A Coordinate Registration Method for Over-the-Horizon Radar Based on Graph Matching
Abstract
:1. Introduction
2. Preliminaries
2.1. Sea–Land Clutter Classification
2.2. Coordinate Registration
2.3. Graph Similarity Computation
3. The Method
3.1. Constructing the Graph
3.2. Mixed Clutter Clustering
Algorithm 1 The KNN-MCC implementation process. |
Input: The SLCC results . Output: The SLCC results after clustering. 1: Initialize: The training set ; 2: The test set . 3: for do 4: for do 5: Calculate between and . 6: end for 7: Sort: Arrange all of the training samples in ascending order of . 8: Select neighbors: Select the first K neighbors with the smallest distance. 9: Vote: Vote to determine the label for based on the first K neighbors. 10: end for 11: return . |
3.3. Similarity Computation via a Graph Neural Network
3.3.1. Graph Segmentation
3.3.2. Subgraph-Level Embedding
3.3.3. Node-Level Comparison
3.3.4. Similarity Score Calculation
3.4. The Coordinate Registration Process Based on Similarity Computations
4. Results and Discussion
4.1. Datasets
4.2. The Parameter Settings and Evaluation Indexes
4.3. Comparison Methods
- The first category includes two graph embedding models based on graph convolutional networks (GCNs) [34], GCN-Mean and GCN-Max [35]. The above methods embed graphs into vectors using a GCN and subsequently use the similarities computed from these vectors as the similarity scores for the graph pairs.
- The second category includes two graph matching networks, similarity computation via a graph neural network (Sim-GNN) [24] and graph matching networks (GMNs) [36]. Sim-GNN integrates the embedding of the entire graph with the node-level comparisons. GMNs leverage the information from the comparison nodes both within individual graphs and across different graphs to compute the similarity.
4.4. The Correlation Analysis on the Original Sea–Land Clutter Dataset
4.5. The KNN-MCC Analysis on the Sea–Land Clutter Cluster Dataset
4.6. A SC-GNN Analysis on the Sea–Land Clutter Registration Dataset
4.7. The Ablation Experiment
4.8. A Time Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OTHR | Sky-Wave Over-the-Horizon Radar |
SLCC | Sea–Land Clutter Classification |
CR | Coordinate Registration |
DCNN | Deep Convolutional Neural Network |
RD | Range–Doppler |
GNN | Graph Neural Network |
SC-GNN | Similarity Calculation via a Graph Neural Network |
GED | Graph Edit Distance |
AD | Absolute Distance |
CS | Cosine Similarity |
PCC | Pearson’s Correlation Coefficient |
KNN-MCC | K-Nearest Neighbors-Based Mixed Clutter Clustering |
GIN | Graph Isomorphism Network |
MLP | Multi-Layer Perceptron |
NRFI | Narrowband Radio Frequency Interference |
PReLU | Parametric Rectified Linear Unit |
MAE | Mean Absolute Error |
MSE | Mean Squared Error |
AC | Accuracy |
PE | Precision |
RE | Recall |
GCN | Graph Convolutional Network |
Sim-GNN | Similarity Computation via a Graph Neural Network |
GMN | Graph Matching Network |
References
- Ji, X.; Li, J.; Yang, Q. Annual characteristic analysis of ionosphere reflection from middle-latitude HF over-the-horizon radar in the northern hemisphere. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5104117. [Google Scholar] [CrossRef]
- Thayaparan, T.; Villeneuve, H.; Themens, D.R.; Reid, B.; Warrington, M.; Cameron, T.; Fiori, R. Frequency management system (FMS) for over-the-horizon radar (OTHR) using a near-real-time ionospheric model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5116011. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Z.; Hao, Y.; Lan, H.; Pan, Q. An improved coordinate registration for over-the-horizon radar using reference sources. Electronics 2021, 10, 3086. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Z.; Chu, X. Research on the correction of ionospheric distortion for ship detection in OTHR. Mod. Rad 2003, 25, 5–8. [Google Scholar]
- Wheadon, N.; Whitehouse, J.; Milsom, J.; Herring, R. Ionospheric modelling and target coordinate registration for HF sky-wave radars. In Proceedings of the 1994 Sixth International Conference on HF Radio Systems and Techniques, York, UK, 4–7 July 1994; IET: London, UK, 1994; pp. 258–266. [Google Scholar]
- Turley, M.; Gardiner-Garden, R.; Holdsworth, D. High-resolution wide area remote sensing for HF radar track registration. In Proceedings of the 2013 International Conference on Radar, Adelaide, Australia, 9–12 September 2013; pp. 128–133. [Google Scholar]
- Jin, Z.L.; Pan, Q.; Zhao, C.H.; Zhou, W.T. SVM based land/sea clutter classification algorithm. Appl. Mech. Mater. 2012, 236, 1156–1162. [Google Scholar]
- Li, C.; Wang, Z.; Zhang, Z.; Lan, H.; Lu, K. Sea/land clutter recognition for over-the-horizon radar via deep CNN. In Proceedings of the 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), Chengdu, China, 23–26 October 2019; pp. 1–5. [Google Scholar]
- Wu, B.; Liu, C.; Chen, J. A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging. Remote Sens. 2024, 17, 38. [Google Scholar] [CrossRef]
- Luo, B.; Cao, H.; Cui, J.; Lv, X.; He, J.; Li, H.; Peng, C. SAR-PATT: A Physical Adversarial Attack for SAR Image Automatic Target Recognition. Remote Sens. 2024, 17, 21. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, Z.; Chen, G.; Zhang, Y.; Chen, J.; Song, H. Real-Time Interference Mitigation for Reliable Target Detection with FMCW Radar in Interference Environments. Remote Sens. 2024, 17, 26. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Wang, Z.f.; Lu, K.; Pan, Q. Cross-scale land/sea clutter classification method for over-the-horizon radar based on algebraic multigrid. Acta Electron. Sin. 2022, 50, 3021. [Google Scholar]
- Li, C.; Zhang, X.; Zhang, Z.; Pan, Q.; Bai, X.; Yun, T. Multiscale Feature Deep Fusion Method for Sea–Land Clutter Classification. IEEE Sens. J. 2024. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Z.; Li, C.; Wang, Z. Deep embedded convolution clustering-based classification of clutter for over-the-horizon radar. Fire Control Command Control 2022, 47, 122–127. [Google Scholar]
- Zhang, X.; Wang, Z.; Lu, K.; Pan, Q.; Li, Y. Data Augmentation and Classification of Sea-Land Clutter for Over-the-Horizon Radar Using AC-VAEGAN. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5104416. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Pan, Q.; Yu, C. Triple Loss Adversarial Domain Adaptation Network for Cross-Domain Sea–Land Clutter Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5110718. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Ji, M.; Li, Y.; Pan, Q.; Lu, K. A sea–land clutter classification framework for over-the-horizon radar based on weighted loss semi-supervised generative adversarial network. Eng. Appl. Artif. Intell. 2024, 133, 108526. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, S.; Dai, Y.; Guo, W. Graph neural networks in node classification: Survey and evaluation. Mach. Vis. Appl. 2022, 33, 4. [Google Scholar] [CrossRef]
- Cai, L.; Li, J.; Wang, J.; Ji, S. Line graph neural networks for link prediction. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5103–5113. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liang, Y.; Gong, M.; Qin, A.K.; Ong, Y.S.; He, T. Semisupervised graph neural networks for graph classification. IEEE Trans. Cybern. 2022, 53, 6222–6235. [Google Scholar] [CrossRef]
- Liao, W.; Bak-Jensen, B.; Pillai, J.R.; Wang, Y.; Wang, Y. A review of graph neural networks and their applications in power systems. J. Mod. Power Syst. Clean Energy 2021, 10, 345–360. [Google Scholar] [CrossRef]
- Chen, Z.; Wand, Y. Improvement of OTHR data processing using external reference sources. Mod. Radar 2005, 27, 24–27. [Google Scholar]
- Ling, X.; Wu, L.; Wang, S.; Ma, T.; Xu, F.; Liu, A.X.; Wu, C.; Ji, S. Multilevel graph matching networks for deep graph similarity learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 799–813. [Google Scholar] [CrossRef]
- Bai, Y.; Ding, H.; Bian, S.; Chen, T.; Sun, Y.; Wang, W. Simgnn: A neural network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, VIC, Australia, 11–15 February 2019; pp. 384–392. [Google Scholar]
- Veličković, P. Everything is connected: Graph neural networks. Curr. Opin. Struct. Biol. 2023, 79, 102538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Zhang, X.; Pan, Q. Land-sea clutter classification method based on multi-channel graph convolutional networks. J. Radars 2024, 14, 322–337. [Google Scholar]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef]
- Halder, R.K.; Uddin, M.N.; Uddin, M.A.; Aryal, S.; Khraisat, A. Enhancing K-nearest neighbor algorithm: A comprehensive review and performance analysis of modifications. J. Big Data 2024, 11, 113. [Google Scholar] [CrossRef]
- Saputra, K.; Nazaruddin, N.; Yunardi, D.H.; Andriyani, R. Implementation of haversine formula on location based mobile application in syiah kuala university. In Proceedings of the 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), Banda Aceh, Indonesia, 22–24 August 2019; pp. 40–45. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826. [Google Scholar]
- Spearman, C. The proof and measurement of association between two things. In Studies in Individual Differences: The Search for Intelligence; Jenkins, J.J., Paterson, D.G., Eds.; Appleton-Century-Crofts: New York, NY, USA, 1961. [Google Scholar]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS 2016, 29, 3844–3852. [Google Scholar]
- Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P. Graph matching networks for learning the similarity of graph structured objects. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 3835–3845. [Google Scholar]
- Niven, E.B.; Deutsch, C.V. Calculating a robust correlation coefficient and quantifying its uncertainty. Comput. Geosci. 2012, 40, 1–9. [Google Scholar] [CrossRef]
Detection Areas | Training Set | Validation Set | Test Set |
---|---|---|---|
Area-1 | 60% | 20% | 20% |
Area-2 | 60% | 20% | 20% |
Area-3 | 60% | 20% | 20% |
Area-4 | 60% | 20% | 20% |
Area-5 | 60% | 20% | 20% |
Area-6 | 60% | 20% | 20% |
Environment | Version |
---|---|
System | Windows10 (64-bit) |
GPU | NVIDIA GeForce RTX 3090 |
CUDA | 11.3.1 |
Python | 3.8.0 |
torch | 1.11.0 |
torchvison | 0.12.0 |
NumPy | 1.24.3 |
matplotlib | 3.5.1 |
dgl | 1.1.0 |
Detection Areas | AD | CS | PCC | |||
---|---|---|---|---|---|---|
Azimuth | Range | Azimuth | Range | Azimuth | Range | |
Area-1 | 1.86 | 1.93 | 0.77 | 0.82 | 0.89 | 0.85 |
Area-2 | 1.64 | 1.75 | 0.86 | 0.91 | 0.82 | 0.87 |
Area-3 | 1.91 | 1.88 | 0.83 | 0.87 | 0.79 | 0.83 |
Area-4 | 2.03 | 1.94 | 0.93 | 0.90 | 0.88 | 0.86 |
Area-5 | 1.76 | 1.68 | 0.89 | 0.92 | 0.84 | 0.81 |
Area-6 | 1.89 | 1.85 | 0.85 | 0.80 | 0.87 | 0.89 |
Detection Areas | AC (%) | PE (%) | RE (%) | F1 (%) |
---|---|---|---|---|
Area-1 | 98.33 | 98.25 | 98.44 | 98.34 |
Area-2 | 98.14 | 98.19 | 98.00 | 98.09 |
Area-3 | 98.11 | 97.52 | 98.01 | 97.77 |
Area-4 | 97.97 | 97.82 | 97.21 | 97.52 |
Area-5 | 97.91 | 98.65 | 97.33 | 97.99 |
Area-6 | 98.06 | 97.92 | 98.12 | 98.02 |
Methods | MAE () | MSE () | p@10 | p@20 | ||
---|---|---|---|---|---|---|
GCN-Mean | 11.791 | 15.773 | 0.673 | 0.372 | 0.405 | 0.497 |
GCN-Max | 13.284 | 19.962 | 0.624 | 0.435 | 0.465 | 0.530 |
Sim-GNN | 8.685 | 10.458 | 0.614 | 0.491 | 0.650 | 0.735 |
GMN | 6.542 | 6.397 | 0.699 | 0.553 | 0.720 | 0.755 |
SC-GNN-sl | 7.097 | 7.074 | 0.817 | 0.534 | 0.710 | 0.705 |
SC-GNN-q | 5.975 | 5.181 | 0.842 | 0.565 | 0.750 | 0.820 |
SC-GNN | 4.676 | 3.143 | 0.868 | 0.639 | 0.835 | 0.895 |
Methods | MAE () | MSE () | p@10 | p@20 | ||
---|---|---|---|---|---|---|
GCN-Mean | 10.004 | 15.760 | 0.441 | 0.497 | 0.515 | 0.563 |
GCN-Max | 12.153 | 20.527 | 0.553 | 0.529 | 0.475 | 0.558 |
Sim-GNN | 7.542 | 8.682 | 0.696 | 0.608 | 0.610 | 0.633 |
GMN | 6.160 | 8.471 | 0.734 | 0.582 | 0.665 | 0.717 |
SC-GNN-sl | 7.835 | 9.299 | 0.669 | 0.553 | 0.645 | 0.725 |
SC-GNN-q | 6.646 | 7.718 | 0.770 | 0.614 | 0.710 | 0.835 |
SC-GNN | 5.743 | 5.281 | 0.823 | 0.667 | 0.760 | 0.883 |
Methods | MAE () | MSE () | p@10 | p@20 | ||
---|---|---|---|---|---|---|
GCN-Mean | 12.101 | 21.691 | 0.678 | 0.623 | 0.475 | 0.535 |
GCN-Max | 14.483 | 28.857 | 0.617 | 0.654 | 0.492 | 0.571 |
Sim-GNN | 9.110 | 11.113 | 0.658 | 0.704 | 0.655 | 0.629 |
GMN | 7.802 | 9.018 | 0.742 | 0.669 | 0.695 | 0.730 |
SC-GNN-sl | 8.245 | 10.071 | 0.724 | 0.703 | 0.676 | 0.755 |
SC-GNN-q | 7.168 | 8.379 | 0.769 | 0.735 | 0.725 | 0.816 |
SC-GNN | 5.946 | 5.924 | 0.836 | 0.757 | 0.770 | 0.905 |
Methods | MAE () | MSE () | p@10 | p@20 | ||
---|---|---|---|---|---|---|
GCN-Mean | 15.138 | 29.798 | 0.634 | 0.528 | 0.525 | 0.488 |
GCN-Max | 13.352 | 26.534 | 0.641 | 0.554 | 0.540 | 0.633 |
Sim-GNN | 9.826 | 15.129 | 0.765 | 0.705 | 0.675 | 0.715 |
GMN | 9.207 | 12.799 | 0.752 | 0.682 | 0.656 | 0.693 |
SC-GNN-sl | 9.564 | 13.138 | 0.714 | 0.639 | 0.628 | 0.655 |
SC-GNN-q | 8.525 | 10.248 | 0.768 | 0.712 | 0.667 | 0.726 |
SC-GNN | 7.806 | 8.579 | 0.800 | 0.743 | 0.706 | 0.845 |
Methods | MAE () | MSE () | p@10 | p@20 | ||
---|---|---|---|---|---|---|
GCN-Mean | 14.041 | 29.066 | 0.558 | 0.438 | 0.560 | 0.688 |
GCN-Max | 13.476 | 26.952 | 0.598 | 0.475 | 0.585 | 0.657 |
Sim-GNN | 9.349 | 15.662 | 0.726 | 0.649 | 0.690 | 0.748 |
GMN | 8.662 | 11.211 | 0.735 | 0.667 | 0.715 | 0.835 |
SC-GNN-sl | 9.545 | 13.119 | 0.673 | 0.637 | 0.685 | 0.790 |
SC-GNN-q | 8.534 | 10.599 | 0.741 | 0.685 | 0.775 | 0.867 |
SC-GNN | 7.032 | 7.719 | 0.829 | 0.726 | 0.825 | 0.918 |
Methods | MAE () | MSE () | p@10 | p@20 | ||
---|---|---|---|---|---|---|
GCN-Mean | 16.147 | 34.835 | 0.675 | 0.545 | 0.603 | 0.630 |
GCN-Max | 15.725 | 37.710 | 0.639 | 0.562 | 0.595 | 0.647 |
Sim-GNN | 8.348 | 11.046 | 0.740 | 0.634 | 0.687 | 0.715 |
GMN | 8.324 | 10.158 | 0.781 | 0.646 | 0.732 | 0.803 |
SC-GNN-sl | 10.132 | 14.253 | 0.752 | 0.629 | 0.705 | 0.767 |
SC-GNN-q | 8.281 | 9.614 | 0.803 | 0.668 | 0.765 | 0.848 |
SC-GNN | 6.963 | 6.803 | 0.845 | 0.683 | 0.803 | 0.880 |
Areas | Methods | MAE () | MSE () | p@10 | p@20 | ||
---|---|---|---|---|---|---|---|
M→S | 29.854 | 129.972 | 0.474 | 0.315 | 0.380 | 0.430 | |
Area-1 | M→L | 36.011 | 205.068 | 0.469 | 0.336 | 0.335 | 0.395 |
KNN-MCC | 4.676 | 3.143 | 0.868 | 0.639 | 0.835 | 0.895 | |
M→S | 31.331 | 133.685 | 0.414 | 0.358 | 0.310 | 0.370 | |
Area-2 | M→L | 35.074 | 179.436 | 0.397 | 0.403 | 0.325 | 0.360 |
KNN-MCC | 5.743 | 5.281 | 0.823 | 0.667 | 0.760 | 0.883 | |
M→S | 38.896 | 222.297 | 0.421 | 0.379 | 0.340 | 0.405 | |
Area-3 | M→L | 35.186 | 171.734 | 0.479 | 0.401 | 0.320 | 0.365 |
KNN-MCC | 5.946 | 5.924 | 0.836 | 0.757 | 0.770 | 0.905 | |
M→S | 32.035 | 144.853 | 0.506 | 0.352 | 0.365 | 0.420 | |
Area-4 | M→L | 27.993 | 117.032 | 0.485 | 0.389 | 0.350 | 0.415 |
KNN-MCC | 7.806 | 8.579 | 0.800 | 0.743 | 0.706 | 0.845 | |
M→S | 28.808 | 155.564 | 0.467 | 0.382 | 0.345 | 0.385 | |
Area-5 | M→L | 22.278 | 118.602 | 0.531 | 0.357 | 0.360 | 0.395 |
KNN-MCC | 7.032 | 7.719 | 0.829 | 0.726 | 0.825 | 0.918 | |
M→S | 31.658 | 187.785 | 0.493 | 0.369 | 0.365 | 0.405 | |
Area-6 | M→L | 33.861 | 160.256 | 0.488 | 0.376 | 0.370 | 0.425 |
KNN-MCC | 6.963 | 6.803 | 0.845 | 0.683 | 0.803 | 0.880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, Z.; Pan, Q.; Shi, Z. A Coordinate Registration Method for Over-the-Horizon Radar Based on Graph Matching. Remote Sens. 2025, 17, 1382. https://doi.org/10.3390/rs17081382
Li C, Wang Z, Pan Q, Shi Z. A Coordinate Registration Method for Over-the-Horizon Radar Based on Graph Matching. Remote Sensing. 2025; 17(8):1382. https://doi.org/10.3390/rs17081382
Chicago/Turabian StyleLi, Can, Zengfu Wang, Quan Pan, and Zhiyuan Shi. 2025. "A Coordinate Registration Method for Over-the-Horizon Radar Based on Graph Matching" Remote Sensing 17, no. 8: 1382. https://doi.org/10.3390/rs17081382
APA StyleLi, C., Wang, Z., Pan, Q., & Shi, Z. (2025). A Coordinate Registration Method for Over-the-Horizon Radar Based on Graph Matching. Remote Sensing, 17(8), 1382. https://doi.org/10.3390/rs17081382