Association between Haem and Non-Haem Iron Intake and Serum Ferritin in Healthy Young Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Data Collection
2.2.1. Anthropometry
2.2.2. Blood Collection
2.2.3. Food Frequency Questionnaire
2.2.4. Other Information Collected
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Nutrient/Food Group | Total Group (n = 270) | IR (n = 183) | ID/IDA (n = 87) | p-Value 1 |
---|---|---|---|---|
Energy (kJ) | 7484 ± 3028 | 7863 ± 3145 | 6687 ± 2609 | 0.003 |
Nutrients | ||||
Protein (g) | 91.2 ± 36.8 | 96.3 ± 37.7 | 80.4 ± 32.4 | 0.001 |
Fat (g) | 75.7 ± 34.5 | 80.5 ± 35.2 | 65.6 ± 30.7 | 0.001 |
Carbohydrate (g) | 187.4 ± 77.6 | 195.1 ± 82.3 | 171.2 ± 64.1 | 0.010 * |
Fibre (g) | 21.0 ± 8.5 | 21.8 ± 8.6 | 19.4 ± 8.1 | 0.034 |
Total iron (mg) | 12.8 ± 5.2 | 13.6 ± 5.4 | 11.1 ± 4.3 | <0.0005 * |
HI (mg) | 2.0 ± 1.3 | 2.2 ± 1.4 | 1.6 ± 1.1 | <0.0005 |
NHI (mg) | 10.8 ± 4.5 | 11.4 ± 4.7 | 9.5 ± 3.7 | <0.0005 * |
Zinc (mg) | 11.7 ± 4.8 | 12.5 ± 5.0 | 10.1 ± 4.0 | <0.0005 * |
Calcium (mg) | 882.1 ± 310.3 | 898.9 ± 311.2 | 846.8 ± 307.2 | 0.197 |
Folate (ug) | 250.8 ± 90.6 | 263.4 ± 93.2 | 224.4 ± 79.2 | 0.001 |
Vitamin C (mg) | 104.3 ± 54.7 | 107.8 ± 59.6 | 97.0 ± 42.2 | 0.130 |
Sodium (mg) | 2404 ± 1071 | 2547 ± 1083 | 2104 ± 987 | 0.001 |
Food groups (serves) | ||||
Fruit | 1.6 ± 1.1 | 1.6 ± 1.1 | 1.6 ± 1.0 | 0.941 |
Vegetables | 2.0 ± 1.0 | 2.0 ± 1.0 | 1.9 ± 0.9 | 0.364 |
Meat | 2.9 ± 1.4 | 2.1 ± 1.4 | 1.5 ± 1.1 | <0.0005 * |
Red meat | 1.0 ± 0.9 | 1.2 ± 1.0 | 0.8 ± 0.7 | <0.0005 * |
Poultry | 0.5 ± 0.5 | 0.6 ± 0.5 | 0.4 ± 0.3 | 0.098 ** |
Fish | 0.4 ± 0.4 | 0.4 ± 0.4 | 0.3 ± 0.3 | 0.662 ** |
Meat alternatives | 0.5 ± 0.4 | 0.5 ± 0.4 | 0.5 ± 0.4 | 0.945 |
Dairy | 1.7 ± 0.8 | 1.8 ± 0.8 | 1.7 ± 0.8 | 0.619 |
Grains and Cereals | 4.0 ± 2.3 | 4.2 ± 2.5 | 3.5 ± 1.7 | 0.008 |
Discretionary | 3.7 ± 2.5 | 3.9 ± 2.6 | 3.3 ± 2.2 | 0.062 |
Alcohol | 0.8 ± 1.1 | 0.9 ± 1.2 | 0.6 ± 0.8 | 0.055 ** |
References
- Anderson, G.J.; McLaren, G.D. Iron Physiology and Pathophysiology in Humans; Humana Press/Springer: New York, NY, USA, 2012. [Google Scholar]
- Mann, J.; Truswell, S. Essentials of Human Nutrition, 4th ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Geissler, C.; Singh, M. Iron, meat and health. Nutrients 2011, 3, 283–316. [Google Scholar] [CrossRef] [PubMed]
- Coad, J.; Conlon, C. Iron deficiency in women: Assessment, causes and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L. Iron requirements and bioavailability of dietary iron. In Nutritional Adequacy, Nutrient Availability and Needs; Springer: New York, NY, USA, 1983; pp. 223–244. [Google Scholar]
- Hallberg, L.; Björn-Rasmussen, E.; Howard, L.; Rossander, L. Dietary heme iron absorption: A discussion of possible mechanisms for the absorption-promoting effect of meat and for the regulation of iron absorption. Scand. J. Gastroenterol. 1979, 14, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Lombardi-Boccia, G.; Martinez-Dominguez, B.; Aguzzi, A. Total heme and non-heme iron in raw and cooked meats. J. Food Sci. 2002, 67, 1738–1741. [Google Scholar] [CrossRef]
- Rangan, A.M.; Ho, R.W.L.; Blight, G.D.; Binns, C.W. Haem iron content of Australian meats and fish. Food Aust. 1997, 49, 508–511. [Google Scholar]
- Bjornrasmussen, E.; Hallberg, L.; Isaksson, B.; Arvidsson, B. Food iron-absorption in man—Applications of 2-pool extrinsic tag method to measure heme and nonheme iron-absorption from whole diet. J. Clin. Investig. 1974, 53, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Rangan, A.; Aitkin, I.; Blight, G.; Binns, C. Factors affecting iron status in 15–30 year old female students. Asia Pac. J. Clin. Nutr. 1997, 6, 291–295. [Google Scholar] [PubMed]
- Ahmed, F.; Coyne, T.; Dobson, A.; McClintock, C. Iron status among australian adults: Findings of a population based study in queensland, australia. Asia Pac. J. Clin. Nutr. 2008, 17, 40–47. [Google Scholar] [PubMed]
- Australian Bureau of Statistics. Anaemia. Available online: http://www.abs.gov.au/ausstats/[email protected]/Lookup/4364.0.55.005Chapter7002011-12 (accessed on 3 August 2017).
- Hallberg, L.; Hallberg, L.; Högdahl, A.M.; Högdahl, A.M.; Nilsson, L.; Nilsson, L.; Rybo, G.; Rybo, G. Menstrual blood loss and iron deficiency. Acta Med. Scand. 1966, 180, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.F.; Pedersen, P.; Dixon, J.L.; Stephenson, P.; Searle, J.W.; Powell, L.W.; Subramaniam, V.N. Novel mutation in ferroportin1 is associated with autosomal dominant hemochromatosis. Blood 2002, 100, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; Michels, N.; Verstraete, S.; Ferrari, M.; Leclercq, C.; Cuenca-garcía, M.; Grammatikaki, E.; Manios, Y.; Gottrand, F.; Santamarıia, J.V.; et al. Intake and dietary sources of haem and non-haem iron among european adolescents and their association with iron status and different lifestyle and socio-economic factors. Eur. J. Clin. Nutr. 2013, 67, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O. Iron status during pregnancy: Setting the stage for mother and infant. Am. J. Clin. Nutr. 2005, 81, 1218S–1222S. [Google Scholar] [PubMed]
- Hoek, H.W. Distribution of eating disorders. In Eating Disorders and Obesity: A Comprehensive Handbook, 2nd ed.; Guilford Press: New York, NY, USA, 2002; Volume 2, pp. 233–237. [Google Scholar]
- Fayet-Moore, F.; Petocz, P.; Samman, S. Micronutrient status in female university students: Iron, zinc, copper, selenium, vitamin B12 and folate. Nutrients 2014, 6, 5103–5116. [Google Scholar] [CrossRef] [PubMed]
- Fayet, F.; Petocz, P.; Samman, S. Prevalence and correlates of dieting in college women: A cross sectional study. Int. J. Womens Health 2012, 4, 405. [Google Scholar] [PubMed]
- Larsson, G.; Milsom, L.; Lindstedt, G.; Rybo, G. The influence of a low-dose combined oral contraceptive on menstrual blood loss and iron status. Contraception 1992, 46, 327–334. [Google Scholar] [CrossRef]
- Milman, N.; Clausen, J.; Byg, K.-E. Iron status in 268 danish women aged 18–30 years: Influence of menstruation, contraceptive method, and iron supplementation. Ann. Hematol. 1998, 77, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Yanoff, L.B.; Menzie, C.M.; Denkinger, B.; Sebring, N.G.; McHugh, T.; Remaley, A.T.; Yanovski, J.A. Inflammation and iron deficiency in the hypoferremia of obesity. Int. J. Obes. 2007, 31, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Northrop-Clewes, C.A.; Thurnham, D.I. Biomarkers for the differentiation of anemia and their clinical usefulness. J. Blood Med. 2013, 4, 11. [Google Scholar] [PubMed]
- Popkin, B.M. Recent dynamics suggest selected countries catching up to us obesity. Am. J. Clin. Nutr. 2010, 91, 284S–288S. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.J.; McEvoy, M.A.; MacDonald-Wicks, L.K.; Barker, D.; Attia, J.; Hodge, A.M.; Patterson, A.J. Calculation of haem iron intake and its role in the development of iron deficiency in young women from the Australian longitudinal study on women’s health. Nutrients 2017, 9, 515. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.L.; Dwyer, N.J.; Donges, C.E.; Parker, H.M.; Cheng, H.L.; Steinbeck, K.S.; Cox, E.P.; Franklin, J.L.; Garg, M.L.; Rooney, K.B.; et al. Relationship between obesity and cognitive function in young women: The food, mood and mind study. J. Obes. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. 10 Facts about Obesity. Available online: http://www.who.int/features/factfiles/obesity/en/ (accessed on 26 September 2017).
- Ireland, P.; Jolley, D.; Giles, G.; O’Dea, K.; Powles, J.; Rutishauser, I.; Wahlqvist, M.L.; Williams, J. Development of the Melbourne FFQ: A food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac. J. Clin. Nutr. 1994, 3, 19–31. [Google Scholar] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the international diabetes federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.-R.; Flecknoe-Brown, S.C.; Allen, K.J.; Gibson, P.R.; McMahon, L.P.; Olynyk, J.K.; Roger, S.D.; Savoia, H.F.; Tampi, R.; Thomson, A.R. Diagnosis and management of iron deficiency anaemia: A clinical update. Med. J. Aust. 2010, 193, 525–532. [Google Scholar] [PubMed]
- Cancer Council Victoria. Dietary Questionannaires. Available online: http://www.cancervic.org.au/aboutour/research/epidemiology/nutritional_assessment_services (accessed on 10 August 2017).
- Hodge, A.; Patterson, A.J.; Brown, W.J.; Ireland, P.; Giles, G. The anti cancer council of victoria ffq: Relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust. N. Z. J. Public Health 2000, 24, 576–583. [Google Scholar] [CrossRef] [PubMed]
- MathWorks. Linsolve. Available online: https://au.mathworks.com/help/symbolic/linsolve.html (accessed on 29 August 2017).
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Han, D.; McMillin, K.; Godber, J.; Bidner, T.; Younathan, M.; Marshall, D.; Hart, L. Iron distribution in heated beef and chicken muscles. J. Food Sci. 1993, 58, 697–700. [Google Scholar] [CrossRef]
- The Department of Health. The Australian Guide to Healthy Eating. Available online: http://www.health.gov.au/internet/publications/publishing.nsf/Content/nhsc-guidelines~aus-guide-healthy-eating (accessed on 11 September 2017).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef]
- Black, A.E. Critical evaluation of energy intake using the goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef]
- Joseph Proietto, M. State of the science: VLED (very low energy diet) for obesity. Asia Pac. J. Clin. Nutr. 2006, 15, 49–54. [Google Scholar]
- Schofield, W.N.; Schofield, C.; James, W.P.T. Basal Metabolic Rate: Review and Prediction, Together with an Annotated Bibliography of Source Material; J. Libbey: London, UK, 1985. [Google Scholar]
- Stewart, R. Griffith Handbook of Clinical Nutrition and Dietetics, 3rd ed.; Griffith University School of Public Health: South Port, Australia, 2009. [Google Scholar]
- Cepeda-Lopez, A.C.; Melse, A.; Zimmermann, M.B.; Herter-Aeberli, I. In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women. Am. J. Clin. Nutr. 2015, 102, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Lopez, H.W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and phytic acid interactions: Is it a real problem for human nutrition? Int. J. Food Sci. Technol. 2002, 37, 727–739. [Google Scholar] [CrossRef]
- Arredondo, M.; Martínez, R.; Núñez, M.T.; Ruz, M.; Olivares, M. Inhibition of iron and copper uptake by iron, copper and zinc. Biol. Res. 2006, 39, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Preziosi, P.; Hercberg, S.; Galan, P.; Devanlay, M.; Cherouvrier, F.; Dupin, H. Iron status of a healthy French population: Factors determining biochemical markers. Ann. Nutr. Metab. 1994, 38, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Backstrand, J.R.; Allen, L.H.; Black, A.K.; de Mata, M.; Pelto, G.H. Diet and iron status of nonpregnant women in rural central Mexico. Am. J. Clin. Nutr. 2002, 76, 156–164. [Google Scholar] [PubMed]
- He, J.; Shen, X.; Fang, A.; Song, J.; Li, H.; Guo, M.; Li, K. Association between predominantly plant-based diets and iron status in Chinese adults: A cross-sectional analysis. Br. J. Nutr. 2016, 116, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Booth, A.; Szymlek-Gay, E.A.; Gibson, R.S.; Bailey, K.B.; Irving, D.; Nowson, C.; Riddell, L. Associations between dietary iron and zinc intakes, and between biochemical iron and zinc status in women. Nutrients 2015, 7, 2983–2999. [Google Scholar] [CrossRef] [PubMed]
- Sandstead, H.H. Causes of iron and zinc deficiencies and their effects on brain. J. Nutr. 2000, 130, 347S–349S. [Google Scholar] [PubMed]
- Galan, P.; Yoon, H.; Preziosi, P.; Viteri, F.; Valeix, P.; Fieux, B.; Briancon, S.; Malvy, D.; Roussel, A.; Favier, A. Determining factors in the iron status of adult women in the su. Vi. Max study. Eur. J. Clin. Nutr. 1998, 52, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-L.; Griffin, H.J.; Bryant, C.E.; Rooney, K.B.; Steinbeck, K.S.; Helen, T. Impact of diet and weight loss on iron and zinc status in overweight and obese young women. Asia Pac. J. Clin. Nutr. 2013, 22, 574–582. [Google Scholar] [PubMed]
- Thiele, S.; Mensink, G.B.; Beitz, R. Determinants of diet quality. Public Health Nutr. 2004, 7, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Hiza, H.A.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, C.; Marques, F.; Robalo Nunes, A.; Belo, A.; Brilhante, D.; Cortez, J. Prevalence of anaemia and iron deficiency in portugal: The empire study: Anaemia and iron deficiency in Portugal. Intern. Med. J. 2016, 46, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Kristal, A.R.; Peters, U.; Potter, J.D. Is It Time to Abandon the Food Frequency Questionnaire? American Association for Cancer Research (AACR): Philadelphia, PA, USA, 2005. [Google Scholar]
- Andersen, L.F.; Tomten, H.; Haggarty, P.; Løvø, A.; Hustvedt, B. Validation of energy intake estimated from a food frequency questionnaire: A doubly labelled water study. Eur. J. Clin. Nutr. 2003, 57, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, M.; Wenk, C. Variability of selected vitamins and trace elements of different meat cuts. J. Food Compos. Anal. 1997, 10, 218–224. [Google Scholar] [CrossRef]
Characteristic | Total Group (n = 270) | IR (n = 183) | ID/IDA (n = 87) | p-Value 1 |
---|---|---|---|---|
Age (years) | 25.9 ± 5.0 | 26.3 ± 4.9 | 25.3 ± 5.2 | 0.131 |
Highest Educational Attainment 2 (n, %) | ||||
Secondary | 75 (27.8) | 41 (22.4) | 34 (39.1) | 0.014 |
Certificate/Diploma | 43 (15.9) | 33 (18.0) | 10 (11.5) | |
Higher education | 152 (56.3) | 109 (59.6) | 43 (49.4) | |
Location (n, %) | ||||
Rural | 89 (33.0) | 66 (36.1) | 23 (26.4) | 0.116 |
Urban | 181 (67.0) | 117 (63.9) | 64 (73.6) | |
Ethnicity (n, %) | ||||
Asia | 44 (16.3) | 29 (15.8) | 15 (17.2) | 0.362 |
Europe | 186 (68.9) | 123 (67.2) | 63 (72.4) | |
Other * | 40 (14.8) | 31 (16.9) | 9 (10.3) | |
Weight Status (n, %) | ||||
Obese weight | 126 (46.7) | 89 (48.6) | 37 (42.5) | 0.347 |
Normal weight | 144 (53.3) | 94 (51.4) | 50 (57.5) | |
Weight (kg) | 77.9 ± 23.8 | 79.0 ± 23.4 | 75.7 ± 24.5 | 0.285 |
BMI (kg/m2) | 28.5 ± 8.6 | 28.8 ± 8.3 | 27.9 ± 9.4 | 0.453 |
Waist circumference (cm) | 84.4 ± 18.6 | 85.3 ± 18.7 | 82.5 ± 19.1 | 0.252 |
Activity (MET-min/week) | ||||
Total | 2573 ± 2137 | 2533 ± 2079 | 2658 ± 2263 | 0.654 |
Dietary Restraint (n, %) | ||||
Low | 81 (30.0) | 57 (31.1) | 24 (27.6) | 0.368 |
Medium | 117 (43.3) | 82 (44.8) | 35 (40.2) | |
High | 72 (26.7) | 44 (24.0) | 28 (32.2) | |
Energy Reporting (n, %) | ||||
Low energy reporting | 156 (57.8) | 95 (51.9) | 61 (70.1) | 0.005 |
Plausible energy reporting | 114 (42.2) | 88 (48.1) | 26 (29.9) | |
Oral Contraceptive Pill (n, %) ^ | ||||
Yes | 76 (32.3) | 52 (32.7) | 24 (31.6) | 0.863 |
No | 159 (67.7) | 107 (67.3) | 52 (68.4) |
Nutrient/Food Group | Total Group (n = 270) | IR (n = 183) | ID/IDA (n = 87) | p-Value 1 |
---|---|---|---|---|
Energy (kJ) | 7484 ± 3028 | 7863 ± 3145 | 6687 ± 2609 | 0.003 |
Energy (kcal) | 1790 ± 724 | 1881 ± 752 | 1648 ± 624 | 0.003 |
Nutrients | ||||
Protein (g) | 90.9 ± 15.2 | 91.9 ± 15.3 | 89.0 ± 14.9 | 0.142 |
Fat (g) | 75.5 ± 9.3 | 76.1 ± 9.1 | 74.1 ± 9.7 | 0.106 |
Carbohydrate (g) | 187.7 ± 26.0 | 186.3 ± 27.3 | 190.7 ± 22.9 | 0.198 |
Fibre (g) | 21.2 ± 5.5 | 21.2 ± 5.7 | 21.3 ± 5.3 | 0.858 |
Total iron (mg) | 12.7 ± 2.6 | 12.9 ± 2.9 | 12.2 ± 1.9 | 0.012 * |
HI (mg) | 2.0 ± 0.9 | 2.1 ± 1.0 | 1.8 ± 0.8 | 0.043 |
NHI (mg) | 10.7 ± 2.7 | 10.8 ± 3.0 | 10.3 ± 2.0 | 0.102 * |
Zinc (mg) | 11.8 ± 2.2 | 12.0 ± 2.4 | 11.3 ± 1.7 | 0.008 * |
Calcium (mg) | 882.5 ± 244.6 | 875.4 ± 244.4 | 897.4 ± 245.7 | 0.492 |
Folate (μg) | 251.1 ± 63.5 | 255.6 ± 67.3 | 241.7 ± 53.7 | 0.092 |
Vitamin C (mg) | 104.6 ± 49.2 | 105.1 ± 54.2 | 103.6 ± 36.7 | 0.813 |
Sodium (mg) | 2404 ± 426 | 2424 ± 421 | 2363 ± 436 | 0.271 |
Food groups (serves) | ||||
Fruit | 1.8 ± 1.0 | 1.7 ± 1.0 | 1.8 ± 1.0 | 0.412 |
Vegetables | 1.9 ± 1.0 | 2.0 ± 1.0 | 1.9 ± 0.9 | 0.585 |
Meat | 1.9 ± 1.0 | 2.0 ± 1.1 | 1.7 ± 1.0 | 0.058 |
Red meat | 0.7 ± 0.8 | 0.8 ± 0.9 | 0.6 ± 0.7 | 0.115 |
Poultry | 0.5 ± 0.4 | 0.5 ± 0.4 | 0.5 ± 0.3 | 0.349 * |
Fish | 0.4 ± 0.4 | 0.4 ± 0.4 | 0.4 ± 0.3 | 0.977 |
Meat alternatives | 0.5 ± 0.4 | 0.5 ± 0.4 | 0.5 ± 0.4 | 0.235 |
Dairy | 1.7 ± 0.7 | 1.7 ± 0.7 | 1.8 ± 0.7 | 0.732 |
Grains & Cereals | 3.6 ± 1.5 | 3.6 ± 1.7 | 3.6 ± 1.1 | 0.675 * |
Discretionary | 4.0 ± 1.6 | 4.0 ± 1.7 | 4.1 ± 1.3 | 0.647 |
Alcohol | 0.8 ± 1.1 | 0.9 ± 1.2 | 0.6 ± 0.8 | 0.298 ** |
Potential Confounders | GLM (Unadjusted) | GLM (Energy Adjusted) | ||||
---|---|---|---|---|---|---|
β | SE | p-Value 1 | β | SE | p-Value 1 | |
Age (years) | 0.003 | 0.009 | 0.723 | 0.003 | 0.009 | 0.736 |
Education | ||||||
Secondary | −0.296 | 0.101 | 0.004 | −0.292 | 0.102 | 0.004 |
Certificate/Diploma | 0.055 | 0.125 | 0.663 | 0.050 | 0.125 | 0.690 |
Higher | 0 a | 0 a | ||||
BMI (kg/m2) | 0.003 | 0.006 | 0.627 | 0.000 | 0.006 | 0.953 |
Energy reporting * | ||||||
Low energy reporting | −0.181 | 0.090 | 0.044 | −0.090 | 0.139 | 0.515 |
Plausible reporting | 0 a | 0 a | ||||
HI **(mg) | 0.125 | 0.049 | 0.010 | 0.128 | 0.049 | 0.009 |
NHI **(mg) | 0.037 | 0.017 | 0.029 | 0.037 | 0.017 | 0.028 |
Energy (MJ) | 0.019 | 0.022 | 0.393 | |||
Adjusted R Squared | 0.059 | 0.058 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, I.; Parker, H.M.; Rangan, A.; Prvan, T.; Cook, R.L.; Donges, C.E.; Steinbeck, K.S.; O’Dwyer, N.J.; Cheng, H.L.; Franklin, J.L.; et al. Association between Haem and Non-Haem Iron Intake and Serum Ferritin in Healthy Young Women. Nutrients 2018, 10, 81. https://doi.org/10.3390/nu10010081
Young I, Parker HM, Rangan A, Prvan T, Cook RL, Donges CE, Steinbeck KS, O’Dwyer NJ, Cheng HL, Franklin JL, et al. Association between Haem and Non-Haem Iron Intake and Serum Ferritin in Healthy Young Women. Nutrients. 2018; 10(1):81. https://doi.org/10.3390/nu10010081
Chicago/Turabian StyleYoung, Isabel, Helen M. Parker, Anna Rangan, Tania Prvan, Rebecca L. Cook, Cheyne E. Donges, Kate S. Steinbeck, Nicholas J. O’Dwyer, Hoi Lun Cheng, Janet L. Franklin, and et al. 2018. "Association between Haem and Non-Haem Iron Intake and Serum Ferritin in Healthy Young Women" Nutrients 10, no. 1: 81. https://doi.org/10.3390/nu10010081