An Evaluation of Four MODIS Collection 6 Aerosol Products in a Humid Subtropical Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS Data Sets
2.3. AERONET Data and Matchup Methodology
3. Results
3.1. AERONET Data Comparisons
3.2. Site-Level Analyses
3.3. Comparisons of MODIS Data Sets
3.4. Evaluation of the DT/DB Merging Protocol
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Remote sensing of atmospheric aerosol using spaceborne optical observations. Earth-Sci. Rev. 2013, 116, 95–108. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from eos moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The collection 6 modis aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional pm2.5 estimation over the Pearl River delta region in china. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Y.; Zhao, Q.; Liu, M.; Zhou, Y.; Bi, J. Satellite-derived high resolution pm2.5 concentrations in yangtze river delta region of china using improved linear mixed effects model. Atmos. Environ. 2016, 133, 156–164. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and pm2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30, 267–283. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef]
- Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The modis aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the collection 5 modis dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, Z.; Tao, J.; Che, H.; Wang, X.; Wang, Y. Comparison and evaluation of the modis collection 6 aerosol data in china. J. Geophys. Res. Atmos. 2015, 120, 6992–7005. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R.C.; Liu, Y. Evaluation of viirs, goci, and modis collection 6 aod retrievals against ground sunphotometer observations over east asia. Atmos. Chem. Phys. 2016, 16, 1255–1269. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for modis collection 6 “deep blue” aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. Modis collection 6 aerosol products: Comparison between aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E. Evaluation of modis aerosol retrieval algorithms over the beijing-tianjin-hebei region during low to very high pollution events. J. Geophys. Res. Atmos. 2015, 120, 7941–7957. [Google Scholar] [CrossRef]
- Schutgens, N.A.J.; Partridge, D.G.; Stier, P. The importance of temporal collocation for the evaluation of aerosol models with observations. Atmos. Chem. Phys. 2016, 16, 1065–1079. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Hu, M.; Zhong, L.J.; Wiedensohler, A.; Liu, S.C.; Andreae, M.O.; Wang, W.; Fan, S.J. Regional integrated experiments on air quality over pearl river delta 2004 (pride-prd2004): Overview. Atmos. Environ. 2008, 42, 6157–6173. [Google Scholar] [CrossRef]
- Liu, H.; Chan, J.C.L.; Cheng, A.Y.S. Internal boundary layer structure under sea-breeze conditions in Hong Kong. Atmos. Environ. 2001, 35, 683–692. [Google Scholar] [CrossRef]
- Li, Y.; Lin, C.; Lau, A.K.H.; Liao, C.; Zhang, Y.; Zeng, W.; Li, C.; Fung, J.C.H.; Tse, T.K.T. Assessing long-term trend of particulate matter pollution in the pearl river delta region using satellite remote sensing. Environ. Sci. Technol. 2015, 49, 11670–11678. [Google Scholar] [CrossRef]
- Deng, X.; Tie, X.; Wu, D.; Zhou, X.; Bi, X.; Tan, H.; Li, F.; Jiang, C. Long-term trend of visibility and its characterizations in the pearl river delta (prd) region, china. Atmos. Environ. 2008, 42, 1424–1435. [Google Scholar] [CrossRef]
- Chen, J.; Xin, J.; An, J.; Wang, Y.; Liu, Z.; Chao, N.; Meng, Z. Observation of aerosol optical properties and particulate pollution at background station in the pearl river delta region. Atmos. Res. 2014, 143, 216–227. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, 1–21. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J.; Meister, G. Effect of modis terra radiometric calibration improvements on collection 6 deep blue aerosol products: Validation and terra/aqua consistency. J. Geophys. Res. Atmos. 2015, 120, 12,157–12,174. [Google Scholar] [CrossRef]
- Munchak, L.A.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Holben, B.N.; Schafer, J.S.; Hostetler, C.A.; Ferrare, R.A. Modis 3 km aerosol product: Applications over land in an urban/suburban region. Atmos. Meas. Tech. 2013, 6, 1747–1759. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. Modis 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. Aeronet—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanré, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for global validation and analysis of modis aerosol products. Geophys. Res. Lett. 2002, 29, 1–4. [Google Scholar] [CrossRef]
- Eck, T.; Holben, B.; Reid, J.; Dubovik, O.; Smirnov, A.; O’neill, N.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, B.; Jiang, R. Using satellite data to estimate particulate air quality in a subtropical city: An evaluation of accuracy and sampling issues. Remote Sens. Lett. 2015, 6, 370–379. [Google Scholar] [CrossRef]
- Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M. Adaption of the modis aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: A case study. Atmos. Meas. Tech. 2015, 8, 5237–5249. [Google Scholar] [CrossRef]
- Nichol, J.; Bilal, M. Validation of modis 3 km resolution aerosol optical depth retrievals over Asia. Remote Sens. 2016, 8, 328. [Google Scholar] [CrossRef]
- Nguyen, H.; Cressie, N.; Braverman, A. Spatial statistical data fusion for remote sensing applications. J. Am. Stat. Assoc. 2012, 107, 1004–1018. [Google Scholar] [CrossRef]
- Tang, Q.; Bo, Y.; Zhu, Y. Spatiotemporal fusion of multiple-satellite aerosol optical depth (aod) products using bayesian maximum entropy method. J. Geophys. Res. Atmos. 2016, 121, 4034–4048. [Google Scholar] [CrossRef]
Site Name | Site Type | Longitude/Latitude | Time Period |
---|---|---|---|
HK PolyU | urban | 114.180/22.303 | 2006.1–2015.10 |
Zhongshan Univ | urban | 113.390/23.060 | 2011.11–2012.7 |
Kaiping | suburban | 112.539/22.315 | 2008.10–2008.11 |
HK Sheung | rural | 114.117/22.483 | 2012.2–2014.7 |
AERONET | AOD Product | Terra/Aqua Statistics | ||||
---|---|---|---|---|---|---|
N a | R2 | RMSE b | RMB c | within EE d (%) | ||
HK PolyU | DT 10 km | 86/89 | 0.94/0.87 | 0.07/0.12 | 0.99/0.91 | 93/79 |
DB 10 km | 29/37 | 0.78/0.68 | 0.23/0.17 | 0.44/0.55 | 3/19 | |
DTDB 10 km | 86/89 | 0.94/0.87 | 0.07/0.12 | 0.99/0.91 | 93/79 | |
DT 3 km | 44/45 | 0.92/0.82 | 0.11/0.14 | 1.06/1.03 | 82/84 | |
Zhongshan Univ | DT 10 km | 16/13 | 0.90/0.87 | 0.23/0.24 | 1.32/1.37 | 38/38 |
DB 10 km | 27/23 | 0.57/0.82 | 0.26/0.10 | 0.76/0.92 | 44/78 | |
DTDB 10 km | 17/13 | 0.81/0.87 | 0.23/0.24 | 1.27/1.38 | 35/38 | |
DT 3 km | 13/11 | 0.93/0.83 | 0.30/0.30 | 1.47/1.58 | 8/9 | |
Kaiping | DT 10 km | 10/9 | 0.90/0.91 | 0.10/0.07 | 1.04/1.15 | 80/89 |
DB 10 km | 10/10 | 0.94/0.91 | 0.18/0.14 | 0.68/0.71 | 30/50 | |
DTDB 10 km | 10/9 | 0.90/0.91 | 0.10/0.07 | 1.04/1.15 | 80/89 | |
DT 3 km | 10/11 | 0.95/0.97 | 0.10/0.11 | 1.16/1.16 | 70/82 | |
HK Sheung | DT 10 km | 26/28 | 0.87/0.91 | 0.14/0.10 | 1.09/0.98 | 81/89 |
DB 10 km | 19/20 | 0.76/0.57 | 0.32/0.31 | 0.44/0.47 | 16/15 | |
DTDB 10 km | 26/28 | 0.87/0.91 | 0.14/0.10 | 1.09/0.98 | 81/89 | |
DT 3 km | 37/38 | 0.89/0.86 | 0.12/0.10 | 1.12/1.03 | 70/76 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Huang, B.; He, Q. An Evaluation of Four MODIS Collection 6 Aerosol Products in a Humid Subtropical Region. Remote Sens. 2017, 9, 1173. https://doi.org/10.3390/rs9111173
Zhang M, Huang B, He Q. An Evaluation of Four MODIS Collection 6 Aerosol Products in a Humid Subtropical Region. Remote Sensing. 2017; 9(11):1173. https://doi.org/10.3390/rs9111173
Chicago/Turabian StyleZhang, Ming, Bo Huang, and Qingqing He. 2017. "An Evaluation of Four MODIS Collection 6 Aerosol Products in a Humid Subtropical Region" Remote Sensing 9, no. 11: 1173. https://doi.org/10.3390/rs9111173
APA StyleZhang, M., Huang, B., & He, Q. (2017). An Evaluation of Four MODIS Collection 6 Aerosol Products in a Humid Subtropical Region. Remote Sensing, 9(11), 1173. https://doi.org/10.3390/rs9111173