Low-Carbohydrate, High-Protein, High-Fat Diets Rich in Livestock, Poultry and Their Products Predict Impending Risk of Type 2 Diabetes in Chinese Individuals that Exceed Their Calculated Caloric Requirement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Other Factors as Potential Confounders
2.4. Biochemical Measurements and Outcome Ascertainment
2.5. Prediction of Energy Requirements
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Cohort 1 and Cohort 2
3.2. Nutrition Information across Tertiles of Low-Carbohydrate, High-Fat and High-Protein Diet Scorse
3.3. Low-Carbohydrate, High-Protein and High-Fat Diet Score and the Risk of T2D Incidence in the Population Consuming Extra Calories or Population with Normal Caloric Intake
3.4. The Food Groups Responsible for the Association between Low-Carbohydrate, High-Protein and High-Fat Diets and T2D among Populations Consuming Extra Calories
3.5. Mediation Analysis in the Relation between Tertiles of Low-Carbohydrate, High-Protein and High-Fat Diets and T2D
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2011, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes 2004, 53, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Luscombe-Marsh, N.D.; Thompson, C.H.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S., Jr.; Brinkworth, G.D. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: A randomized trial. Am. J. Clin. Nutr. 2015, 102, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Halton, T.L.; Willett, W.C.; Liu, S.; Manson, J.E.; Albert, C.M.; Rexrode, K.; Hu, F.B. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N. Engl. J. Med. 2006, 355, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Nanri, A.; Mizoue, T.; Kurotani, K.; Goto, A.; Oba, S.; Noda, M.; Sawada, N.; Tsugane, S.; Japan Public Health Center-Based Prospective Study Group. Low-carbohydrate diet and type 2 diabetes risk in japanese men and women: The Japan public health center-based prospective study. PLoS ONE 2015, 10, e0118377. [Google Scholar] [CrossRef] [PubMed]
- Halton, T.L.; Liu, S.; Manson, J.E.; Hu, F.B. Low-carbohydrate-diet score and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2008, 87, 339–346. [Google Scholar] [PubMed]
- De Koning, L.; Fung, T.T.; Liao, X.; Chiuve, S.E.; Rimm, E.B.; Willett, W.C.; Spiegelman, D.; Hu, F.B. Low-carbohydrate diet scores and risk of type 2 diabetes in men. Am. J. Clin. Nutr. 2011, 93, 844–850. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. Idf Diabetes Atlas, 7th ed.; Karakas Print: Brussels, Belgium, 2015; pp. 14–17. [Google Scholar]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M. Nutrition in transition: The changing global nutrition challenge. Asia Pac. J. Clin. Nutr. 2001, 10, S13–S18. [Google Scholar] [CrossRef] [PubMed]
- Egger, G.; Dixon, J. Should obesity be the main game? Or do we need an environmental makeover to combat the inflammatory and chronic disease epidemics? Obes. Rev. 2009, 10, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Soare, A.; Weiss, E.P.; Pozzilli, P. Benefits of caloric restriction for cardiometabolic health, including type 2 diabetes mellitus risk. Diabetes Metab. Res. Rev. 2014, 30 (Suppl. S1), 41–47. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xue, J.; He, Y.; Wang, J.; Sun, C.; Feng, R.; Teng, J.; He, Y.; Li, Y. Dietary calcium but not elemental calcium from supplements is associated with body composition and obesity in Chinese women. PLoS ONE 2011, 6, e27703. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Wu, X.; Feng, R.; Li, J.; Han, T.; Lin, L.; Lan, L.; Yang, C.; Li, Y.; Sun, C. The Harbin cohort study on diet, nutrition and chronic non-communicable diseases: Study design and baseline characteristics. PLoS ONE 2015, 10, e0122598. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- World Health Organization. Diabetes Mellitus: Report of a Who Study Group; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 1985; Volume 727, pp. 1–113. [Google Scholar]
- Levy, J.C.; Matthews, D.R.; Hermans, M.P. Correct homeostasis model assessment (homa) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Energy and Protein Requirements: Report of a Joint Fao/Who/Unu Expert Consultation; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 1985; Volume 724, pp. 1–206. [Google Scholar]
- Roza, A.M.; Shizgal, H.M. The Harris Benedict equation reevaluated: Resting energy requirements and the body cell mass. Am. J. Clin. Nutr. 1984, 40, 168–182. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, D.P.; Fairchild, A.J.; Fritz, M.S. Mediation analysis. Annu. Rev. Psychol. 2007, 58, 593–614. [Google Scholar] [CrossRef] [PubMed]
- Dustin, T.; Teppei, Y.; Kentaro, H.; Luke, K.; Kosuke, I. Mediation: R Package for Causal Mediation Analysis. Available online: http://CRAN.Rpproject.org/package=mediation (accessed on 11 July 2017).
- Adam-Perrot, A.; Clifton, P.; Brouns, F. Low-carbohydrate diets: Nutritional and physiological aspects. Obes. Rev. 2006, 7, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef] [PubMed]
- De Munter, J.S.; Hu, F.B.; Spiegelman, D.; Franz, M.; van Dam, R.M. Whole grain, bran, and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Med. 2007, 4, e261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiherer, A.; Mundlein, A.; Drexel, H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul. Pharmacol. 2013, 58, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Ursin, G.; Veierod, M.B. Meat consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Diabetologia 2009, 52, 2277–2287. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef] [PubMed]
- Rietman, A.; Schwarz, J.; Tome, D.; Kok, F.J.; Mensink, M. High dietary protein intake, reducing or eliciting insulin resistance? Eur. J. Clin. Nutr. 2014, 68, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and niddm. Diabetes 1997, 46, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr. Pap. 2010, 91, 1–166. [Google Scholar]
- Kruit, J.K.; Kremer, P.H.; Dai, L.; Tang, R.; Ruddle, P.; de Haan, W.; Brunham, L.R.; Verchere, C.B.; Hayden, M.R. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the ldl receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia 2010, 53, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Salmeron, J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Rimm, E.B.; Willett, W.C. Dietary fat intake and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2001, 73, 1019–1026. [Google Scholar] [PubMed]
- Liu, S.; Ajani, U.; Chae, C.; Hennekens, C.; Buring, J.E.; Manson, J.E. Long-term beta-carotene supplementation and risk of type 2 diabetes mellitus: A randomized controlled trial. JAMA 1999, 282, 1073–1075. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Akanji, A.O. Dietary fiber—An overview. Diabetes Care 1991, 14, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Kinmonth, A.L.; Angus, R.M.; Jenkins, P.A.; Smith, M.A.; Baum, J.D. Whole foods and increased dietary fibre improve blood glucose control in diabetic children. Arch. Dis. Child. 1982, 57, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 2000, 71, 921–930. [Google Scholar] [PubMed]
- Salmeron, J.; Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997, 277, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2006, 29 (Suppl. S1), S43–S48. [Google Scholar]
- Martin, B.C.; Warram, J.H.; Krolewski, A.S.; Bergman, R.N.; Soeldner, J.S.; Kahn, C.R. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: Results of a 25-year follow-up study. Lancet 1992, 340, 925–929. [Google Scholar] [CrossRef]
- Kahn, S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003, 46, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Axen, K.V.; Dikeakos, A.; Sclafani, A. High dietary fat promotes syndrome x in nonobese rats. J. Nutr. 2003, 133, 2244–2249. [Google Scholar] [PubMed]
- Kraegen, E.W.; Clark, P.W.; Jenkins, A.B.; Daley, E.A.; Chisholm, D.J.; Storlien, L.H. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 1991, 40, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Ble-Castillo, J.L.; Aparicio-Trapala, M.A.; Juarez-Rojop, I.E.; Torres-Lopez, J.E.; Mendez, J.D.; Aguilar-Mariscal, H.; Olvera-Hernandez, V.; Palma-Cordova, L.C.; Diaz-Zagoya, J.C. Differential effects of high-carbohydrate and high-fat diet composition on metabolic control and insulin resistance in normal rats. Int. J. Environ. Res. Public Health 2012, 9, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Foltin, R.W.; Rolls, B.J.; Moran, T.H.; Kelly, T.H.; McNelis, A.L.; Fischman, M.W. Caloric, but not macronutrient, compensation by humans for required-eating occasions with meals and snack varying in fat and carbohydrate. Am. J. Clin. Nutr. 1992, 55, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Amirkalali, B.; Hosseini, S.; Heshmat, R.; Larijani, B. Comparison of Harris Benedict and Mifflin-ST Jeor equations with indirect calorimetry in evaluating resting energy expenditure. Indian J. Med. Sci. 2008, 62, 283–290. [Google Scholar] [PubMed]
Variable | Cohort 1 | Cohort 2 | ||
---|---|---|---|---|
Diabetes (n = 182) | No Diabetes (n = 3462) | Diabetes (n = 498) | No Diabetes (n = 6613) | |
Age at recruitment (years) | 54 ± 10 | 50 ± 10 * | 53 ± 9 | 50 ± 9 * |
Male (%) | 34 | 32 | 43 | 33 * |
BMI (kg/m2) | 27 ± 4 | 25 ± 3 * | 26 ± 3 | 25 ± 3 * |
Waist circumference (cm) | 88 ± 12 | 84 ± 10 * | 89 ± 10 | 85 ± 10 * |
Education (%) | ||||
No formal education | 3.7 | 1.9 | 2.6 | 1.3 |
Elementary school | 9.8 | 5.4 | 4.7 | 5.0 |
Middle school | 30.1 | 30.2 | 27.7 | 23.0 |
High school/secondary technical school | 27.6 | 33.9 | 36.5 | 35.0 |
Technical school/college | 28.2 | 27.9 | 28.1 | 34.9 |
Postgraduate degree or above | 0.6 | 0.7 | 0.4 | 0.9 |
Exercised regularly (%) | 56.2 | 67.1 * | 46.7 | 46.4 |
Current smokers (%) | 17.2 | 17.1 | 17.8 | 15.5 |
Current drinker (%) | 34.4 | 37.9 | 33.8 | 34.8 |
Hypertension (%) | 52.5 | 37.3 * | 51.4 | 35.0 * |
Coronary heart disease (%) | 34.6 | 20.4 * | 22.4 | 15.8 * |
Family history of diabetes (%) | 11.7 | 13.2 | 18.7 | 15.0 |
Actual energy intake (kcal/day) | 2115 ± 655 | 2199 ± 653 | 2364 ± 755 | 2287 ± 660 |
Predicted energy requirement (kcal/day) | 2243 ± 389 | 2230 ± 359 | 2305 ± 354 | 2227 ± 367 |
Fasting glucose (mmol/L) | 5.1 ± 0.9 | 4.6 ± 0.6 * | 5.2 ± 0.9 | 4.5 ± 0.7 * |
2-h glucose (mmol/L) | 6.8 ± 2.3 | 5.5 ± 1.5 * | 7.1 ± 2.1 | 5.7 ± 1.6 * |
Fasting insulin (µU/mL) | 11.8 ± 10.4 | 8.0 ± 6.7 * | 10.1 ± 6.5 | 8.1 ± 6.1 * |
2-h insulin (µU/mL) | 47.5 ± 40.4 | 35.7 ± 31.5 * | 54.3 ± 42.0 | 42.3 ± 34.3 * |
HOMA2-IR | 1.0 ± 1.2 | 0.7 ± 0.8 * | 0.8 ± 1.0 | 0.6 ± 0.8 * |
HOMA2-%B | 81.9 ± 89.2 | 82.1 ± 95.5 | 119.3 ± 63.2 | 124.3 ± 58.9 |
HiCHO | ModCHO | LoCHO | p a | |
---|---|---|---|---|
1. Cohort 1 | ||||
Ave CHO:FAT:PROT % | 68:22:10 | 62:27:11 | 53:34:13 | |
Food Items | ||||
Rice (g/day) | 269 ± 151 | 188 ± 103 | 133 ± 90 | <0.05 |
Wheat (g/day) | 138 ± 110 | 136 ± 105 | 118 ± 90 | <0.05 |
Potato (g/day) | 74 ± 78 | 51 ± 46 | 40 ± 39 | <0.05 |
Bean (g/day) | 36 ± 35 | 48 ± 54 | 56 ± 62 | <0.05 |
Snack (g/day) | 0.3 ± 0.5 | 0.2 ± 0.5 | 0.2 ± 0.4 | 0.13 |
Beverage (mL/day) | 0.7 ± 1.9 | 0.6 ± 1.5 | 0.6 ± 1.2 | 0.35 |
Ice cream (g/day) | 13 ± 37 | 12 ± 25 | 14 ± 45 | 0.55 |
Livestock (g/day) | 32 ± 33 | 52 ± 44 | 94 ± 77 | <0.05 |
Poultry (g/day) | 11 ± 13 | 16 ± 20 | 32 ± 46 | <0.05 |
Fish (g/day) | 16 ± 21 | 24 ± 39 | 48 ± 105 | <0.05 |
Dairy (g/day) | 1.4 ± 1.8 | 1.9 ± 2.0 | 2.2 ± 2.3 | <0.05 |
Egg (g/day) | 33 ± 27 | 38 ± 28 | 46 ± 37 | <0.05 |
Vegetable (g/day) | 301 ± 215 | 300 ± 226 | 260 ± 215 | <0.05 |
Fruit (g/day) | 189 ± 186 | 147 ± 138 | 127 ± 107 | <0.05 |
Nutrient Items | ||||
Carbohydrate (g/day) | 413 ± 122 | 330 ± 97 | 270 ± 97 | <0.05 |
Fat (g/day) | 58 ± 14 | 64 ± 16 | 77 ± 23 | <0.05 |
Protein (g/day) | 62 ± 19 | 61 ± 22 | 68 ± 32 | <0.05 |
Saturated fatty acid (g/day) | 11 ± 4 | 13 ± 4 | 18 ± 7 | <0.05 |
Monounsaturated fatty acid (g/day) | 16 ± 5 | 19 ± 6 | 25 ± 9 | <0.05 |
Cholesterol (mg/day) | 242 ± 166 | 294 ± 177 | 407 ± 248 | <0.05 |
Fiber (g/day) | 15 ± 7 | 13 ± 7 | 11 ± 6 | <0.05 |
Total Population | ||||
Participants consuming extra calories (%) | 56.6 | 34.1 | 33.4 | <0.05 |
Actual energy intake (kcal/day) | 2419 ± 655 | 2136 ± 593 | 2048 ± 663 | <0.05 |
Predicted energy requirement (kcal/day) | 2209 ± 345 | 2239 ± 384 | 2242 ± 358 | 0.26 |
Diabetes | ||||
Participants consuming extra calories (%) | 38.8 | 43.1 | 31.7 | 0.43 |
Actual energy intake (kcal/day) | 2307 ± 659 | 2186 ± 598 | 1907 ± 630 | <0.05 |
Predicted energy requirement (kcal/day) | 2318 ± 427 | 2242 ± 416 | 2186 ± 325 | 0.20 |
No Diabetes | ||||
Participants consuming extra calories (%) | 57.5 | 33.6 | 33.5 | <0.05 |
Actual energy intake (kcal/day) | 2424 ± 649 | 2133 ± 589 | 2056 ± 668 | <0.05 |
Predicted energy requirement (kcal/day) | 2198 ± 333 | 2239 ± 381 | 2250 ± 362 | 0.06 |
2. Cohort 2 | ||||
Ave CHO:FAT:PROT % | 69:21:10 | 61:27:11 | 52:34:14 | |
Food Items | ||||
Rice (g/day) | 292 ± 153 | 201 ± 117 | 142 ± 97 | <0.05 |
Wheat (g/day) | 140 ± 115 | 135 ± 106 | 116 ± 89 | <0.05 |
Potato (g/day) | 80 ± 85 | 52 ± 50 | 44 ± 42 | <0.05 |
Bean (g/day) | 39 ± 43 | 47 ± 50 | 60 ± 69 | <0.05 |
Snack (g/day) | 0.3 ± 0.6 | 0.3 ± 0.6 | 0.2 ± 0.4 | 0.06 |
Beverage (mL/day) | 0.7 ± 1.8 | 0.7 ± 1.7 | 0.7 ± 1.3 | 0.86 |
Ice cream (g/day) | 15 ± 41 | 13 ± 30 | 17 ± 42 | <0.05 |
Livestock (g/day) | 36 ± 35 | 59 ± 51 | 101 ± 82 | <0.05 |
Poultry (g/day) | 13 ± 15 | 20 ± 24 | 39 ± 48 | <0.05 |
Fish (g/day) | 16 ± 20 | 24 ± 38 | 49 ± 99 | <0.05 |
Dairy (g/day) | 1.4 ± 1.8 | 1.9 ± 2.1 | 2.1 ± 2.3 | <0.05 |
Egg (g/day) | 32 ± 27 | 40 ± 31 | 54 ± 49 | <0.05 |
Vegetable (g/day) | 281 ± 208 | 287 ± 239 | 248 ± 209 | <0.05 |
Fruit (g/day) | 178 ± 179 | 150 ± 134 | 124 ± 107 | <0.05 |
Nutrient Items | ||||
Carbohydrate (g/day) | 433 ± 118 | 342 ± 101 | 278 ± 100 | <0.05 |
Fat (g/day) | 60 ± 14 | 68 ± 17 | 82 ± 24 | <0.05 |
Protein (g/day) | 65 ± 19 | 64 ± 23 | 73 ± 32 | <0.05 |
Saturated fatty acid (g/day) | 122 ± 4 | 14 ± 5 | 19 ± 7 | <0.05 |
Monounsaturated fatty acid (g/day) | 17 ± 5 | 20 ± 6 | 26 ± 10 | <0.05 |
Cholesterol (mg/day) | 243 ± 167 | 316 ± 192 | 461 ± 318 | <0.05 |
Fiber (g/day) | 15 ± 6 | 14 ± 7 | 12 ± 6 | <0.05 |
Total Population | ||||
Participants consuming extra calories (%) | 64.1 | 43.4 | 39.2 | <0.05 |
Actual energy intake (kcal/day) | 2528 ± 639 | 2232 ± 621 | 2139 ± 677 | <0.05 |
Predicted energy requirement (kcal/day) | 2199 ± 352 | 2235 ± 358 | 2259 ± 383 | <0.05 |
Diabetes | ||||
Participants consuming extra calories (%) | 58.4 | 45.1 | 40.6 | <0.05 |
Actual energy intake (kcal/day) | 2585 ± 742 | 2287 ± 719 | 2257 ± 764 | <0.05 |
Predicted energy requirement (kcal/day) | 2237 ± 347 | 2284 ± 307 | 2373 ± 384 | 0.02 |
No Diabetes | ||||
Participants consuming extra calories (%) | 64.5 | 43.3 | 39.1 | <0.05 |
Actual energy intake (kcal/day) | 2527 ± 630 | 2227 ± 612 | 2128 ± 668 | <0.05 |
Predicted energy requirement (kcal/day) | 2197 ± 353 | 2231 ± 361 | 2249 ± 382 | <0.05 |
HiCHO | ModCHO | LoCHO | Ptrend | |
---|---|---|---|---|
1. Total Population (n = 3644) | ||||
Ave CHO:FAT:PROT % | 68:22:10 | 62:27:11 | 53:34:13 | |
n (cases) | 1172 (55) (4.7%) | 1130 (57) (5.0%) | 1342 (70) (5.2%) | |
Model 1 | 1.00 | 1.14 (0.75, 1.73) | 1.23 (0.82, 1.83) | 0.32 |
Model 2 | 1.00 | 1.12 (0.72, 1.75) | 1.30 (0.84, 2.01) | 0.23 |
2. Population Consuming Extra Calories (n = 1497) | ||||
Ave CHO:FAT:PROT % | 71:19:10 | 64:25:11 | 54:32:14 | |
Nutrient (g/day) | ||||
Carbohydrate | 503 ± 106 | 434 ± 89 | 368 ± 81 | <0.05 |
Fat | 61 ± 12 | 74 ± 14 | 96 ± 21 | <0.05 |
Protein | 72 ± 16 | 78 ± 21 | 97 ± 33 | <0.05 |
Fiber | 18 ± 7 | 17 ± 8 | 15 ± 7 | <0.05 |
Energy intake (kcal/day) | ||||
All | 2759 ± 532 | |||
Actual | 2850 ± 550 | 2714 ± 522 | 2724 ± 516 | 0.02 |
Predicted | 2172 ± 298 | 2156 ± 331 | 2131 ± 308 | 0.41 |
BMI | 24 ± 3 | 25 ± 3 | 25 ± 3 | 0.07 |
Fasting glucose (mmol/L) | 4.6 ± 1.1 | 4.7 ± 1.3 | 4.7 ± 0.9 | 0.25 |
Fasting insulin (µU/mL) | 8.0 ± 4.8 | 8.1 ± 4.1 | 8.3 ± 4.9 | 0.73 |
n (cases) | 457 (13) (2.8%) | 534 (29) (5.4%) | 506 (26) (5.1%) | |
Model 1 | 1.00 | 2.15 (1.04, 4.42) | 1.98 (0.95, 4.13) | 0.09 |
Model 2 | 1.00 | 2.24 (1.07, 4.72) | 2.29 (1.07, 4.88) | 0.04 |
3. Population with Normal Caloric Intake (n = 2147) | ||||
Ave CHO:FAT:PROT % | 66:24:10 | 60:29:11 | 51:36:13 | |
Nutrient (g/day) | ||||
Carbohydrate | 314 ± 66 | 275 ± 62 | 216 ± 63 | <0.05 |
Fat | 51 ± 9 | 59 ± 12 | 67 ± 16 | <0.05 |
Protein | 48 ± 12 | 51 ± 13 | 53 ± 17 | <0.05 |
Fiber | 11 ± 4 | 10 ± 5 | 9 ± 4 | <0.05 |
Energy intake (kcal/day) | ||||
All | 1801 ± 402 | |||
Actual | 1903 ± 372 | 1834 ± 387 | 1682 ± 410 | <0.05 |
Predicted | 2290 ± 412 | 2284 ± 371 | 2281 ± 369 | 0.96 |
BMI | 25 ± 4 | 25 ± 4 | 25 ± 3 | 0.26 |
Fasting glucose (mmol/L) | 4.7 ± 1.1 | 4.7 ± 0.9 | 4.8 ± 1.2 | 0.26 |
Fasting insulin (µU/mL) | 8.2 ± 4.7 | 8.0 ± 4.3 | 8.7 ± 5.0 | 0.05 |
n (cases) | 701 (45) (6.4%) | 656 (28) (4.3%) | 790 (41) (5.2%) | |
Model 1 | 1.00 | 0.62 (0.36, 1.06) | 0.81 (0.50, 1.31) | 0.33 |
Model 2 | 1.00 | 0.68 (0.39, 1.20) | 0.81 (0.47, 1.39) | 0.44 |
HiCHO | ModCHO | LoCHO | Ptrend | |
---|---|---|---|---|
1. Total Population (n = 7111) | ||||
Ave CHO:FAT:PROT % | 69:21:10 | 61:27:12 | 52:34:14 | |
n (cases) | 2265 (148) (6.5%) | 2266 (155) (6.8%) | 2580 (195) (7.6%) | |
Model 1 | 1.00 | 1.09 (0.80, 1.49) | 1.26 (0.94, 1.70) | 0.12 |
Model 2 | 1.00 | 1.18 (0.85, 1.63) | 1.30 (0.94, 1.79) | 0.11 |
2. Population Consuming Extra Calories (n = 3448) | ||||
Ave CHO:FAT:PROT % | 70:20:10 | 63:25:12 | 53:33:14 | |
Nutrient (g/day) | ||||
Carbohydrate | 503 ± 96 | 429 ± 85 | 364 ± 82 | <0.05 |
Fat | 64 ± 13 | 78 ± 15 | 98 ± 22 | <0.05 |
Protein | 72 ± 17 | 80 ± 20 | 97 ± 30 | <0.05 |
Fiber | 18 ± 6 | 17 ± 7 | 15 ± 7 | <0.05 |
Energy intake (kcal/day) | ||||
All | 2779 ± 521 | |||
Actual | 2870 ± 518 | 2731 ± 512 | 2733 ± 523 | <0.05 |
Predict | 2163 ± 320 | 2166 ± 316 | 2160 ± 311 | 0.96 |
BMI | 25 ± 4 | 25 ± 4 | 24 ± 3 | 0.07 |
Fasting glucose (mmol/L) | 4.6 ± 1.0 | 4.7 ± 1.2 | 4.7 ± 1.1 | 0.23 |
Fasting insulin (µU/mL) | 7.9 ± 4.2 | 8.3 ± 4.5 | 8.3 ± 4.7 | 0.32 |
n (cases) | 1167 (71) (6.1%) | 1115 (77) (6.9%) | 1166 (88) (7.6%) | |
Model 1 | 1.00 | 1.30 (0.83, 2.03) | 1.45 (0.94, 2.24) | 0.10 |
Model 2 | 1.00 | 1.45 (0.91, 2.31) | 1.64 (1.03, 2.61) | 0.04 |
3. Population with Normal Caloric Intake (n = 3663) | ||||
Ave CHO:FAT:PROT % | 66:24:10 | 59:30:11 | 50:37:13 | |
Nutrient (g/day) | ||||
Carbohydrate | 321 ± 69 | 272 ± 63 | 219 ± 68 | <0.05 |
Fat | 51 ± 10 | 60 ± 12 | 71 ± 18 | <0.05 |
Protein | 49 ± 12 | 51 ± 15 | 56 ± 20 | <0.05 |
Fiber | 12 ± 4 | 11 ± 5 | 9 ± 5 | <0.05 |
Energy intake (kcal/day) | ||||
All | 1835 ± 423 | |||
Actual | 1945 ± 384 | 1832 ± 394 | 1740 ± 456 | <0.05 |
Predict | 2277 ± 397 | 2284 ± 374 | 2328 ± 416 | 0.04 |
BMI | 26 ± 4 | 26 ± 3 | 26 ± 4 | 0.88 |
Fasting glucose (mmol/L) | 4.6 ± 1.1 | 4.6 ± 1.1 | 4.6 ± 1.1 | 0.92 |
Fasting insulin (µU/mL) | 8.3 ± 4.7 | 8.5 ± 5.0 | 8.8 ± 5.1 | 0.37 |
n (cases) | 1163 (80) (6.9%) | 1184 (84) (7.1%) | 1316 (98) (7.4%) | |
Model 1 | 1.00 | 1.06 (0.69, 1.61) | 1.16 (0.77, 1.74) | 0.48 |
Model 2 | 1.00 | 1.01 (0.65, 1.57) | 1.11 (0.71, 1.72) | 0.64 |
HiCHO | ModCHO | LoCHO | Ptrend | |
---|---|---|---|---|
1. Cohort 1 | ||||
Low-carbohydrate, high-fat and high-protein diet score | 1.00 | 2.24 (1.07, 4.72) | 2.29 (1.07, 4.87) | <0.05 |
Food Items | ||||
Adjusted for rice | 1.00 | 2.28 (1.08, 4.81) | 2.58 (1.17, 5.72) | <0.05 |
Adjusted for wheat | 1.00 | 2.22 (1.05, 4.67) | 2.29 (1.07, 4.89) | <0.05 |
Adjusted for potato | 1.00 | 2.24 (1.06, 4.74) | 2.32 (1.07, 5.07) | <0.05 |
Adjusted for bean | 1.00 | 2.18 (1.02, 4.66) | 2.26 (1.04, 4.88) | <0.05 |
Adjusted for snack | 1.00 | 2.40 (1.13, 5.10) | 2.46 (1.14, 5.29) | <0.05 |
Adjusted for beverage | 1.00 | 2.24 (1.07, 4.73) | 2.34 (1.09, 5.02) | <0.05 |
Adjusted for ice cream | 1.00 | 2.31 (1.09, 4.88) | 2.38 (1.11, 5.12) | <0.05 |
Adjusted for livestock | 1.00 | 2.12 (1.02, 4.40) | 2.27 (0.96, 5.30) | 0.06 |
Adjusted for poultry | 1.00 | 2.22 (1.05, 4.66) | 2.21 (0.99, 4.90) | 0.06 |
Adjusted for fish | 1.00 | 2.15 (1.02, 4.52) | 2.25 (1.03, 4.90) | <0.05 |
Adjusted for dairy | 1.00 | 2.24 (1.04, 4.85) | 2.33 (1.06, 5.14) | <0.05 |
Adjusted for egg | 1.00 | 2.19 (1.04, 4.62) | 2.24 (1.04, 4.82) | <0.05 |
Adjusted for vegetable | 1.00 | 2.23 (1.06, 4.70) | 2.31 (1.07, 4.90) | <0.05 |
Adjusted for fruit | 1.00 | 2.20 (1.05, 4.64) | 2.28 (1.07, 4.88) | <0.05 |
Nutrient Items | ||||
Adjusted for protein | 1.00 | 2.11 (1.00, 4.44) | 1.80 (0.78, 4.17) | 0.18 |
Adjusted for fat | 1.00 | 2.42 (1.13, 5.50) | 2.75 (1.18, 6.46) | <0.05 |
Adjusted for saturated fatty acid | 1.00 | 2.35 (1.04, 5.30) | 2.54 (0.86, 7.51) | 0.09 |
Adjusted for monounsaturated fatty acid | 1.00 | 2.43 (1.16, 5.63) | 2.83 (1.26, 6.33) | <0.05 |
Adjusted for cholesterol | 1.00 | 2.07 (0.98, 4.40) | 1.80 (0.78, 4.20) | 0.18 |
Adjusted for fiber | 1.00 | 2.10 (1.00, 4.45) | 2.25 (1.05, 4.83) | <0.05 |
2. Cohort 2 | ||||
Low-carbohydrate, high-fat and high-protein diet score | 1.00 | 1.45 (0.91, 2.31) | 1.64 (1.03, 2.61) | <0.05 |
Food Items | ||||
Adjusted for rice | 1.00 | 1.46 (0.92, 2.33) | 1.67 (1.03, 2.74) | <0.05 |
Adjusted for wheat | 1.00 | 1.45 (0.91, 2.31) | 1.64 (1.03, 2.60) | <0.05 |
Adjusted for potato | 1.00 | 1.44 (0.98, 2.29) | 1.63 (1.03, 2.59) | <0.05 |
Adjusted for bean | 1.00 | 1.44 (0.90, 2.31) | 1.63 (1.01, 2.61) | <0.05 |
Adjusted for snack | 1.00 | 1.48 (0.93, 2.36) | 1.65 (1.04, 2.63) | <0.05 |
Adjusted for beverage | 1.00 | 1.45 (0.91, 2.30) | 1.64 (1.03, 2.60) | <0.05 |
Adjusted for ice cream | 1.00 | 1.45 (0.91, 2.31) | 1.64 (1.03, 2.60) | <0.05 |
Adjusted for livestock | 1.00 | 1.43 (0.88, 2.32) | 1.59 (0.91, 2.81) | 0.10 |
Adjusted for poultry | 1.00 | 1.39 (0.87, 2.24) | 1.49 (0.89, 2.49) | 0.12 |
Adjusted for fish | 1.00 | 1.45 (0.91, 2.31) | 1.64 (1.01, 2.65) | <0.05 |
Adjusted for dairy | 1.00 | 1.52 (0.95, 2.43) | 1.75 (1.09, 2.80) | <0.05 |
Adjusted for egg | 1.00 | 1.37 (0.85, 2.19) | 1.49 (0.93, 2.40) | 0.13 |
Adjusted for vegetable | 1.00 | 1.42 (0.89, 2.26) | 1.63 (1.03, 2.60) | <0.05 |
Adjusted for fruit | 1.00 | 1.48 (0.93, 2.35) | 1.70 (1.10, 2.70) | <0.05 |
Nutrient Items | ||||
Adjusted for protein | 1.00 | 1.34 (0.83, 2.17) | 1.35 (0.76, 2.40) | 0.30 |
Adjusted for fat | 1.00 | 1.20 (0.71, 2.03) | 1.05 (0.50, 2.23) | 0.84 |
Adjusted for saturated fatty acid | 1.00 | 1.29 (0.77, 2.18) | 1.25 (0.60, 2.62) | 0.51 |
Adjusted for monounsaturated fatty acid | 1.00 | 1.26 (0.76, 2.11) | 1.18 (0.58, 2.39) | 0.62 |
Adjusted for cholesterol | 1.00 | 1.36 (0.85, 2.17) | 1.36 (0.81, 2.30) | 0.24 |
Adjusted for fiber | 1.00 | 1.44 (0.91, 2.29) | 1.71 (1.07, 2.72) | <0.05 |
Mediators | Total Effect Estimate | Proportion via Mediation Estimate | Sensitivity Analysis | |
---|---|---|---|---|
R2 * | ||||
1. Cohort 1 | ||||
HOMA2-IR | 0.017 (0.008, 0.026) | 0.072 (0.019, 0.225) | 0.01 | 0.008 |
HOMA2-%B | 0.019 (0.008, 0.026) | −0.005 (−0.167, 0.047) | NA | NA |
2. Cohort 2 | ||||
HOMA2-IR | 0.015 (0.007, 0.021) | 0.106 (0.038, 0.341) | 0.01 | 0.008 |
HOMA2-%B | 0.013 (0.002, 0.020) | 0.131 (−0.280, 0.456) | NA | NA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, R.; Duan, W.; Liu, L.; Qi, J.; Gao, J.; Zhang, Y.; Du, S.; Han, T.; Pang, X.; Sun, C.; et al. Low-Carbohydrate, High-Protein, High-Fat Diets Rich in Livestock, Poultry and Their Products Predict Impending Risk of Type 2 Diabetes in Chinese Individuals that Exceed Their Calculated Caloric Requirement. Nutrients 2018, 10, 77. https://doi.org/10.3390/nu10010077
Shan R, Duan W, Liu L, Qi J, Gao J, Zhang Y, Du S, Han T, Pang X, Sun C, et al. Low-Carbohydrate, High-Protein, High-Fat Diets Rich in Livestock, Poultry and Their Products Predict Impending Risk of Type 2 Diabetes in Chinese Individuals that Exceed Their Calculated Caloric Requirement. Nutrients. 2018; 10(1):77. https://doi.org/10.3390/nu10010077
Chicago/Turabian StyleShan, Ruiqi, Wei Duan, Lei Liu, Jiayue Qi, Jian Gao, Yunlong Zhang, Shanshan Du, Tianshu Han, Xiuyu Pang, Changhao Sun, and et al. 2018. "Low-Carbohydrate, High-Protein, High-Fat Diets Rich in Livestock, Poultry and Their Products Predict Impending Risk of Type 2 Diabetes in Chinese Individuals that Exceed Their Calculated Caloric Requirement" Nutrients 10, no. 1: 77. https://doi.org/10.3390/nu10010077
APA StyleShan, R., Duan, W., Liu, L., Qi, J., Gao, J., Zhang, Y., Du, S., Han, T., Pang, X., Sun, C., & Wu, X. (2018). Low-Carbohydrate, High-Protein, High-Fat Diets Rich in Livestock, Poultry and Their Products Predict Impending Risk of Type 2 Diabetes in Chinese Individuals that Exceed Their Calculated Caloric Requirement. Nutrients, 10(1), 77. https://doi.org/10.3390/nu10010077