Fast and Accurate Direct Position Estimation Using Low-Complexity Correlation and Swarm Intelligence Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization Problem of DPE
2.2. Low-Complexity Correlation Approach
2.3. Adaptive DBO for DPE
2.3.1. DPE-SI Framework
2.3.2. Adaptive DBO Algorithm
The Standard DBO Algorithm
Adjustment of Search Capabilities Based on FDC
Hybrid Mutation Based on Ruggedness
Algorithm 1: The ADBO algorithm |
2.3.3. Convergence Performance Test
3. Experimental Results and Analysis
3.1. Simulated Signal Experiments
3.1.1. Fine Satellite Geometry
3.1.2. Poor Satellite Geometry
3.2. Real Signal Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Closas, P.; Gusi-Amigo, A. Direct Position Estimation of GNSS Receivers: Analyzing Main Results, Architectures, Enhancements, and Challenges. IEEE Signal Process. Mag. 2017, 34, 72–84. [Google Scholar] [CrossRef]
- Peretic, M.; Gao, G.X. Design of a Parallelized Direct Position Estimation-Based GNSS Receiver. NAVIGATION J. Inst. Navig. 2021, 68, 21–39. [Google Scholar] [CrossRef]
- Huang, J.; Yang, R.; Gao, W.; Zhan, X. Geometric Characterization on GNSS Direct Position Estimation in Navigation Domain. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 4105–4123. [Google Scholar] [CrossRef]
- Duan, Y.; Wei, J.; Tang, Z. Asymptotic Performance of GNSS Positioning Approaches under Cross-Correlation Effects. Remote Sens. 2024, 16, 1407. [Google Scholar] [CrossRef]
- Tang, S.; Li, H.; Calatrava, H.; Closas, P. Precise Direct Position Estimation: Validation Experiments. In Proceedings of the 2023 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 24–27 April 2023; pp. 911–916. [Google Scholar] [CrossRef]
- Closas, P.; Fernandez-prades, C.; Fernkndez-rubiot, J.A.; Nord, C. ML Estimation of Position in a GNSS Receiver Using the SAGE Algorithm. Acoust. Speech Signal Process. 2007, 1, 1045–1048. [Google Scholar] [CrossRef]
- Cheong, J.W.; Wu, J.; Dempster, A. Dichotomous Search of Coarse Time Error in Collective Detection for GPS Signal Acquisition. GPS Solut. 2015, 19, 61–72. [Google Scholar] [CrossRef]
- Li, H.; Tang, S.; Wu, P.; Closas, P. Robust Interference Mitigation Techniques for Direct Position Estimation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8969–8980. [Google Scholar] [CrossRef]
- Appel, M.J.; LaBarre, R.; Radulovic, D. On Accelerated Random Search. SIAM J. Optim. 2004, 14, 708–731. [Google Scholar] [CrossRef]
- Axelrad, P.; Bradley, B.K.; Donna, J.; Mitchell, M.; Mohiuddin, S. Collective Detection and Direct Positioning Using Multiple GNSS Satellites. Navig. J. Inst. Navig. 2011, 58, 305–321. [Google Scholar] [CrossRef]
- Li, L.; Cheong, J.W.; Wu, J.; Dempster, A.G. Improvement to Multi-Resolution Collective Detection in GNSS Receivers. J. Navig. 2014, 67, 277–293. [Google Scholar] [CrossRef]
- Narula, L.; Singh, K.P.; Petovello, M.G. Accelerated Collective Detection Technique for Weak GNSS Signal Environment. In Proceedings of the 2014 Ubiquitous Positioning Indoor Navigation and Location Based Service, Corpus Christi, TX, USA, 20–21 November 2014; pp. 81–89. [Google Scholar] [CrossRef]
- Vicenzo, S.; Xu, B.; Xu, H.; Hsu, L.T. GNSS Direct Position Estimation-Inspired Positioning with Pseudorange Correlogram for Urban Navigation. GPS Solut. 2024, 28, 83. [Google Scholar] [CrossRef]
- Jia, Z. A Type of Collective Detection Scheme with Improved Pigeon-Inspired Optimization. Int. J. Intell. Comput. Cybern. 2016, 9, 105–123. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, G.; Wang, S.; Gao, M.; Lv, D. Real-Time Estimation of GPS-BDS Inter-System Biases: An Improved Particle Swarm Optimization Algorithm. Remote Sens. 2021, 13, 3214. [Google Scholar] [CrossRef]
- Chen, H.; Niu, F.; Su, X.; Geng, T.; Liu, Z.; Li, Q. Initial Results of Modeling and Improvement of BDS-2/GPS Broadcast Ephemeris Satellite Orbit Based on BP and PSO-BP Neural Networks. Remote Sens. 2021, 13, 4801. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Lian, J.; Hui, G.; Ma, L.; Zhu, T.; Wu, X.; Heidari, A.A.; Chen, Y.; Chen, H. Parrot Optimizer: Algorithm and Applications to Medical Problems. Comput. Biol. Med. 2024, 172, 108064. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Ratnakumar, R.; Nanda, S.J. A High Speed Roller Dung Beetles Clustering Algorithm and Its Architecture for Real-Time Image Segmentation. Appl. Intell. 2021, 51, 4682–4713. [Google Scholar] [CrossRef]
- Quan, M.; Zhang, J.; Zhang, R. A Novel Rain Identification and Rain Intensity Classification Method for the CFOSAT Scatterometer. Remote Sens. 2024, 16, 887. [Google Scholar] [CrossRef]
- Zhu, F.; Li, G.; Tang, H.; Li, Y.; Lv, X.; Wang, X. Dung Beetle Optimization Algorithm Based on Quantum Computing and Multi-Strategy Fusion for Solving Engineering Problems. Expert Syst. Appl. 2024, 236, 121219. [Google Scholar] [CrossRef]
- Li, W.; Dong, Q.; Wang, B.; Xiang, M. A New Multi-Channel Triangular FMCW LADAR Signals Denoising Method Based on Improved SMVMD. Remote Sens. 2024, 16, 4650. [Google Scholar] [CrossRef]
- Wang, M.; Li, B.; Zhang, G.; Yao, X. Population Evolvability: Dynamic Fitness Landscape Analysis for Population-Based Metaheuristic Algorithms. IEEE Trans. Evol. Comput. 2018, 22, 550–563. [Google Scholar] [CrossRef]
- Coric, R.; Dumic, M.; Jakobovic, D. Genetic Programming Hyperheuristic Parameter Configuration Using Fitness Landscape Analysis. Appl. Intell. 2021, 51, 7402–7426. [Google Scholar] [CrossRef]
- Weill, L.R. A High Performance Code and Carrier Tracking Architecture for Ground-Based Mobile GNSS Receivers. In Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA, 21–24 September 2010; pp. 3054–3068. [Google Scholar]
- Vincent, F.; Chaumette, E.; Charbonnieras, C.; Israel, J.; Aubault, M.; Barbiero, F. Asymptotically Efficient GNSS Trilateration. Signal Process. 2017, 133, 270–277. [Google Scholar] [CrossRef]
- Tay, S.; Marais, J. Weighting Models for GPS Pseudorange Observations for Land Transportation in Urban Canyons. In Proceedings of the 6th European Workshop on GNSS Signals and Signal Processing, Munich, Germany, 5–6 December 2013; Available online: https://hal.science/hal-00942180 (accessed on 15 May 2025).
- Shen, L.; He, J. A Mixed Strategy for Evolutionary Programming Based on Local Fitness Landscape. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Hua, B.; Yang, G.; Wu, Y.; Chen, Z. Path Planning of Spacecraft Cluster Orbit Reconstruction Based on ALPIO. Remote Sens. 2022, 14, 4768. [Google Scholar] [CrossRef]
- Gupta, S.; Su, R. An Efficient Differential Evolution with Fitness-Based Dynamic Mutation Strategy and Control Parameters. Knowl.-Based Syst. 2022, 251, 109280. [Google Scholar] [CrossRef]
- Gong, C.; Wu, D.; Jiang, L.; Dong, F.; Liu, J.; Chen, Y.; Cao, J.; Wang, D. Seizure Detection Algorithm Based on Multidimensional Covariance Matrix and Binary Harris Hawks Optimization With Cauchy–Gaussian Mutation. IEEE Sens. J. 2024, 24, 4596–4608. [Google Scholar] [CrossRef]
- Malan, K.M.; Engelbrecht, A.P. Quantifying Ruggedness of Continuous Landscapes Using Entropy. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 1440–1447. [Google Scholar] [CrossRef]
- Liang, J.J.; Suganthan P., N.; Qu, B.; Gong, D.; Yue, C. Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China, 2019; pp. 353–370. [Google Scholar] [CrossRef]
- Chiang, K.W.; Duong, T.T.; Liao, J.K. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination. Sensors 2013, 13, 10599–10622. [Google Scholar] [CrossRef]
Object Shape | |||||||||
---|---|---|---|---|---|---|---|---|---|
Classification | Neutral | Rough | Rough | Rough | Rough | Smooth | Smooth | Rough | Rough |
Encoding | 00 | 01 | 10 | 0 | 0 | 11 | 1 | 1 |
Type | NO. | Function | Min. |
---|---|---|---|
Unimodal | Shifted and Rotated Bent-Cigar Function | 100 | |
Shifted and Rotated Schwefel Function | 1100 | ||
Basic | Shifted and Rotated Lunacek bi-Rastrigin Function | 700 | |
Expanded Rosenbrock plus Griewangk Function | 1900 | ||
Hybrid Function 1 (N = 3) | 1700 | ||
Hybrid | Hybrid Function 2 (N = 4) | 1600 | |
Hybrid Function 3 (N = 5) | 2100 | ||
Composition Function 1 (N = 3) | 2200 | ||
Compose | Composition Function 2 (N = 4) | 2400 | |
Composition Function 3 (N = 5) | 2500 |
Algorithms | Parameters |
---|---|
PSO (1995) [15] | |
SSA (2017) [19] | |
GWO (2014) [17] | |
HHO (2019) [18] | |
PIO (2014) [14] | |
PO (2024) [20] | |
DBO (2023) [21] |
Fun. No. | PSO | SSA | GWO | HHO | PIO | PO | DBO | ADBO | |
---|---|---|---|---|---|---|---|---|---|
Mean | 3.70 × | 5.74 × | 2.73 × | 5.27 × | 4.73 × | 9.95 × | 2.61 × | 2.48 × | |
Std. | 1.14 × | 3.94 × | 3.40 × | 1.28 × | 4.13 × | 1.61 × | 2.89 × | 8.51 × | |
Rank | 3 | 1 | 6 | 5 | 8 | 7 | 4 | 2 | |
Mean | 6.80 × | 5.14 × | 5.17 × | 5.80 × | 9.14 × | 6.66 × | 6.27 × | 4.15 × | |
Std. | 1.46 × | 4.79 × | 2.19 × | 4.98 × | 1.25 × | 5.97 × | 1.21 × | 5.18 × | |
Rank | 7 | 2 | 3 | 4 | 8 | 6 | 5 | 1 | |
Mean | 9.23 × | 9.51 × | 9.19 × | 1.32 × | 1.42 × | 1.24 × | 1.03 × | 8.75 × | |
Std. | 2.38 × | 4.63 × | 3.46 × | 3.95 × | 3.93 × | 5.64 × | 6.82 × | 2.67 × | |
Rank | 3 | 4 | 2 | 7 | 8 | 6 | 5 | 1 | |
Mean | 1.92 × | 1.92 × | 1.90 × | 1.90 × | 1.90 × | 1.90 × | 1.90 × | 1.90 × | |
Std. | 1.76 × | 3.27 × | 2.05 × | 0.00 × | 6.06 × | 0.00 × | 5.13 × | 0.00 × | |
Rank | 8 | 7 | 5 | 1 | 4 | 2 | 6 | 3 | |
Mean | 2.21 × | 2.84 × | 3.56 × | 1.04 × | 9.14 × | 6.10 × | 5.84 × | 2.21 × | |
Std. | 2.00 × | 4.24 × | 2.06 × | 6.80 × | 1.16 × | 1.70 × | 3.46 × | 4.20 × | |
Rank | 2 | 3 | 4 | 7 | 8 | 6 | 5 | 1 | |
Mean | 2.38 × | 2.70 × | 2.21 × | 3.25 × | 5.13 × | 3.18 × | 2.86 × | 1.96 × | |
Std. | 1.07 × | 9.15 × | 5.72 × | 2.72 × | 2.27 × | 1.70 × | 2.03 × | 4.49 × | |
Rank | 3 | 4 | 2 | 7 | 8 | 6 | 5 | 1 | |
Mean | 5.86 × | 7.88 × | 1.50 × | 2.99 × | 3.66 × | 2.83 × | 1.59 × | 8.68 × | |
Std. | 2.16 × | 6.24 × | 4.95 × | 6.91 × | 2.81 × | 1.01 × | 2.24 × | 8.90 × | |
Rank | 2 | 3 | 4 | 7 | 8 | 6 | 5 | 1 | |
Mean | 6.47 × | 5.00 × | 5.62 × | 7.21 × | 8.13 × | 4.36 × | 5.63 × | 2.30 × | |
Std. | 9.64 × | 5.07 × | 4.38 × | 2.10 × | 1.01 × | 2.40 × | 5.84 × | 6.34 × | |
Rank | 6 | 3 | 4 | 7 | 8 | 2 | 5 | 1 | |
Mean | 3.02 × | 2.95 × | 2.97 × | 3.54 × | 3.48 × | 3.16 × | 3.17 × | 2.98 × | |
Std. | 1.36 × | 1.51 × | 3.92 × | 2.89 × | 1.08 × | 6.12 × | 5.82 × | 4.25 × | |
Rank | 4 | 1 | 2 | 8 | 7 | 5 | 6 | 3 | |
Mean | 2.94 × | 2.95 × | 3.02 × | 3.02 × | 5.70 × | 3.15 × | 2.99 × | 2.89 × | |
Std. | 9.63 × | 7.78 × | 3.13 × | 1.49 × | 4.58 × | 4.74 × | 5.43 × | 4.86 × | |
Rank | 2 | 3 | 6 | 5 | 8 | 7 | 4 | 1 | |
Total Rank | 40 | 31 | 38 | 58 | 75 | 53 | 50 | 15 |
Item | Step 1 | Step 2 | Step 3 | Step 4 |
---|---|---|---|---|
North/East range (m) N/E step Size (m) | 100 | 50 | 25 | 10 |
Up range (m) Up Step Size (m) | 100 | 50 | 25 | 15 |
Clock-bias range (m) Bias Step Size (m) | 150 | 50 | 25 | |
Points number () | 144 | 128 | 76.8 | 51.2 |
PRN | 2 | 4 | 6 | 23 | 25 | 26 | 29 | 31 |
---|---|---|---|---|---|---|---|---|
Azimuth | ||||||||
Elevation |
Algs. | 2SP | MRG | ARS | PSO | SSA | GWO | HHO | PIO | PO | DBO | ADBO |
---|---|---|---|---|---|---|---|---|---|---|---|
PE (m) | |||||||||||
CBE (m) | |||||||||||
PN () | − | 400 | 400 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
ET (s) | − |
PRN | 2 | 4 | 26 | 31 |
---|---|---|---|---|
Azimuth | ||||
Elevation |
Algs. | 2SP | MRG | ARS | PSO | SSA | GWO | HHO | PIO | PO | DBO | ADBO |
---|---|---|---|---|---|---|---|---|---|---|---|
PE (m) | |||||||||||
CBE (m) | |||||||||||
PN () | − | 400 | 400 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
ET (s) | − |
Data Parameter | |
---|---|
Date and Time | 2019/8/6 UTC 9:36:18–9:36:58 |
Position | The West Playground of Huazhong |
University of Science and Technology | |
Longitude/Latitude | 114°3.4/30° |
Sampling rate | 25 MHz |
IF | 4.42 MHz |
PRN numbers | 1, 7, 11, 17, 22, 28, 30 |
Signal length | 40 s |
Data Parameter | |
---|---|
Date and Time | 2019/6/11 UTC 9:26:12–9:27:24 |
Position | The Yujia Road of Huazhong |
University of Science and Technology | |
Sampling rate | 25 MHz |
IF | 4.42 MHz |
PRN numbers | 4, 7, 8, 9, 16, 23, 27 |
Signal length | 40 s |
Item | 2SP | MRG | ADBO |
---|---|---|---|
Sum position error (m) | 10.41 | 17.3 | 9.41 |
Position error in East (m) | 2.16 | 3.48 | 1.88 |
Position error in North (m) | 2.37 | 3.65 | 2.04 |
Position error in Up (m) | 9.30 | 15.60 | 8.43 |
Execution time (s) | – | 19.15 | 3.42 |
Item | 2SP | MRG | ADBO |
---|---|---|---|
Sum position error (m) | 14.63 | 20.12 | 10.75 |
Position error in East (m) | 6.51 | 8.76 | 4.83 |
Position error in North (m) | 6.16 | 8.38 | 4.43 |
Position error in Up (m) | 11.06 | 15.24 | 8.01 |
Execution time (s) | – | 13.74 | 1.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Tang, Z.; Wei, J.; Sun, J.; Ying, K. Fast and Accurate Direct Position Estimation Using Low-Complexity Correlation and Swarm Intelligence Optimization. Remote Sens. 2025, 17, 1799. https://doi.org/10.3390/rs17101799
Duan Y, Tang Z, Wei J, Sun J, Ying K. Fast and Accurate Direct Position Estimation Using Low-Complexity Correlation and Swarm Intelligence Optimization. Remote Sensing. 2025; 17(10):1799. https://doi.org/10.3390/rs17101799
Chicago/Turabian StyleDuan, Yuze, Zuping Tang, Jiaolong Wei, Jie Sun, and Kaixian Ying. 2025. "Fast and Accurate Direct Position Estimation Using Low-Complexity Correlation and Swarm Intelligence Optimization" Remote Sensing 17, no. 10: 1799. https://doi.org/10.3390/rs17101799
APA StyleDuan, Y., Tang, Z., Wei, J., Sun, J., & Ying, K. (2025). Fast and Accurate Direct Position Estimation Using Low-Complexity Correlation and Swarm Intelligence Optimization. Remote Sensing, 17(10), 1799. https://doi.org/10.3390/rs17101799