Novel Insights into the Vertical Distribution Patterns of Multiple PM2.5 Components in a Super Mega-City: Responses to Pollution Control Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. LiDAR Observation Data
2.2. Sun Photometer Data
2.3. In Situ Chemical Observation Data
2.4. Meteorological Data
2.5. Aerosol Component Retrieval
2.6. Evaluation of the Retrieved Data
2.7. Kolmogorov–Zurbenko Filter
2.8. Backward Trajectory Analysis
3. Results
3.1. Overview of General Pattern
3.2. Stage I—Inorganics Originated from High-Altitude Transport and Uplifting; Organics Concentrated near Surface
3.3. Stage II—Transported Inorganics Held, Sank and Uplifted; Organics Massed Below 500 m
3.4. Stage III—Transported Inorganics Sank; High-Altitude Organics Increased; High-Altitude Dispersion Started First
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Carlson, B.E.; Yung, Y.L.; Lv, D.; Hansen, J.; Penner, J.E.; Liao, H.; Ramaswamy, V.; Kahn, R.A.; Zhang, P.; et al. Scattering and absorbing aerosols in the climate system. Nat. Rev. Earth Environ. 2022, 3, 363–379. [Google Scholar]
- Weare, B.C.; Temkin, R.L.; Snell, F.M. Aerosol and Climate: Some Further Considerations. Science 1974, 186, 827–828. [Google Scholar] [PubMed]
- Zhai, J.; Shao, S.; Yang, X.; Zeng, Y.; Fu, T.-M.; Zhu, L.; Shen, H.; Ye, J.; Wang, C.; Tao, S. Chemically Resolved Respiratory Deposition of Ultrafine Particles Characterized by Number Concentration in the Urban Atmosphere. Environ. Sci. Technol. 2024, 58, 16507–16516. [Google Scholar]
- Li, Q.; Zhang, H.; Cai, X.; Song, Y.; Zhu, T. The impacts of the atmospheric boundary layer on regional haze in North China. npj Clim. Atmos. Sci. 2021, 4, 9. [Google Scholar]
- Shi, Y.; Liu, L.; Hu, F.; Fan, G.; Huo, J. Nocturnal Boundary Layer Evolution and Its Impacts on the Vertical Distributions of Pollutant Particulate Matter. Atmosphere 2021, 12, 610. [Google Scholar] [CrossRef]
- Sun, T.; Wu, C.; Wu, D.; Liu, B.; Sun, J.Y.; Mao, X.; Yang, H.; Deng, T.; Song, L.; Li, M.; et al. Time-resolved black carbon aerosol vertical distribution measurements using a 356-m meteorological tower in Shenzhen. Theor. Appl. Climatol. 2020, 140, 1263–1276. [Google Scholar]
- Zheng, C.; Zhao, C.; Zhu, Y.; Wang, Y.; Shi, X.; Wu, X.; Chen, T.; Wu, F.; Qiu, Y. Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys. 2017, 17, 13473–13489. [Google Scholar]
- Zhou, S.; Wu, L.; Guo, J.; Chen, W.; Wang, X.; Zhao, J.; Cheng, Y.; Huang, Z.; Zhang, J.; Sun, Y.; et al. Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China—Size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions. Atmos. Chem. Phys. 2020, 20, 6435–6453. [Google Scholar]
- Shao, P.; Tian, H.; Sun, Y.; Liu, H.; Wu, B.; Liu, S.; Liu, X.; Wu, Y.; Liang, W.; Wang, Y.; et al. Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016–2017 winter in Beijing, China. Atmos. Environ. 2018, 189, 133–144. [Google Scholar]
- Zhai, S.; Jacob, D.J.; Wang, X.; Shen, L.; Li, K.; Zhang, Y.; Gui, K.; Zhao, T.; Liao, H. Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 2019, 19, 11031–11041. [Google Scholar]
- Zhao, L.; Wang, L.; Tan, J.; Duan, J.; Ma, X.; Zhang, C.; Ji, S.; Qi, M.; Lu, X.; Wang, Y.; et al. Changes of chemical composition and source apportionment of PM2.5 during 2013–2017 in urban Handan, China. Atmos. Environ. 2019, 206, 119–131. [Google Scholar]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar]
- Wang, Y.; Gao, W.; Wang, S.; Song, T.; Gong, Z.; Ji, D.; Wang, L.; Liu, Z.; Tang, G.; Huo, Y.; et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar]
- Wang, Y.; Li, W.; Gao, W.; Liu, Z.; Tian, S.; Shen, R.; Ji, D.; Wang, S.; Wang, L.; Tang, G.; et al. Trends in particulate matter and its chemical compositions in China from 2013–2017. Sci. China-Earth Sci. 2019, 62, 1857–1871. [Google Scholar]
- Geng, G.; Liu, Y.; Liu, Y.; Liu, S.; Cheng, J.; Yan, L.; Wu, N.; Hu, H.; Tong, D.; Zheng, B.; et al. Efficacy of China’s clean air actions to tackle PM2.5 pollution between 2013 and 2020. Nat. Geosci. 2024, 17, 987–994. [Google Scholar]
- Xu, Q.; Wang, S.; Jiang, J.; Bhattarai, N.; Li, X.; Chang, X.; Qiu, X.; Zheng, M.; Hua, Y.; Hao, J. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China. Sci. Total Environ. 2019, 689, 1293–1303. [Google Scholar]
- Li, H.; Cheng, J.; Zhang, Q.; Zheng, B.; Zhang, Y.; Zheng, G.; He, K. Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: Response to clean air actions. Atmos. Chem. Phys. 2019, 19, 11485–11499. [Google Scholar]
- Guo, Y. Characteristics of size-segregated carbonaceous aerosols in the Beijing-Tianjin-Hebei region. Environ. Sci. Pollut. Res. 2016, 23, 13918–13930. [Google Scholar]
- Lei, L.; Sun, Y.; Ouyang, B.; Qiu, Y.; Xie, C.; Tang, G.; Zhou, W.; He, Y.; Wang, Q.; Cheng, X.; et al. Vertical Distributions of Primary and Secondary Aerosols in Urban Boundary Layer: Insights into Sources, Chemistry, and Interaction with Meteorology. Environ. Sci. Technol. 2021, 55, 4542–4552. [Google Scholar]
- Öztürk, F.; Bahreini, R.; Wagner, N.L.; Dubé, W.P.; Young, C.J.; Brown, S.S.; Brock, C.A.; Ulbrich, I.M.; Jimenez, J.L.; Cooper, O.R.; et al. Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. J. Geophys. Res.-Atmos. 2013, 118, 13591–13605. [Google Scholar]
- Du, W.; Zhao, J.; Wang, Y.; Zhang, Y.; Wang, Q.; Xu, W.; Chen, C.; Han, T.; Zhang, F.; Li, Z.; et al. Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China. Atmos. Chem. Phys. 2017, 17, 6797–6811. [Google Scholar]
- Wu, H.; Zhang, Y.-f.; Han, S.-q.; Wu, J.-h.; Bi, X.-h.; Shi, G.-l.; Wang, J.; Yao, Q.; Cai, Z.-y.; Liu, J.-l.; et al. Vertical characteristics of PM2.5 during the heating season in Tianjin, China. Sci. Total Environ. 2015, 523, 152–160. [Google Scholar] [PubMed]
- Chen, Y.-C.; Chang, C.-C.; Chen, W.-N.; Tsai, Y.-J.; Chang, S.-Y. Determination of the vertical profile of aerosol chemical species in the microscale urban environment. Environ. Pollut. 2018, 243, 1360–1367. [Google Scholar]
- Wu, H.; Taylor, J.W.; Szpek, K.; Langridge, J.M.; Williams, P.I.; Flynn, M.; Allan, J.D.; Abel, S.J.; Pitt, J.; Cotterell, M.I.; et al. Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmos. Chem. Phys. 2020, 20, 12697–12719. [Google Scholar]
- Hatakeyama, S.; Ikeda, K.; Hanaoka, S.; Watanabe, I.; Arakaki, T.; Bandow, H.; Sadanaga, Y.; Kato, S.; Kajii, Y.; Zhang, D.; et al. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses. Atmos. Environ. 2014, 97, 456–461. [Google Scholar]
- Brooks, J.; Allan, J.D.; Williams, P.I.; Liu, D.; Fox, C.; Haywood, J.; Langridge, J.M.; Highwood, E.J.; Kompalli, S.K.; O’Sullivan, D.; et al. Vertical and horizontal distribution of submicron aerosol chemical composition and physical characteristics across northern India during pre-monsoon and monsoon seasons. Atmos. Chem. Phys. 2019, 19, 5615–5634. [Google Scholar]
- Kim, J.-M.; Lee, H.-J.; Jo, H.-Y.; Jo, Y.-J.; Kim, C.-H. Vertical Characteristics of Secondary Aerosols Observed in the Seoul and Busan Metropolitan Areas of Korea during KORUS-AQ and Associations with Meteorological Conditions. Atmosphere 2021, 12, 1451. [Google Scholar] [CrossRef]
- Liu, Q.; Quan, J.; Jia, X.; Sun, Z.; Li, X.; Gao, Y.; Liu, Y. Vertical Profiles of Aerosol Composition over Beijing, China: Analysis of In Situ Aircraft Measurements. J. Atmos. Sci. 2019, 76, 231–245. [Google Scholar]
- Li, J.; Fu, Q.; Huo, J.; Wang, D.; Yang, W.; Bian, Q.; Duan, Y.; Zhang, Y.; Pan, J.; Lin, Y.; et al. Tethered balloon-based black carbon profiles within the lower troposphere of Shanghai in the 2013 East China smog. Atmos. Environ. 2015, 123, 327–338. [Google Scholar]
- Rosati, B.; Gysel, M.; Rubach, F.; Mentel, T.F.; Goger, B.; Poulain, L.; Schlag, P.; Miettinen, P.; Pajunoja, A.; Virtanen, A.; et al. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns. Atmos. Chem. Phys. 2016, 16, 7295–7315. [Google Scholar]
- Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S.N. Inferring absorbing organic carbon content from AERONET data. Atmos. Chem. Phys. 2011, 11, 215–225. [Google Scholar]
- Schuster, G.L.; Dubovik, O.; Holben, B.N.; Clothiaux, E.E. Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. J. Geophys. Res.-Atmos. 2005, 110, D10S17. [Google Scholar]
- Xie, Y.S.; Li, Z.Q.; Zhang, Y.X.; Zhang, Y.; Li, D.H.; Li, K.T.; Xu, H.; Zhang, Y.; Wang, Y.Q.; Chen, X.F.; et al. Estimation of atmospheric aerosol composition from ground-based remote sensing measurements of Sun-sky radiometer. J. Geophys. Res.-Atmos. 2017, 122, 498–518. [Google Scholar]
- Zhang, Y.; Li, Z.; Chen, Y.; de Leeuw, G.; Zhang, C.; Xie, Y.; Li, K. Improved inversion of aerosol components in the atmospheric column from remote sensing data. Atmos. Chem. Phys. 2020, 20, 12795–12811. [Google Scholar]
- Zhang, Y.; Li, Z.; Zhang, Y.; Li, D.; Qie, L.; Che, H.; Xu, H. Estimation of aerosol complex refractive indices for both fine and coarse modes simultaneously based on AERONET remote sensing products. Atmos. Meas. Tech. 2017, 10, 3203–3213. [Google Scholar]
- Nishizawa, T.; Sugimoto, N.; Matsui, I.; Shimizu, A.; Tatarov, B.; Okamoto, H. Algorithm to Retrieve Aerosol Optical Properties From High-Spectral-Resolution Lidar and Polarization Mie-Scattering Lidar Measurements. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4094–4103. [Google Scholar]
- Veselovskii, I.; Hu, Q.; Goloub, P.; Podvin, T.; Barchunov, B.; Korenskii, M. Combining Mie–Raman and fluorescence observations: A step forward in aerosol classification with lidar technology. Atmos. Meas. Tech. 2022, 15, 4881–4900. [Google Scholar]
- Li, L.; Che, H.; Derimian, Y.; Dubovik, O.; Schuster, G.L.; Chen, C.; Li, Q.; Wang, Y.; Guo, B.; Zhang, X. Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia. Remote Sens. Environ. 2020, 247, 111913. [Google Scholar]
- Li, L.; Dubovik, O.; Derimian, Y.; Schuster, G.L.; Lapyonok, T.; Litvinov, P.; Ducos, F.; Fuertes, D.; Chen, C.; Li, Z.; et al. Retrieval of aerosol components directly from satellite and ground-based measurements. Atmos. Chem. Phys. 2019, 19, 13409–13443. [Google Scholar]
- Wang, F.; Yang, T.; Wang, Z.; Wang, H.; Chen, X.; Sun, Y.; Li, J.; Tang, G.; Chai, W. Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data. Atmos. Meas. Technol. 2022, 15, 6127–6144. [Google Scholar]
- Lei, F.; Dong, X.; Ma, X. Prediction of PM2.5 concentration considering temporal and spatial features: A case study of Fushun, Liaoning Province. J. Intell. Fuzzy Syst. 2020, 39, 8015–8025. [Google Scholar]
- Li, T.; Hua, M.; Wu, X. A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5). IEEE Access 2020, 8, 26933–26940. [Google Scholar] [CrossRef]
- Liu, S.; Geng, G.; Xiao, Q.; Zheng, Y.; Liu, X.; Cheng, J.; Zhang, Q. Tracking Daily Concentrations of PM2.5 Chemical Composition in China since 2000. Environ. Sci. Technol. 2022, 56, 16517–16527. [Google Scholar] [PubMed]
- Wang, T.; Du, H.; Cheng, W.; Zhao, Z.; Zhang, J.; Zhou, C. Influence of meteorological conditions on the air quality during the 2022 Winter Olympics in Beijing. Front. Environ. Sci. 2022, 10, 987272. [Google Scholar]
- Wu, Q.; Wu, Z.; Li, S.; Chen, Z. The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study. Sustainability 2023, 15, 11252. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Z.; Zhang, B.; Wang, X.; Wang, W.; Gbauidi, A.; Gong, Y. Evaluation of the effect of air pollution control during the Beijing 2008 Olympic Games using Lidar data. Chin. Sci. Bull. 2010, 55, 1311–1316. [Google Scholar]
- Liu, Q.; Liu, D.; Gao, Q.; Tian, P.; Wang, F.; Zhao, D.; Bi, K.; Wu, Y.; Ding, S.; Hu, K.; et al. Vertical characteristics of aerosol hygroscopicity and impacts on optical properties over the North China Plain during winter. Atmos. Chem. Phys. 2020, 20, 3931–3944. [Google Scholar]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Li, H.; Yang, T.; Du, Y.; Tan, Y.; Wang, Z. Interpreting hourly mass concentrations of PM2.5 chemical components with an optimal deep-learning model. J. Environ. Sci. 2025, 151, 125–139. [Google Scholar]
- Benavent-Oltra, J.A.; Casquero-Vera, J.A.; Román, R.; Lyamani, H.; Pérez-Ramírez, D.; Granados-Muñoz, M.J.; Herrera, M.; Cazorla, A.; Titos, G.; Ortiz-Amezcua, P.; et al. Overview of the SLOPE I and II campaigns: Aerosol properties retrieved with lidar and sun–sky photometer measurements. Atmos. Chem. Phys. 2021, 21, 9269–9287. [Google Scholar]
- Benavent-Oltra, J.A.; Román, R.; Granados-Muñoz, M.J.; Pérez-Ramírez, D.; Ortiz-Amezcua, P.; Denjean, C.; Lopatin, A.; Lyamani, H.; Torres, B.; Guerrero-Rascado, J.L.; et al. Comparative assessment of GRASP algorithm for a dust event over Granada (Spain) during ChArMEx-ADRIMED 2013 campaign. Atmos. Meas. Tech. 2017, 10, 4439–4457. [Google Scholar]
- Bovchaliuk, V.; Goloub, P.; Podvin, T.; Veselovskii, I.; Tanre, D.; Chaikovsky, A.; Dubovik, O.; Mortier, A.; Lopatin, A.; Korenskiy, M.; et al. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data. Atmos. Meas. Technol. 2016, 9, 3391–3405. [Google Scholar]
- Marcos, C.R.; Pedrós, R.; Gómez-Amo, J.L.; Utrillas, M.P.; Martínez-Lozano, J.A. Analysis of Desert Dust Outbreaks Over Southern Europe Using CALIOP Data and Ground-Based Measurements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 744–756. [Google Scholar]
- Tsekeri, A.; Lopatin, A.; Amiridis, V.; Marinou, E.; Igloffstein, J.; Siomos, N.; Solomos, S.; Kokkalis, P.; Engelmann, R.; Baars, H.; et al. GARRLiC and LIRIC: Strengths and limitations for the characterization of dust and marine particles along with their mixtures. Atmos. Meas. Technol. 2017, 10, 4995–5016. [Google Scholar]
- Flaum, J.B.; Rao, S.T.; Zurbenko, I.G. Moderating the Influence of Meteorological Conditions on Ambient Ozone Concentrations. J. Air Waste Manage. Assoc. 1996, 46, 35–46. [Google Scholar]
- Rao, S.T.; Zurbenko, I.G. Detecting and Tracking Changes in Ozone Air Quality. J. Air Waste Manage. Assoc. 1994, 44, 1089–1092. [Google Scholar]
- Wise, E.K.; Comrie, A.C. Extending the Kolmogorov-Zurbenko filter: Application to ozone, particulate matter, and meteorological trends. J. Air Waste Manage. Assoc. 2005, 55, 1208–1216. [Google Scholar] [CrossRef]
- Yang, W.; Zurbenko, I. Kolmogorov–Zurbenko filters. Wiley Interdiscip. Rev.-Comput. Stat. 2010, 2, 340–351. [Google Scholar]
- Milanchus, M.L.; Rao, S.T.; Zurbenko, I.G. Evaluating the Effectiveness of Ozone Management Efforts in the Presence of Meteorological Variability. J. Air Waste Manage. Assoc. 1998, 48, 201–215. [Google Scholar] [CrossRef]
- Kumari, S.; Jayaraman, G.; Ghosh, C. Analysis of long-term ozone trend over Delhi and its meteorological adjustment. Int. J. Environ. Sci. Technol. 2013, 10, 1325–1336. [Google Scholar]
- Zhang, J.Q.; Wang, Y.Q.; Gao, S.; Chen, L.; Mao, J.; Sun, Y.L.; Ma, Z.X.; Xiao, J.; Zhang, H. Study on the relationship between meteorological elements and air pollution at different time scales based on KZ filtering. China Environ. Sci. 2018, 38, 3662–3672. [Google Scholar]
- Zhao, Y.; Yang, T.; Wang, Z.; He, L.; Wu, L.; Cui, Y. Effectiveness of Air Pollution Control Efforts in Beijing–Tianjin–Hebei Region during 2013–2018 Based on the Kolmogorov–Zurbenko Filter. Climatic Environ. Res. 2020, 25, 499–509. [Google Scholar]
- Liu, Y.; Xu, X.; Yang, X.; He, J.; Ji, D.; Wang, Y. Significant Reduction in Fine Particulate Matter in Beijing during 2022 Beijing Winter Olympics. Environ. Sci. Technol. Lett. 2022, 9, 822–828. [Google Scholar]
- Lu, T.; Li, Z.; Chen, Y.; Bu, Z.; Wang, X. Research on Lidar Network Observation of Aerosol and Pollution in Beijing 2022 Winter Olympics. Atmosphere 2022, 13, 1901. [Google Scholar] [CrossRef]
- Chu, F.; Gong, C.; Sun, S.; Li, L.; Yang, X.; Zhao, W. Air Pollution Characteristics during the 2022 Beijing Winter Olympics. Int. J. Environ. Res. Public Health 2022, 19, 11616. [Google Scholar]
- Hu, Q.; Liu, C.; Li, Q.; Liu, T.; Ji, X.; Zhu, Y.; Xing, C.; Liu, H.; Tan, W.; Gao, M. Vertical profiles of the transport fluxes of aerosol and its precursors between Beijing and its southwest cities. Environ. Pollut. 2022, 312, 119988. [Google Scholar]
- Wang, Q.; Du, W.; Sun, Y.; Wang, Z.; Tang, G.; Zhu, J. Submicron-scale aerosol above the city canopy in Beijing in spring based on in-situ meteorological tower measurements. Atmos. Res. 2022, 271, 106128. [Google Scholar]
- Yang, T.; Li, H.; Xu, W.; Song, Y.; Xu, L.; Wang, H.; Wang, F.; Sun, Y.; Wang, Z.; Fu, P. Strong Impacts of Regional Atmospheric Transport on the Vertical Distribution of Aerosol Ammonium over Beijing. Environ. Sci. Technol. Lett. 2024, 11, 29–34. [Google Scholar]
- Liu, P.; Zhang, C.; Xue, C.; Mu, Y.; Liu, J.; Zhang, Y.; Tian, D.; Ye, C.; Zhang, H.; Guan, J. The contribution of residential coal combustion to atmospheric PM2. 5 in northern China during winter. Atmos. Chem. Phys. 2017, 17, 11503–11520. [Google Scholar]
- Xiang, Y.; Zhang, T.; Ma, C.; Lv, L.; Liu, J.; Liu, W.; Cheng, Y. Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain. Atmos. Chem. Phys. 2021, 21, 7023–7037. [Google Scholar]
- Fu, X.; Wang, T.; Gao, J.; Wang, P.; Liu, Y.; Wang, S.; Zhao, B.; Xue, L. Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. Environ. Sci. Technol. 2020, 54, 3881–3889. [Google Scholar] [PubMed]
- Wang, H.; Lu, K.; Chen, X.; Zhu, Q.; Wu, Z.; Wu, Y.; Sun, K. Fast particulate nitrate formation via N2O5 uptake aloft in winter in Beijing. Atmos. Chem. Phys. 2018, 18, 10483–10495. [Google Scholar]
- Wang, Y.; Liu, J.; Jiang, F.; Chen, Z.; Wu, L.; Zhou, S.; Pei, C.; Kuang, Y.; Cao, F.; Zhang, Y.; et al. Vertical measurements of stable nitrogen and oxygen isotope composition of fine particulate nitrate aerosol in Guangzhou city: Source apportionment and oxidation pathway. Sci. Total Environ. 2023, 865, 161239. [Google Scholar]
- Morgan, W.T.; Allan, J.D.; Bower, K.N.; Esselborn, M.; Harris, B.; Henzing, J.S.; Highwood, E.J.; Kiendler-Scharr, A.; McMeeking, G.R.; Mensah, A.A.; et al. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe. Atmos. Chem. Phys. 2010, 10, 8151–8171. [Google Scholar]
- Neuman, J.A.; Nowak, J.B.; Brock, C.A.; Trainer, M.; Fehsenfeld, F.C.; Holloway, J.S.; Hübler, G.; Hudson, P.K.; Murphy, D.M.; Nicks, D.K., Jr.; et al. Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California. J. Geophys. Res.-Atmos. 2003, 108, 4557. [Google Scholar]
- Wang, H.; Sun, Z.; Li, H.; Gao, Y.; Wu, J.; Cheng, T. Vertical-distribution Characteristics of Atmospheric Aerosols under Different Thermodynamic Conditions in Beijing. Aerosol Air Qual. Res. 2018, 18, 2775–2787. [Google Scholar]
- Wang, Y.; Shi, M.; Lv, Z.; Liu, H.; He, K. Local and regional contributions to PM2.5 in the Beijing 2022 Winter Olympics infrastructure areas during haze episodes. Front. Env. Sci. Eng. 2021, 15, 140. [Google Scholar]
- Zhao, P.S.; Dong, F.; He, D.; Zhao, X.J.; Zhang, X.L.; Zhang, W.Z.; Yao, Q.; Liu, H.Y. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 2013, 13, 4631–4644. [Google Scholar]
Pollutants | Meteorology Contribution | Emission Contribution | Average Concentration (μg m−3) | Mean Height of Maximum Concentrations (m) |
---|---|---|---|---|
PM2.5 | 48.88% | 51.12% | 47.30 | 513.51 |
SO42− | 63.87% | 36.13% | 5.00 | 795.03 |
NH4+ | 47.33% | 52.67% | 8.18 | 648.73 |
NO3− | 54.53% | 45.47% | 17.75 | 667.76 |
OM | 42.02% | 57.98% | 13.89 | 170.96 |
BC | 39.51% | 60.49% | 2.25 | 206.90 |
Pollutants | Average Concentration (μg m−3) | Mean Heights at Which the Maximum Occurs (m) | ||||
---|---|---|---|---|---|---|
Stage I | Stage II | Stage III | Stage I | Stage II | Stage III | |
PM2.5 | 25.44 | 90.47 | 38.24 | 258.87 | 696.42 | 590.86 |
SO42− | 2.64 | 8.54 | 4.66 | 729.67 | 796.97 | 840.59 |
NH4+ | 3.66 | 16.93 | 6.41 | 413.30 | 774.30 | 745.14 |
NO3− | 6.89 | 40.03 | 12.78 | 411.90 | 801.67 | 774.01 |
OM | 10.47 | 21.07 | 12.23 | 152.42 | 160.20 | 190.34 |
BC | 1.62 | 3.55 | 1.97 | 153.82 | 159.45 | 271.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Yang, T.; Tian, P.; Li, H.; Tian, Y.; Tan, Y.; Sun, Y.; Wang, Z. Novel Insights into the Vertical Distribution Patterns of Multiple PM2.5 Components in a Super Mega-City: Responses to Pollution Control Strategies. Remote Sens. 2025, 17, 1151. https://doi.org/10.3390/rs17071151
Song Y, Yang T, Tian P, Li H, Tian Y, Tan Y, Sun Y, Wang Z. Novel Insights into the Vertical Distribution Patterns of Multiple PM2.5 Components in a Super Mega-City: Responses to Pollution Control Strategies. Remote Sensing. 2025; 17(7):1151. https://doi.org/10.3390/rs17071151
Chicago/Turabian StyleSong, Yifan, Ting Yang, Ping Tian, Hongyi Li, Yutong Tian, Yining Tan, Yele Sun, and Zifa Wang. 2025. "Novel Insights into the Vertical Distribution Patterns of Multiple PM2.5 Components in a Super Mega-City: Responses to Pollution Control Strategies" Remote Sensing 17, no. 7: 1151. https://doi.org/10.3390/rs17071151
APA StyleSong, Y., Yang, T., Tian, P., Li, H., Tian, Y., Tan, Y., Sun, Y., & Wang, Z. (2025). Novel Insights into the Vertical Distribution Patterns of Multiple PM2.5 Components in a Super Mega-City: Responses to Pollution Control Strategies. Remote Sensing, 17(7), 1151. https://doi.org/10.3390/rs17071151