGL | ↓ Glucose, IGF-1 ↔ Insulin, HOMA | Yes |
Buscemi et al. [38] | 40 obese adults 20–60 years 25–49.9 kg/m2 | R; = | 3 months | LGI diet, hypocaloric HGI diet, hypocaloric | ↔ Weight loss, WC, BMI ↔ HbA1c, Glucose, HOMA | No |
Jenkins et al. [66] | 210 adults w/T2D HbA1c 6.5–8.0% | R; = | 6 months | LGI diet High-cereal fiber diet | ↓ HbA1c ↓ Glucose | Yes |
Juanola-Falgarona et al. [24] | 122 overweight or obese adults 30–60 years 27–35 kg/m2 | R; = | 6 months | LGI HGI HGI-LFat 500 kcal energy restriction | ↔ Weight loss, WC, BMI ↔ Hunger, satiety (both subj) ↔ Glucose | No |
Wolever et al. [67,68] | 162 adults w/T2D HbA1c ≤ 130% of ULN 20–40 kg/m2 | R; = | 12 months | HCHO/HGI HCHO/LGI LCHO/HMUFA | ↔ HbA1c, HOMA, insulinogenic index, muscle insulin sensitivity ↔ Weight loss | Yes |
Pereira et al. [69] | 19 healthy adults 22–38 years 27–35 kg/m2 | R; = | 45 days | LGI HGI | ↔ Glucose, insulin, leptin (including AUCs) ↓ HOMA vs. baseline ↓ WC, W/H, body fat % | NR |
Gomes et al. [70] | 20 adults w/T2D 42.4 ± 5.1 years 29.2 ± 4.8 kg/m2 | R; = | 30 days | LGI HGI | ↔ Glucose, adiponectin, CRP, total-C, LDL-C, HDL-C, TG ↑ fructosamine ↓ body weight |
Study | Sample | Association Trends | |
---|---|---|---|
GI | GL | ||
Hosseinpour-Niazi et al. [30] | 2457 adults 19–84 years | (+) BMI ↔ WC, Glucose, Total-C, LDL-C, BP (-) HDL-C (among obese) (+) TG (among obese) | ↔ BMI, WC, Total-C, LDL-C, HDL-C, TG, BP (-) Glucose, 2-h glucose (among non-obese) |
Levitan et al. [74] | 18,137 women ≥45 years | (-) HDL-C (+) LDL-C, LDL/HDL, TG, CRP | (-) HDL-C (+) LDL/HDL, TG |
Liese et al. [75] | 1026 middle-aged adults | ↔ Total-C, LDL-C, HDL-C, TG | (+) Total-C, LDL-C, TG (-) HDL-C |
McKeown et al. [31] | 2941 adults 27.2 kg/m2 | (+) Insulin, TG (-) HDL-C ↔ Glucose, TC, LDL-C ↔ WC | NR |
Milton et al. [36] | 1152 older adults (>65 years) | ↔ BMI, W/H ↔ TC, LDL-C, HDL-C, TG, BP | NR |
Murakami et al. [46] | 3931 Japanese women 18–20 years | (+) Glucose, HbA1c, BMI, TG ↔ TC, LDL-C, HDL-C | (+) Glucose, TG (-) HDL-C ↔ BMI ↔ TC, LDL-C |
Shikany et al. [48] | 878 postmenopausal women 63.8 ± 7.3 years 26.9 ± 5.2 kg/m2 | NR | (-) HDL-C (+) TG ↔ TC, LDL-C, glucose, insulin, HOMA |
Juanola-Falagrona et al. [76] | 6606 adults Men: 55–80 years Women: 60–80 years | (+) MetS (among <75 years without T2D) (+) elevated TG (among 65–74 years without T2D) ↔ other MetS components | ↔ MetS or its components |
Castro-Quezada et al. [37] | 343 rural Spanish older adults 60–74 years | ↔ BMI, WC ↔ Glucose, TC, LDL-C, HDL-C, TG, BP | ↔ BMI, WC ↔ Glu, TC, LDL-C, HDL-C, TG, BP |
Study | Sample | F/U, y | Outcome | Type 2 Diabetes Risk | |||
---|---|---|---|---|---|---|---|
GI | GL | Fiber | CHO | ||||
Nagata et al. [77] | 28,356 Japanese adults | 16 | CVD mortality | ↑ (women) | ↔ | NR | NR |
Burger et al. [78] | 6192 adults with T2D | 9.2 | CVD mortality | ↔ | ↔ | ↓ | ↔ CHO, sugar or starch |
Levitan et al. [79] | 4617 men with prior CVD 45–79 years | 6 | CVD mortality | ↔ | ↔ | NR | NR |
Levitan et al. [80] | 36,246 Swedish men 45–79 years | 6 | MI Stroke CVD mortality | ↔ ↔ ↔ | ↔ ↔ ↔ | NR | NR |
Yu et al. [81] | 117,366 Chinese adults 40–74 years | 9.8 years for women 5.4 years for men | CHD | ↔ | ↑ | ↑ (refined grains) | ↑ |
Burger et al. [82] | 8855 men 10,753 women 21–64 years | 11.9 | Stroke CHD | ↑ (men) ↔ | ↔ ↔ | NR | ↔ ↑ (men; CHO, starch) |
Hardy et al. [83] | 13051 adults 45–64 years | 17 | CHD | ↑ (African Americans) ↔ (when excluding participants w/T2D) | ↑ (Whites) ↔ (when excluding participants w/T2D) | NR | NR |
Sieri et al. [84] | 44,132 adults | 7.9 | CHD | ↔ | ↑ (women) | NR | ↑ (women) ↔ sugar or starch |
Beulens et al. [85] | 15,714 Dutch women | 9 | CHD Stroke Combined | ↑ ↔ ↑ | ↔ ↔ ↑ | NR | NR |
Levitan et al. [86] | 36,234 Swedish women 48–83 years | 9 | MI | ↔ | ↔ | NR | NR |
Levitan et al. [87] | 36,019 women 48–83 years | 9 | HF | ↔ | ↔ | NR | NR |
Study | Sample | Design | Duration | Intervention | Treatment Effects (Low vs. High GI) | Greater Fiber (Low GI) |
---|---|---|---|---|---|---|
Botero et al. [62] | 12 overweight and obese males 18–35 years 27–45 kg/m2 | R; X | 10 days/phase | LGL HGL | ↓ Glucose, insulin ↔ BP, Total-C, HDL-C, TG, CRP | No |
Neuhouser et al. [89] | 80 overweight or obese adults 18–45 years 27.5 ± 5.9 kg/m2 | R; X | 4 weeks/phase | LGL HGL | ↓ CRP (if high body fat mass) ↔ Leptin, adiponectin | Yes |
Sacks et al. [63] | 163 overweight adults 53 ± 11 years 32 ± 6 kg/m2 | R; X | 5 weeks/phase | HGI-HCHO HGI-LCHO LGI-HCHO LGI-LCHO | With HCHO: ↓ Glucose, insulin sensitivity ↑ LDL-C ↔ HDL-C, TG, BP With LCHO: ↔ Glucose, insulin, LDL-C, HCL-C, TG, BP | Yes |
Shikany et al. [64] | 24 overweight and obese men 34.5 ± 8.1 years 27.8 ± 3.5 kg/m2 | R; X | 4 weeks/phase | LGI/GL HGI/GL | ↔ Weight, BMI ↔ Glucose, insulin ↔ CRP, IL-6, TNF-a, TNF-RII, PAI-1, Fibrinogen ↑ Total-C, LDL-C, HDL-C | No |
Pal et al. [18] | 21 overweight and obese adults 25–65 years | R; X | 21 days/phase | LGI breakfast replacement HGI breakfast replacement | ↓ Glucose ↔ Insulin, HOMA ↔ TG, LDL-C, HDL-C | Yes |
Buscemi et al. [38] | 40 obese adults 20–60 years 25–49.9 kg/m2 | R; = | 3 months | LGI diet, hypocaloric HGI diet, hypocaloric | ↔ Weight loss, WC, BMI ↔ HbA1c, Glucose, HOMA | No |
Philippou et al. [39] | 13 adults 35–65 years 27–35 kg/m2 | R; = | 12 weeks | LGL HGL | ↑ Weight loss ↓ Glucose AUC ↔ Total-C, LDL-C, HDL-C, TG, Glucose ↔ WC, Body Fat % | No |
Philippou et al. [90] | 38 men with high CHD risk 35–65 years 27–35 kg/m2 | R; = | 6 months | LGL HGL | ↓ Insulin, HOMA ↓ TC ↔ BP, LDL-C, HDL-C, TG | No |
de Rougemont et al. [92] | 38 French adults 20–60 years 25–30 kg/m2 | R; = | 5 weeks | LGI starchy foods HGI starchy foods | ↓ Body weight, BMI ↓ TC, LDL-C | Yes |
McMillan-Price et al. [93] | 129 overweight and obese young adults 18–40 years 25–30 kg/m2 | R; = | 12 weeks | HGI/HCHO LGI/HCHO HGI/HProt LGI/HProt (All LFat, HF) | ↑ LDL-C w/HighGI-Hprot ↔ weight, HDL-C, TG, FFA, Glucose, Insulin, HOMA, CRP | No |
Gogebakan et al. [91] | 773 overweight or obese adults 18–65 years 27–45 kg/m2 | R; = | 6 months (after initial weight loss phase) | LGI/LProt HGI/HProt LGI/HProt HGI/Lprot | ↔ Glucose ↓ hsCRP | No |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-López, S.; Venn, B.J.; Slavin, J.L. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018, 10, 1361. https://doi.org/10.3390/nu10101361
Vega-López S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients. 2018; 10(10):1361. https://doi.org/10.3390/nu10101361
Chicago/Turabian StyleVega-López, Sonia, Bernard J. Venn, and Joanne L. Slavin. 2018. "Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease" Nutrients 10, no. 10: 1361. https://doi.org/10.3390/nu10101361