Guanidinoacetic Acid and Creatine are Associated with Cardiometabolic Risk Factors in Healthy Men and Women: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BFP | Body fat percentage |
BMI | Body mass index |
CK | Creatine kinase |
CRP | C-reactive protein |
DiPAH | Diet and Physical Activity for Health Initiative study |
GAA | Guanidinoacetic acid |
SLC6A8 | Creatine transporter |
tHcy | Total homocysteine |
References
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. Creatine: Endogenous metabolite, dietary, and therapeutic supplement. Ann. Rev. Nutr. 2007, 27, 241–261. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M. Cellular bioenergetics of guanidinoacetic acid: The role of mitochondria. J. Bioenerg. Biomembr. 2015, 47, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Brewster, L.M.; Mairuhu, G.; Bindraban, N.R.; Koopmans, R.P.; Clark, J.F.; van Montfrans, G.A. Creatine kinase activity is associated with blood pressure. Circulation 2006, 114, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Haan, Y.C.; van Montfrans, G.A.; Brewster, L.M. The high creatine kinase phenotype is hypertension- and obesity-prone. J. Clin. Hypertens. 2015, 17, 322. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, S.H.; Lilleng, H.; Bekkelund, S.I. Creatine kinase as predictor of blood pressure and hypertension. Is it all about body mass index? A follow-up study of 250 patients. J. Clin. Hypertens. 2014, 16, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Stead, L.M.; Brosnan, J.T.; Brosnan, M.E.; Vance, D.E.; Jacobs, R.L. Is it time to reevaluate methyl balance in humans? Am. J. Clin. Nutr. 2006, 83, 5–10. [Google Scholar] [PubMed]
- Glier, M.B.; Green, T.J.; Devlin, A.M. Methyl nutrients, DNA methylation, and cardiovascular disease. Mol. Nutr. Food. Res. 2014, 58, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Law, M.; Morris, J.K. Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ 2002, 325, 1202. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.L.; Botelho, P.B.; Pimentel, G.D.; Campos-Ferraz, P.L.; Mota, J.F. Creatine supplementation and glycemic control: A systematic review. Amino Acids 2016, 48, 2103–2129. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M.; Niess, B.; Stojanovic, M.; Obrenovic, M. Co-administration of methyl donors along with guanidinoacetic acid reduces the incidence of hyperhomocysteinaemia compared with guanidinoacetic acid administration alone. Br. J. Nutr. 2013, 110, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Alsever, R.N.; Georg, R.H.; Sussman, K.E. Stimulation of insulin secretion by guanidinoacetic acid and other guanidine derivatives. Endocrinology 1970, 86, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Nittynen, L.; Nurminen, M.L.; Korpela, R.; Vapaatalo, H. Role of arginine, taurine and homocysteine in cardiovascular diseases. Ann. Med. 1999, 31, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Korzun, W.J. Oral creatine supplements lower plasma homocysteine concentrations in humans. Clin. Lab. Sci. 2004, 17, 102–106. [Google Scholar] [PubMed]
- Earnest, C.P.; Almada, A.L.; Mitchell, T.L. High-performance capillary electrophoresis-pure creatine monohydrate reduces blood lipids in men and women. Clin. Sci. 1996, 91, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Gualano, B.; De Salles Painneli, V.; Roschel, H.; Artioli, G.G.; Neves, M., Jr.; De Sá Pinto, A.L.; Da Silva, M.E.; Cunha, M.R.; Otaduy, M.C.; Leite Cda, C.; et al. Creatine in type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Med. Sci. Sports Exerc. 2011, 43, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.A.; Hall, M.N.; Liu, X.; Parvez, F.; Siddique, A.B.; Shahriar, H.; Uddin, M.N.; Islam, T.; Ilievski, V.; Graziano, J.H.; et al. Low-dose creatine supplementation lowers plasma guanidinoacetate, but not plasma homocysteine, in a double-blind, randomized, placebo-controlled trial. J. Nutr. 2015, 145, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Luan, J.; Sherar, L.B.; Esliger, D.W.; Griew, P.; Cooper, A. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 2012, 307, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Del Fabbro, M. Relation between serum creatinine and body mass index in elite athletes of different sport disciplines. Br. J. Sports Med. 2006, 40, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Karamat, F.A.; van Montfrans, G.A.; Brewster, L.M. Creatine synthesis demands the majority of the bioavailable L-arginine. J. Hypertens. 2015, 33, 2368. [Google Scholar] [CrossRef] [PubMed]
- Naseem, K.M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 2005, 26, 33–65. [Google Scholar] [CrossRef] [PubMed]
- Brewster, L.M.; Seedat, Y.K. Why do hypertensive patients of African ancestry respond better to calcium blockers and diuretics than to ACE inhibitors and β-adrenergic blockers? A systematic review. BMC Med. 2013, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Carducci, C.; Birarelli, M.; Leuzzi, V.; Carducci, C.; Battini, R.; Cioni, G.; Antonozzi, I. Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: An effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clin. Chem. 2002, 48, 1772–1778. [Google Scholar] [PubMed]
- Almeida, L.S.; Verhoeven, N.M.; Roos, B.; Valongo, C.; Cardoso, M.L.; Vilarinho, L.; Salomons, G.S.; Jakobs, C. Creatine and guanidinoacetate: Diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol. Genet. Metab. 2004, 82, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Curt, M.J.-C.; Cheillan, D.; Briand, G.; Salomons, G.S.; Mention-Mulliez, K.; Dobbelaere, D.; Cuisset, J.-M.; Lion-François, L.; Des Portes, V.; Chabli, A.; et al. Creatine and guanidinoacetate reference values in a French population. Mol. Genet. Metab. 2013, 110, 263–267. [Google Scholar]
- Sömjen, D.; Lundgren, S.; Kaye, A.M. Sex and depot-specific stimulation of creatine kinase B in rat adipose tissues by gonadal steroids. J. Steroid Biochem. Mol. Biol. 1997, 62, 89–96. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Gender differences in metabolism; nutrition and supplements. J. Sci. Med. Sport 2000, 3, 287–298. [Google Scholar] [CrossRef]
- Shojaiefard, M.; Christie, D.L.; Lang, F. Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem. Biophys. Res. Commun. 2005, 334, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Vikse, B.E.; Vollset, S.E.; Tell, G.S.; Refsum, H.; Iversen, B.M. Distribution and determinants of serum creatinine in the general population: The Hordaland Health Study. Scand. J. Clin. Lab. Investig. 2004, 64, 709–722. [Google Scholar] [CrossRef]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [PubMed]
- Julius, S.; Gudbrandsson, T.; Jamerson, K.; Tariq Shahab, S.; Andersson, O. The hemodynamic link between insulin resistance and hypertension. J. Hypertens. 1991, 9, 983–986. [Google Scholar] [CrossRef] [PubMed]
- Lillioja, S.; Young, A.A.; Culter, C.L.; Ivy, J.L.; Abbott, W.G.; Zawadzki, J.K.; Yki-Järvinen, H.; Christin, L.; Secomb, T.W.; Bogardus, C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J. Clin. Investig. 1987, 80, 415–424. [Google Scholar] [CrossRef] [PubMed]
Variable | Value | Range |
---|---|---|
Age (years) | 25.5 ± 6.9 | 18.0–63.0 |
Sex, F (%) | 54.3 | - |
BMI (kg/m2) | 22.9 ± 2.9 | 17.6–42.7 |
Overweight 1 (%) | 25.8 | - |
Body fat (%) | 21.3 ± 7.5 | 7.4–47.6 |
Total cholesterol (mmol/L) | 4.7 ± 0.7 | 3.4–7.2 |
LDL cholesterol (mmol/L) | 3.1 ± 0.7 | 1.4–5.1 |
HDL cholesterol (mmol/L) | 1.4 ± 0.3 | 0.6–2.7 |
Triglycerides (mmol/L) | 1.1 ± 0.6 | 0.4–5.8 |
Glucose (mmol/L) | 4.7 ± 0.8 | 2.2–6.4 |
Insulin (IU/L) | 8.8 ± 6.2 | 3.9–29.7 |
tHcy (µmol/L) | 8.5 ± 1.9 | 4.4–12.5 |
CRP (mmol/L) | 0.002 ± 0.001 | 0.001–0.004 |
GAA (µmol/L) | 2.6 ± 0.7 | 0.9–4.5 |
Creatine (µmol/L) | 26.6 ± 9.3 | 9.6–55.4 |
GAA (µmol/L) | Creatine (µmol/L) | |
---|---|---|
Sex categories | ||
Men (n = 69) | 2.6 ± 0.7 | 29.4 ± 10.4 |
Women (n = 82) | 2.6 ± 0.7 | 24.3 ± 7.7 * |
BMI categories | ||
Normal weight (n = 112) | 2.6 ± 0.7 | 25.7 ± 8.9 |
Overweight (n = 39) | 2.6 ± 0.8 | 29.2 ± 10.1 * |
GAA | Creatine | ||||||||
---|---|---|---|---|---|---|---|---|---|
Quartile with µmol/L Range | Quartile with µmol/L Range | ||||||||
I | II | III | IV | p trend | I | II | III | IV | p trend |
0.90–2.19 | 2.20–2.79 | 2.80–2.99 | 3.00–4.50 | 9.6–18.9 | 19.0–26.2 | 26.3–31.0 | 31.1–54.4 | ||
1.00 | 0.57 | 0.68 | 0.84 | 0.66 | 1.00 | 1.18 | 0.97 | 3.26 | 0.04 |
(--) | (0.19 to 1.69) | (0.24 to 1.94) | (0.31 to 2.31) | (--) | (0.38 to 3.68) | (0.30 to 3.09) | (1.14 to 9.32) |
GAA | Creatine | |||
---|---|---|---|---|
β | p | β | p | |
Blood lipids | ||||
Total cholesterol | −0.11 | 0.20 | 0.07 | 0.41 |
LDL cholesterol | −0.05 | 0.54 | 0.05 | 0.54 |
HDL cholesterol | 0.08 | 0.35 | 0.13 | 0.12 |
Triglycerides | 0.16 | 0.08 | 0.11 | 0.19 |
Glucose | −0.28 | 0.00 | −0.26 | 0.00 |
Insulin | 0.53 | 0.03 | −0.17 | 0.57 |
tHcy | 0.30 | 0.00 | 0.17 | 0.05 |
CRP | 0.36 | 0.16 | −0.26 | 0.38 |
Body mass index | 0.02 | 0.87 | 0.11 | 0.23 |
BFP | 0.32 | 0.03 | 0.37 | 0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostojic, S.M.; Vranes, M.; Loncar, D.; Zenic, N.; Sekulic, D. Guanidinoacetic Acid and Creatine are Associated with Cardiometabolic Risk Factors in Healthy Men and Women: A Cross-Sectional Study. Nutrients 2018, 10, 87. https://doi.org/10.3390/nu10010087
Ostojic SM, Vranes M, Loncar D, Zenic N, Sekulic D. Guanidinoacetic Acid and Creatine are Associated with Cardiometabolic Risk Factors in Healthy Men and Women: A Cross-Sectional Study. Nutrients. 2018; 10(1):87. https://doi.org/10.3390/nu10010087
Chicago/Turabian StyleOstojic, Sergej M., Milan Vranes, Davor Loncar, Natasa Zenic, and Damir Sekulic. 2018. "Guanidinoacetic Acid and Creatine are Associated with Cardiometabolic Risk Factors in Healthy Men and Women: A Cross-Sectional Study" Nutrients 10, no. 1: 87. https://doi.org/10.3390/nu10010087
APA StyleOstojic, S. M., Vranes, M., Loncar, D., Zenic, N., & Sekulic, D. (2018). Guanidinoacetic Acid and Creatine are Associated with Cardiometabolic Risk Factors in Healthy Men and Women: A Cross-Sectional Study. Nutrients, 10(1), 87. https://doi.org/10.3390/nu10010087