Mini N2-Raman Lidar Onboard Ultra-Light Aircraft for Aerosol Measurements: Demonstration and Extrapolation
Abstract
:1. Introduction
2. Method
2.1. Theory
2.1.1. Problem
2.1.2. Lidar Signals: Basic Equations
2.1.3. N2-Raman Lidar-Derived AOT
2.1.4. Other Useful Parameters
2.2. Strategy and Flight Plans
2.3. Instrumental Tools
2.3.1. Ultra-Light Aircraft
2.3.2. The N2-Raman Lidar
3. Experiment
3.1. Ascendant Spiral Flight Phase
3.1.1. Description
3.1.2. Overlap Factor
3.1.3. Inversion from Horizontal Measurements
3.1.4. Inversion from Nadir Measurements
3.2. Flights Using Two Altitude Stages
3.2.1. Flight Plan Descriptions
3.2.2. Inversion
4. Error Budget
4.1. Uncertainty Sources
4.2. Input Conditions for Simulations
4.3. Results of the Error Budget
4.3.1. Error Due to Shot Noise and Reference AOT Estimation (Fixed Constraint AOT)
4.3.2. Error Due to Shot Noise, Reference, and Constraint AOT Estimations
4.3.3. Error Due to the Ångström Exponent
4.4. Extrapolation towards a Future Airborne N2-Raman Lidar
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandresa, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Le-Treut, H.; Somerville, R.; Cubasch, U.; Ding, Y.; Mauritzen, C.; Mokssit, A.; Peterson, T.; Prather, M.; Qin, D.; Manning, M.; et al. Historical Overview of Climate Change Science. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; Chapter 1; pp. 93–127. [Google Scholar]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Hodzic, A.; Vautard, R.; Chepfer, H.; Goloub, P.; Menut, L.; Chazette, P.; Deuzé, J.L.; Apituley, A.; Couvert, P. Evolution of aerosol optical thickness over Europe during the August 2003 heat wave as seen from CHIMERE model simulations and POLDER data. Atmos. Chem. Phys. 2006, 6, 1853–1864. [Google Scholar] [CrossRef]
- Tombette, M.; Chazette, P.; Sportisse, B.; Roustan, Y. Simulation of aerosol optical properties over Europe with a 3-D size-resolved aerosol model: Comparisons with AERONET data. Atmos. Chem. Phys. 2008, 8, 7115–7132. [Google Scholar] [CrossRef]
- Royer, P.; Chazette, P.; Sartelet, K.; Zhang, Q.J.; Beekmann, M.; Raut, J.-C. Comparison of Lidar-derived PM10 with regional modeling and ground-based observations in the frame of MEGAPOLI experiment. Atmos. Chem. Phys. 2011, 11, 10705–10726. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sartelet, K.N.; Bocquet, M.; Chazette, P.; Sicard, M.; D’Amico, G.; Léon, J.F.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; et al. Assimilation of Lidar signals: Application to aerosol forecasting in the western Mediterranean basin. Atmos. Chem. Phys. 2014, 14, 12031–12053. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Hobbs, P.V.; Kirchhoff, V.W.J.H.; Artaxo, P.; Remer, L.A.; Holben, B.N.; King, M.D.; Ward, D.E.; Prins, E.M.; Longo, K.M.; et al. Smoke, Clouds, and Radiation-Brazil (SCAR-B). J. Geophys. Res. 1998, 103, 31783–31808. [Google Scholar] [CrossRef]
- Russell, P.B.; Hobbs, P.V.; Stowe, L.L. Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J. Geophys. Res. 1999, 104, 2213–2222. [Google Scholar] [CrossRef]
- Raes, F.; Bates, T.; McGovern, F.; Van Liedekerke, M. The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results. Tellus B 2000, 52, 111–125. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Lelieveld, J.; Mitra, A.P.; Althausen, D.; Anderson, J.; Andreae, M.O.; Cantrell, W.; Cass, G.R.; Chung, C.E.; et al. Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res. Atmos. 2001, 106, 28371–28398. [Google Scholar] [CrossRef]
- Vautard, R.; Menut, L.; Beekmann, M.; Chazette, P.; Flamant, P.H.; Gombert, D.; Guédalia, D.; Kley, D.; Lefebvre, M.-P.; Martin, D.; et al. A synthesis of the Air Pollution Over the Paris Region (ESQUIF) field campaign. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Freney, E.J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; et al. Characterizing the impact of urban emissions on regional aerosol particles: Airborne measurements during the MEGAPOLI experiment. Atmos. Chem. Phys. 2014, 14, 1397–1412. [Google Scholar] [CrossRef] [Green Version]
- Flamant, C.; Chaboureau, J.P.; Parker, D.J.; Taylor, C.M.; Cammas, J.P.; Bock, O.; Timouk, F.; Pelon, J. Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Q. J. R. Meteorol. Soc. 2007, 133, 1175–1189. [Google Scholar] [CrossRef]
- Raut, J.-C.; Chazette, P. Radiative budget in the presence of multi-layered aerosol structures in the framework of AMMA SOP-0. Atmos. Chem. Phys. 2008, 8, 12461–12528. [Google Scholar] [CrossRef]
- Formenti, P.; Rajot, J.L.; Desboeufs, K.; Saïd, F.; Grand, N.; Chevaillier, S.; Schmechtig, C. Airborne observations of mineral dust over western Africa in the summer Monsoon season: Spatial and vertical variability of physico-chemical and optical properties. Atmos. Chem. Phys. 2011, 11, 6387–6410. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.T.; Heese, B.; McFarlane, S.A.; Chazette, P.; Jones, A.; Bellouin, N. Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- DeCarlo, P.F.; Dunlea, E.J.; Kimmel, J.R.; Aiken, A.C.; Sueper, D.; Crounse, J.; Wennberg, P.O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; et al. Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmos. Chem. Phys. 2008, 8, 4027–4048. [Google Scholar] [CrossRef]
- Molina, L.T.; Madronich, S.; Gaffney, J.S.; Apel, E.; de Foy, B.; Fast, J.; Ferrare, R.; Herndon, S.; Jimenez, J.L.; Lamb, B.; et al. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 2010, 10, 8697–8760. [Google Scholar] [CrossRef] [Green Version]
- Ancellet, G.; Pelon, J.; Blanchard, Y.; Quennehen, B.; Bazureau, A.; Law, K.S.; Schwarzenboeck, A. Transport of aerosol to the Arctic: Analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign. Atmos. Chem. Phys. 2014, 14, 8235–8254. [Google Scholar] [CrossRef] [Green Version]
- Marenco, F.; Johnson, B.; Turnbull, K.; Newman, S.; Haywood, J.; Webster, H.; Ricketts, H. Airborne Lidar observations of the 2010 Eyjafjallajökull volcanic ash plume. J. Geophys. Res. 2011, 116, D00U05. [Google Scholar] [CrossRef]
- Chazette, P.; Dabas, A.; Sanak, J.; Lardier, M.; Royer, P. French airborne Lidar measurements for Eyjafjallajökull ash plume survey. Atmos. Chem. Phys. 2012, 12, 7059–7072. [Google Scholar] [CrossRef]
- Shipley, S.T.; Tracy, D.H.; Eloranta, E.W.; Trauger, J.T.; Sroga, J.T.; Roesler, F.L.; Weinman, J.A. High spectral resolution Lidar to measure optical scattering properties of atmospheric aerosols 1: Theory and instrumentation. Appl. Opt. 1983, 22, 3716–3724. [Google Scholar] [CrossRef] [PubMed]
- Heaps, W.S.; Burris, J. Airborne Raman Lidar. Appl. Opt. 1996, 35, 7128–7135. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G. Performance modeling of an airborne Raman water-vapor Lidar. Appl. Opt. 2001, 40, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, Z.; Cai, Y.; Wechsler, P.; Kuestner, W.; Burkhart, M.; Welch, W. Compact airborne Raman Lidar for profiling aerosol, water vapor and clouds. Opt. Express 2014, 22, 20613–20621. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Chazette, P. End-to-End Simulation for a Forest-Dedicated Full-Waveform Lidar onboard a Satellite Initialized from UV Airborne Lidar Experiments. Remote Sens. 2015, 7, 5222–5255. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing Lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Measures, R.M. Laser Remote Sensing: Fundamentals and Applications; Wiley, J., Ed.; Krieger Publishing Company: Malabar, FL, USA, 1984. [Google Scholar]
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of atmospheric aerosol extinction profiles with a Raman Lidar. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Chazette, P.; Flamant, C.; Shang, X.; Totems, J.; Raut, J.-C.; Doerenbecher, A.; Ducrocq, V.; Fourrié, N.; Bock, O.; Cloché, S. A multi-instrument and multi-model assessment of atmospheric moisture variability over the Western Mediterranean during HyMeX. Q. J. R. Meteorol. Soc. 2016, 142, 7–22. [Google Scholar] [CrossRef]
- Chazette, P. Exceptional aerosol pollution plume observed using a new ULA-Lidar approach. Atmos. Environ. 2016, 141, 470–480. [Google Scholar] [CrossRef]
- Royer, P.; Chazette, P.; Lardier, M.; Sauvage, L. Aerosol content survey by mini N2-Raman Lidar: Application to local and long-range transport aerosols. Atmos. Environ. 2011, 45, 7487–7495. [Google Scholar] [CrossRef]
- Shang, X.; Chazette, P.; Totems, J.; Dieudonné, E.; Hamonou, E.; Duflot, V.; Strasberg, D.; Flores, O.; Fournel, J.; Tulet, P. Tropical Forests of Réunion Island Classified from Airborne Full-Waveform Lidar Measurements. Remote Sens. 2016, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Chazette, P. The monsoon aerosol extinction properties at Goa during INDOEX as measured with Lidar. J. Geophys. Res. 2003, 108, 4187. [Google Scholar] [CrossRef]
- Chazette, P.; Sanak, J.; Dulac, F. New Approach for Aerosol Profiling with a Lidar Onboard an Ultralight Aircraft: Application to the African Monsoon Multidisciplinary Analysis. Environ. Sci. Technol. 2007, 41, 8335–8341. [Google Scholar] [CrossRef] [PubMed]
- Chazette, P.; Raut, J.-C.; Dulac, F.; Berthier, S.; Kim, S.-W.; Royer, P.; Sanak, J.; Loaëc, S.; Grigaut-Desbrosses, H. Simultaneous observations of lower tropospheric continental aerosols with a ground-based, an airborne, and the spaceborne CALIOP Lidar system. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Shang, X.; Chazette, P. Interest of a Full-Waveform Flown UV Lidar to Derive Forest Vertical Structures and Aboveground Carbon. Forests 2014, 5, 1454–1480. [Google Scholar] [CrossRef]
- Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X. Raman Lidar Observations of Aerosol Optical Properties in 11 Cities from France to Siberia. Remote Sens. 2017, 9, 978. [Google Scholar] [CrossRef]
- Chazette, P.; Totems, J.; Shang, X. Atmospheric aerosol variability above the Paris Area during the 2015 heat wave—Comparison with the 2003 and 2006 heat waves. Atmos. Environ. 2017, 170, 216–233. [Google Scholar] [CrossRef]
- Chazette, P.; Bocquet, M.; Royer, P.; Winiarek, V.; Raut, J.C.; Labazuy, P.; Gouhier, M.; Lardier, M.; Cariou, J.P. Eyjafjallajökull ash concentrations derived from both Lidar and modeling. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Chazette, P.; Pelon, J.; Mégie, G. Determination by spaceborne backscatter Lidar of the structural parameters of atmospheric scattering layers. Appl. Opt. 2001, 40, 3428–3440. [Google Scholar] [CrossRef] [PubMed]
- Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X. Lidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia). Atmos. Chem. Phys. 2015, 15, 5007–5026. [Google Scholar] [CrossRef]
- Haywood, J.M.; Johnson, B.T.; Osborne, S.R.; Baran, A.J.; Brooks, M.; Milton, S.F.; Mulcahy, J.; Walters, D.; Allan, R.P.; Klaver, A.; et al. Motivation, rationale and key results from the GERBILS saharan dust measurement campaign. Q. J. R. Meteorol. Soc. 2011, 137, 1106–1116. [Google Scholar] [CrossRef]
Flight Identification | Date in June 2015 Local Time | Description |
---|---|---|
A | 18th 1715–1810 | Spiral between ground level (~350 m) and ~3.5 km above the mean sea level (amsl) with Nadir shooting during ascent and horizontal shooting during descent |
B | 22nd 2215–2300 | Same as flight A |
C | 24th 1450–1740 | Stage 1: spiral between ground level (~350 m) and ~3.2 km with Nadir shooting Stage 2: constant level flight above the Rhône valley at 3.2 km amsl Stage 3: half-turn to follow a constant level flight at ~1.3 km amsl above the same ground track as stage 2 Stage 4: descent for landing with horizontal shooting |
D | 24th 1840–2030 | Stage 1: spiral between ground level (~350 m) and ~3.2 km with Nadir shooting Stage 2: constant level flight crossing the Rhône valley at 1.4 km amsl Stage 3: half-turn to follow a constant level flight at ~3.2 km amsl above the same ground track as stage 2 Stage 4: descent for landing with horizontal shooting |
ULA Flight Characteristics | |
---|---|
True airspeed: 17 to 40 m·s−1 (60 to 145 km·h−1) | Endurance: 3 h (max 4 h at 20 m·s−1) |
Ascent speed: up to 365 ft·min−1 (110 m·min−1) | Maximum equipment payload: 120 kg |
Descent speed: 825 ft·min−1 (250 m·min−1) | Maximum altitude: 5.8 km |
Laser | Nd:Yag | Emitted Energy | 16 mJ | ||
---|---|---|---|---|---|
Emitted wavelength | 355 nm | Pulse repetition frequency | 20 Hz | ||
Acquisition frequency | 200 MHz | Native vertical sampling | 0.75 m | ||
Averaged on 400 profiles during flights at 90 km·h−1 | |||||
Maximum range | Horizontal resolution | Vertical resolution | Temporal resolution | ||
Reception channels | Elastic // 354.67 nm | 3 km | 500 m | 30 m | 20 s |
Elastic ┴ 354.67 nm | 1.5 km | ||||
Raman-N2 386.63 nm | 1 km | ||||
Field of view | ~2.3 mrad | Total overlap | ~200 m | ||
Reception diameter | 15 cm | Spectral Bandwidth | 0.3 nm | ||
Detector | Photomultiplier | Detection mode | Analog | ||
Weight | ~45 kg | Power supply | 500 W |
Condition | Variable (Value) | Bias | Standard Deviation (rms) | Total Uncertainty (Relative) |
---|---|---|---|---|
Airborne N2-Raman Lidar | ||||
Unknown AOTr & known AOTc. 2 levels of flight | AOTr (0.008) | 0 | 0.003 | 0.003 (37.5%) |
AOTt (0.11) | +0.002 | 0.012 | 0.013 (11.1%) | |
LR (55 sr) | +2.9 sr | 3.1 sr | 4.2 sr (7.6%) | |
Unknown AOTr & AOTc. 2 levels of flight | AOTr (0.008) | 0 | 0.003 | 0.003 (37.5%) |
AOTt (0.11) | +0.003 | 0.014 | 0.014 (12.7%) | |
LR (55 sr) | −2.3 sr | 22.2 sr | 22.3 sr (40.6%) | |
Unknown Ångström (1 ± 0.5) (no rms) | AOTt (0.11) | ±0.001 | - | 0.001 (1%) |
LR (55 sr) | ±1.5 sr | - | 1.5 sr (2.7%) | |
Vertical resolution from 0.75 to 30 m (no rms) | AOTt (0.11) | +0.005 | - | 0.005 (4.5%) |
LR (55 sr) | +1.5 sr | - | 1.5 sr (2.7%) | |
Lidar with 90 mJ Emitted Energy without Loss | ||||
Constraint zone (0.5–1 km amsl) 2 levels of flight | AOTr (0.008) | 0 | 0.001 | 0.001 (12.5%) |
AOTt (0.11) | 0.003 | 0.005 | 0.006 (5.5%) | |
AOTc (0.02) | - | 0.003 | 0.003 (16%) | |
LR (55 sr) | 3.3 sr | 1.4 sr | 3.6 sr (6.4%) | |
Constraint zone (0.5–1 km amsl) 1 level of flight | AOTr (0.008) | 0.0 | 0.001 | 0.001 (12.5%) |
AOTt (0.11) | 0.0012 | 0.018 | 0.018 (16.4%) | |
AOTc (0.02) | −0.001 | 0.005 | 0.005 (25%) | |
LR (55 sr) | 1.3 sr | 7.7 sr | 7.8 sr (14.1%) | |
Constraint zone (0.5–2 km amsl) 1 level of flight | AOTr (0.008) | 0 | 0.001 | 0.001 (12.5%) |
AOTt (0.11) | −0.001 | 0.008 | 0.008 (7.3%) | |
AOTc (0.07) | 0.0 | 0.004 | 0.004 (5.7%) | |
LR (55 sr) | 2.2 sr | 2.0 sr | 3.0 sr (5.4%) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chazette, P.; Totems, J. Mini N2-Raman Lidar Onboard Ultra-Light Aircraft for Aerosol Measurements: Demonstration and Extrapolation. Remote Sens. 2017, 9, 1226. https://doi.org/10.3390/rs9121226
Chazette P, Totems J. Mini N2-Raman Lidar Onboard Ultra-Light Aircraft for Aerosol Measurements: Demonstration and Extrapolation. Remote Sensing. 2017; 9(12):1226. https://doi.org/10.3390/rs9121226
Chicago/Turabian StyleChazette, Patrick, and Julien Totems. 2017. "Mini N2-Raman Lidar Onboard Ultra-Light Aircraft for Aerosol Measurements: Demonstration and Extrapolation" Remote Sensing 9, no. 12: 1226. https://doi.org/10.3390/rs9121226
APA StyleChazette, P., & Totems, J. (2017). Mini N2-Raman Lidar Onboard Ultra-Light Aircraft for Aerosol Measurements: Demonstration and Extrapolation. Remote Sensing, 9(12), 1226. https://doi.org/10.3390/rs9121226