Impact of the May 2024 Extreme Geomagnetic Storm on the Ionosphere and GNSS Positioning
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. May 2024 Extreme Geomagnetic Storm
3.2. Ionospheric Disturbances
3.3. GPS Positioning During Geomagnetic Storm
4. Discussion
5. Conclusions
- The auroral oval expanded up to low latitudes: up to 30°N and 60°S in the American sector and up to 45°N and 40°S in the European–Asian sector during the main phase of the geomagnetic storm. The ROTI peaked at 2 TECU/min, which is four times as much against the background.
- The equatorial anomaly crest considerably intensified (up to 200 TECU) and shifted poleward in the American sector during the main phase of the geomagnetic storm. The equatorial anomaly extended to about 50°N and 55°S.
- The counter-propagation of the auroral oval and the equatorial anomaly finally caused a unique phenomenon—the intersection of the auroral oval boundary and the equatorial anomaly in North America.
- The 3D positioning errors increased 1.5–5 times. Increased positioning errors propagated to the mid-latitudes up to 30°N, consistent with the shift of the auroral oval boundary.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danilov, A.; Lastovicka, J. Effects of Geomagnetic Storms on the Ionosphere and Atmosphere. Int. J. Geomagn. Aeron. 2001, 2, 209–224. [Google Scholar]
- Yermolaev, Y.I.; Yermolaev, M.Y. Statistic Study on the Geomagnetic Storm Effectiveness of Solar and Interplanetary Events. Adv. Space Res. 2006, 37, 1175–1181. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the Thermosphere and Ionosphere to Geomagnetic Storms. J. Geophys. Res. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Mendillo, M. Storms in the Ionosphere: Patterns and Processes for Total Electron Content. Rev. Geophys. 2006, 44, 2005RG000193. [Google Scholar] [CrossRef]
- Yokoyama, N.; Kamide, Y.; Miyaoka, H. The Size of the Auroral Belt during Magnetic Storms. Ann. Geophys. 1998, 16, 566–573. [Google Scholar] [CrossRef]
- Edemskiy, I.K.; Yasyukevich, Y.V. Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm. Remote Sens. 2022, 14, 5486. [Google Scholar] [CrossRef]
- Cander, L.R. Ionospheric Storm Morphology. In Ionospheric Space Weather; Springer Geophysics; Springer International Publishing: Cham, Switzerland, 2019; pp. 95–133. ISBN 978-3-319-99330-0. [Google Scholar]
- Yeh, K.C.; Liu, C.-H. Radio Wave Scintillations in the Ionosphere. Proc. IEEE 1982, 70, 324–360. [Google Scholar] [CrossRef]
- Pilipenko, V. Space Weather Impact on Ground-Based Technological Systems. Sol.-Terr. Phys. 2021, 7, 68–104. [Google Scholar] [CrossRef]
- Béland, J.; Small, K. Space Weather Effects on Power Transmission Systems: The Cases of Hydro-Québec and Transpower New ZealandLtd. In Effects of Space Weather on Technology Infrastructure; Daglis, I.A., Ed.; NATO Science Series II: Mathematics, Physics and Chemistry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; Volume 176, pp. 287–299. ISBN 978-1-4020-2748-2. [Google Scholar]
- Thaduri, A.; Galar, D.; Kumar, U. Space Weather Climate Impacts on Railway Infrastructure. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 267–281. [Google Scholar] [CrossRef]
- Berngardt, O. Space Weather Impact on Radio Device Operation. Sol.-Terr. Phys. 2017, 3, 37–53. [Google Scholar] [CrossRef]
- Demyanov, V.; Yasyukevich, Y.; Sergeeva, M.A.; Vesnin, A. Space Weather Impact on GNSS Performance; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-031-15873-5. [Google Scholar]
- Luo, X.; Gu, S.; Lou, Y.; Xiong, C.; Chen, B.; Jin, X. Assessing the Performance of GPS Precise Point Positioning Under Different Geomagnetic Storm Conditions during Solar Cycle 24. Sensors 2018, 18, 1784. [Google Scholar] [CrossRef] [PubMed]
- Mošna, Z.; Barta, V.; Berényi, K.A.; Mielich, J.; Verhulst, T.; Kouba, D.; Urbář, J.; Chum, J.; Koucká Knížová, P.; Marew, H.; et al. The March and April 2023 Ionospheric Storms over Europe. Front. Astron. Space Sci. 2024, 11, 1462160. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I. Effects of Storm-Induced Equatorial Plasma Bubbles on GPS-Based Kinematic Positioning at Equatorial and Middle Latitudes during the September 7–8, 2017, Geomagnetic Storm. GPS Solut. 2021, 25, 132. [Google Scholar] [CrossRef]
- Yang, Z.; Morton, Y.T.J.; Zakharenkova, I.; Cherniak, I.; Song, S.; Li, W. Global View of Ionospheric Disturbance Impacts on Kinematic GPS Positioning Solutions During the 2015 St. Patrick’s Day Storm. JGR Space Phys. 2020, 125, e2019JA027681. [Google Scholar] [CrossRef]
- Love, J.J. Extreme-Event Magnetic Storm Probabilities Derived from Rank Statistics of Historical Dst Intensities for Solar Cycles 14–24. Space Weather. 2021, 19, e2020SW002579. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More; Springer: Vienna, Austria; New York, NY, USA, 2008; ISBN 978-3-211-73012-6. [Google Scholar]
- Afraimovich, E.L.; Astafyeva, E.I.; Demyanov, V.V.; Edemskiy, I.K.; Gavrilyuk, N.S.; Ishin, A.B.; Kosogorov, E.A.; Leonovich, L.A.; Lesyuta, O.S.; Palamartchouk, K.S.; et al. A Review of GPS/GLONASS Studies of the Ionospheric Response to Natural and Anthropogenic Processes and Phenomena. J. Space Weather Space Clim. 2013, 3, A27. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of Global Ionospheric Irregularities Using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Buonsanto, M.J. Ionospheric Storms—A Review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Wang, C.; Rosen, I.G.; Tsurutani, B.T.; Verkhoglyadova, O.P.; Meng, X.; Mannucci, A.J. Statistical Characterization of Ionosphere Anomalies and Their Relationship to Space Weather Events. J. Space Weather Space Clim. 2016, 6, A5. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Yasyukevich, A.S.; Ratovsky, K.G.; Klimenko, M.V.; Klimenko, V.V.; Chirik, N.V. Winter Anomaly in Nm F2 and TEC: When and Where It Can Occur. J. Space Weather Space Clim. 2018, 8, A45. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Bessarab, F.S.; Sukhodolov, T.V.; Vasilev, P.A.; Karpov, I.V.; Korenkov, Y.N.; Zakharenkova, I.E.; Funke, B.; Rozanov, E.V. Identification of the Mechanisms Responsible for Anomalies in the Tropical Lower Thermosphere/Ionosphere Caused by the January 2009 Sudden Stratospheric Warming. J. Space Weather Space Clim. 2019, 9, A39. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of Seven Different GNSS Global Ionospheric Mapping Techniques during One Solar Cycle. J. Geod. 2018, 92, 691–706. [Google Scholar] [CrossRef]
- Liu, Q.; Hernández-Pajares, M.; Lyu, H.; Goss, A. Influence of Temporal Resolution on the Performance of Global Ionospheric Maps. J. Geod. 2021, 95, 34. [Google Scholar] [CrossRef]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The Ionosphere Map Exchange Format Version 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998; pp. 233–247. Available online: https://files.igs.org/pub/data/format/ionex1.pdf (accessed on 21 April 2025).
- Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An Open-Source Software of Multi-GNSS Precise Point Positioning Using Undifferenced and Uncombined Observations. GPS Solut. 2018, 22, 33. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Kiselev, A.V.; Zhivetiev, I.V.; Edemskiy, I.K.; Syrovatskii, S.V.; Maletckii, B.M.; Vesnin, A.M. SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut. 2020, 24, 69. [Google Scholar] [CrossRef]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a Changing Landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Vasiliev, R.V.; Rubtsov, A.V.; Alsatkin, S.S.; Artamonov, M.F.; Beletsky, A.B. Extreme Magnetic Storm of May 10–19, 2024: Coupling Between Neutral and Charged Components of the Upper Atmosphere and the Effect on Radio Systems. Dokl. Earth Sci. 2025, 520, 33. [Google Scholar] [CrossRef]
- Etchells, T.; Aplin, K.L.; Berthoud, L.; Kalavana, A.; Larkins, A. Extreme Space Weather Impacts on GNSS Timing Signals for Electricity Grid Management. Space Weather 2024, 22, e2023SW003770. [Google Scholar] [CrossRef]
- Jakowski, N.; Schlüter, S.; Sardon, E. Total Electron Content of the Ionosphere during Thegeomagnetic Storm on 10 January 1997. J. Atmos. Sol.-Terr. Phys. 1999, 61, 299–307. [Google Scholar] [CrossRef]
- Skone, S.; Knudsen, K.; De Jong, M. Limitations in GPS Receiver Tracking Performance under Ionospheric Scintillation Conditions. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 613–621. [Google Scholar] [CrossRef]
- Demyanov, V.; Yasyukevich, Y. Space Weather: Risk Factors for Global Navigation Satellite Systems. Solnechno-Zemn. Fiz. 2021, 7, 30–52. [Google Scholar] [CrossRef]
- Maksimov, D.; Kogogin, D.; Nasyrov, I.; Zagretdinov, R. Effects of 7September 5–12, 2017 Solar Flares on Regional Disturbance of Earth’s Ionosphere as Recorded by GNSS Stations Located in the Volga Federal District of the Russian Federation. Sol.-Terr. Phys. 2023, 9, 48–54. [Google Scholar] [CrossRef]
- Luan, X. Equatorial Ionization Anomaly Variations During Geomagnetic Storms. In Geophysical Monograph Series; Huang, C., Lu, G., Zhang, Y., Paxton, L.J., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2021; pp. 301–312. ISBN 978-1-119-50755-0. [Google Scholar]
- Cherniak, I.; Zakharenkova, I. Development of the Storm-Induced Ionospheric Irregularities at Equatorial and Middle Latitudes During the 25–26 August 2018 Geomagnetic Storm. Space Weather 2022, 20, e2021SW002891. [Google Scholar] [CrossRef]
- Balan, N.; Shiokawa, K.; Otsuka, Y.; Kikuchi, T.; Vijaya Lekshmi, D.; Kawamura, S.; Yamamoto, M.; Bailey, G.J. A Physical Mechanism of Positive Ionospheric Storms at Low Latitudes and Midlatitudes. J. Geophys. Res. 2010, 115, 2009JA014515. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Tsurutani, B.T.; Iijima, B.A.; Komjathy, A.; Saito, A.; Gonzalez, W.D.; Guarnieri, F.L.; Kozyra, J.U.; Skoug, R. Dayside Global Ionospheric Response to the Major Interplanetary Events of 29–30 October 2003 “Halloween Storms”. Geophys. Res. Lett. 2005, 32, 2004GL021467. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric Response to the 2015 St. Patrick’s Day Storm: A Global Multi-instrumental Overview. JGR Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef]
- Rout, D.; Pandey, K.; Chakrabarty, D.; Sekar, R.; Lu, X. Significant Electric Field Perturbations in Low Latitude Ionosphere Due to the Passage of Two Consecutive ICMEs During 6–8 September 2017. JGR Space Phys. 2019, 124, 9494–9510. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.D.; et al. Prompt Penetration Electric Fields (PPEFs) and Their Ionospheric Effects during the Great Magnetic Storm of 30–31 October 2003. J. Geophys. Res. 2008, 113, 2007JA012879. [Google Scholar] [CrossRef]
- Karan, D.K.; Eastes, R.W.; Daniell, R.E.; Martinis, C.R.; McClintock, W.E. GOLD Mission’s Observation About the Geomagnetic Storm Effects on the Nighttime Equatorial Ionization Anomaly (EIA) and Equatorial Plasma Bubbles (EPB) During a Solar Minimum Equinox. Space Weather 2023, 21, e2022SW003321. [Google Scholar] [CrossRef]
- Oyedokun, O.J.; Amaechi, P.O.; Akala, A.O.; Simi, K.G.; Ogwala, A.; Oyeyemi, E.O. Solar and Interplanetary Events That Drove Two CIR-Related Geomagnetic Storms of 1 June 2013 and 7 October 2015, and Their Ionospheric Responses at the American and African Equatorial Ionization Anomaly Regions. Adv. Space Res. 2022, 69, 2168–2181. [Google Scholar] [CrossRef]
- Bhattacharyya, A. Equatorial Plasma Bubbles: A Review. Atmosphere 2022, 13, 1637. [Google Scholar] [CrossRef]
- Abadi, P.; Muafiry, I.N.; Pratama, T.N.; Putra, A.Y.; Suraina; Pramono, G.H.; Wibowo, S.T.; Chabibi, F.; Ahmad, U.A.; Tresna, W.P.; et al. Leveraging ROTI Map Derived from Indonesian GNSS Receiver Network for Advancing Study of Equatorial Plasma Bubble in Southeast/East Asia. Earth Planet. Phys. 2025, 9, 101–116. [Google Scholar] [CrossRef]
- Dal Poz, W.R.; Silva, A.C.; Santos, A.D.P.D.; Medeiros, N.D.G.; Ferreira, Í.O.; Oliveira, J.C.D. Impacts of the Great May 2024 Geomagnetic Storm on Precise Point Positioning. Rev. Bras. Geog. Fis. 2025, 18, 1697–1713. [Google Scholar] [CrossRef]
- Belahovskiy, V.; Budnikov, P.; Kalishin, A.; Pilgaev, S.; Roldugin, A. Influence of Geomagnetic Disturbances on Scintillations of GLONASS and GPS Signals as Observed on the Kola Peninsula. Sol.-Terr. Phys. 2023, 9, 54–67. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. Dependence of the High-Latitude Plasma Irregularities on the Auroral Activity Indices: A Case Study of 17 March 2015 Geomagnetic Storm. Earth Planet Space 2015, 67, 151. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, L.; Kong, J.; Zhai, C. Analysis of the Global Ionospheric Disturbances of the March 2015 Great Storm. JGR Space Phys. 2016, 121, 12. [Google Scholar] [CrossRef]
- Chernyshov, A.A.; Klimenko, M.V.; Nosikov, I.A.; Borchevkina, O.P.; Timchenko, A.V.; Efishov, I.I.; Sinevich, A.A.; Ryakhovsky, I.A.; Yakimova, G.A.; Bessarab, F.S.; et al. Effects in the Upper Atmosphere and Ionosphere in the Subauroral Region during Victory Day 2024 Geomagnetic Storm (10–12 May 2024). Adv. Space Res. 2025, in press. [Google Scholar] [CrossRef]
- Yang, Z.; Morton, Y.T.J. Time-Lagged Effects of Ionospheric Response to Severe Geomagnetic Storms on GNSS Kinematic Precise Point Positioning. Space Weather 2024, 22, e2024SW003946. [Google Scholar] [CrossRef]
- Marques, H.A.; Marques, H.A.S.; Aquino, M.; Veettil, S.V.; Monico, J.F.G. Accuracy Assessment of Precise Point Positioning with Multi-Constellation GNSS Data under Ionospheric Scintillation Effects. J. Space Weather Space Clim. 2018, 8, A15. [Google Scholar] [CrossRef]
- Luo, X.; Du, J.; Lou, Y.; Gu, S.; Yue, X.; Liu, J.; Chen, B. A Method to Mitigate the Effects of Strong Geomagnetic Storm on GNSS Precise Point Positioning. Space Weather 2022, 20, e2021SW002908. [Google Scholar] [CrossRef]
- Nie, W.; Rovira-Garcia, A.; Li, M.; Fang, Z.; Wang, Y.; Zheng, D.; Xu, T. The Mechanism for GNSS-Based Kinematic Positioning Degradation at High-Latitudes Under the March 2015 Great Storm. Space Weather 2022, 20, e2022SW003132. [Google Scholar] [CrossRef]
- Jacobsen, K.S. The Impact of Different Sampling Rates and Calculation Time Intervals on ROTI Values. J. Space Weather Space Clim. 2014, 4, A33. [Google Scholar] [CrossRef]
- Follestad, A.F.; Clausen, L.B.N.; Moen, J.I.; Jacobsen, K.S. Latitudinal, Diurnal, and Seasonal Variations in the Accuracy of an RTK Positioning System and Its Relationship with Ionospheric Irregularities. Space Weather 2021, 19, e2020SW002625. [Google Scholar] [CrossRef]
Item | Strategies |
---|---|
Observation | Dual-frequency GPS observations (RINEX 2.11) |
Sampling interval | 30 s |
Positioning processing mode | Kinematic precise point positioning |
Elevation mask angle | 10° |
Precise satellite orbit and clock | IGS precise products (sp3 files) |
Ionospheric delay | Dual frequency: ionosphere-free combination mode |
Tropospheric delay | Zenith total delay |
Navigation files | Broadcast navigation file |
Receiver reference coordinates | IGS daily combined SINEX solution |
Satellite antenna phase center correction | General hint for satellite antenna corrections (igs14.atx) |
DCB | Differential code biases for satellites and receivers (P1C1, P1P2, P2C2 files) |
Ocean tide loading coefficients | ocnload.blq |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilchuk, E.; Yasyukevich, Y.; Vesnin, A.; Klyusilov, A.; Zhang, B. Impact of the May 2024 Extreme Geomagnetic Storm on the Ionosphere and GNSS Positioning. Remote Sens. 2025, 17, 1492. https://doi.org/10.3390/rs17091492
Danilchuk E, Yasyukevich Y, Vesnin A, Klyusilov A, Zhang B. Impact of the May 2024 Extreme Geomagnetic Storm on the Ionosphere and GNSS Positioning. Remote Sensing. 2025; 17(9):1492. https://doi.org/10.3390/rs17091492
Chicago/Turabian StyleDanilchuk, Ekaterina, Yury Yasyukevich, Artem Vesnin, Aleksandr Klyusilov, and Baocheng Zhang. 2025. "Impact of the May 2024 Extreme Geomagnetic Storm on the Ionosphere and GNSS Positioning" Remote Sensing 17, no. 9: 1492. https://doi.org/10.3390/rs17091492
APA StyleDanilchuk, E., Yasyukevich, Y., Vesnin, A., Klyusilov, A., & Zhang, B. (2025). Impact of the May 2024 Extreme Geomagnetic Storm on the Ionosphere and GNSS Positioning. Remote Sensing, 17(9), 1492. https://doi.org/10.3390/rs17091492