Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation
Abstract
:1. Introduction
- To adapt to the noise condition in real HSIs, we introduce the norm into the elastic net model based on SPCA to constrain sparse noise including impulse noise, deadlines, and stripes, thereby enabling the construction of robust RCIs.
- A mixed denoising model based on NSR is established, which utilizes the robust RCIs as prior information and takes into account nonlocal low-rank approximation. Moreover, we adopt the alternating direction method of multipliers (ADMMs) to solve the proposed RRGNLA model.
- The experimental results indicate that the proposed RRGNLA method demonstrates competitive performance in both denoising effect and computational efficiency compared with other state-of-the-art methods. In the majority of experimental results, RRGNLA consistently achieves optimal denoising performance with high computational efficiency.
2. Related Work
3. Proposed Method
3.1. Problem Formulation
3.2. Proposed Subspace Representation Model
- 1.
- Update , the subproblem of optimizing is:
- 2.
- Update E, the subproblem of optimizing E is:
- 3.
- Update S, the subproblem of optimizing S is:
Algorithm 1: Obtaining Robust RCIs via SPCA Operator |
/* This algorithm obtains robust RCIs through iterative computation. This algorithm initializes variables using input noisy HSI . It continues until the relative error is below a specified threshold or the maximum number of iterations is reached. */ Input: the noisy HSI , the dimension of subspace k, and the parameters and 1: Initialization: , are estimated by SVD; Set t = 0, maximum iteration T, and 2: while not converged do 3: update via (6)//Iterative computation of the sparse noise. |
4: update via (10)//Iterative computation of the subspace basis. 5: update via (12)//Iterative computation of the sparse coefficient matrix. 6: check the convergence: or the error 7: update iteration: 8: end while 9: Compute via (13)//Obtain robust RCIs. Output: the robust RCIs and the orthogonal matrix |
3.3. Proposed RRGNLA Method
- 1.
- Update :
- 2.
- Update :
- 3.
- Update E:
Algorithm 2: RRGNLA Method for HSI Mixed Denoising |
/* This algorithm restores noisy HSI through iterative computation. It utilizes the robust RCIs from Algorithm 1 as prior information and embeds the WNNM low-rank regularizer into the iterative denoising process. */ Input: the noisy HSI , the dimension of subspace k, and the parameters and 1: Initialization: Set t = 0, maximum iteration T 2: Obtain and via Algorithm 1 //Utilize robust RCIs guidance for denoising. 3: Construct using l and s //Block matching and stacking similar patches. 4: Approximate Low-rank via (16) //Denoise using WNNM low-rank regularizer. 5: while not converged do 6: update via (18) //Iterative computation of the sparse noise. |
7: update via (20) //Iterative computation of the Robust RCIs. 8: update via (22) //Iterative computation of the orthogonal matrix. 9: check the convergence: 10: update iteration: 11: end while 12: Compute denoised HSI according to Output: the denoised HSI |
4. Experiments
4.1. Simulated Data Experiments
4.1.1. Simulated Datasets
- Case 1: Zero-mean Gaussian noise with different standard deviations is added to each band, and the standard deviation of each band is randomly selected in the range of [0.1–0.2].
- Case 2: The Gaussian noise is added to each band with the same as in Case 1. In addition, impulse noise with a density of 20% is added into 20 randomly selected bands.
- Case 3: The Gaussian noise and impulse noise are added with the same as in Case 2. In addition, deadlines with widths ranging from 1 to 3 are added into the 20 bands. Among these, 10 bands will be selected from those affected by impulse noise, while the remaining 10 bands will be randomly chosen from the other bands.
- Case 4: The Gaussian noise, impulse noise, and deadlines are added with the same as in Case 3. In addition, we selected 20 consecutive bands to add random stripes, ensuring that 10% of the columns in each band were contaminated.
4.1.2. Visual Quality Comparison
4.1.3. Quantitative Comparison
4.2. Real Data Experiments
4.2.1. Real HSI Datasets
4.2.2. Results Comparison
4.3. Discussion
4.3.1. Parameters Setting
4.3.2. Ablation Study
4.3.3. Comparison with Deep Learning Methods
4.3.4. Complexity and Convergence Analysis
- 1.
- Block Matching: Let denote the search window size; denotes the spatial size of the 3D patch. Calculating the similarity patch within a search window requires .
- 2.
- Low-Rank Approximation: The computational complexity of the low-rank approximation is determined using the SVD step. For a low-rank matrix of size , where s is the number of similar patches, the computational complexity of the SVD step is .
- 3.
- Solving Model (17): The computational complexity of solving Model (17) is determined using Equation (18). In Equation (18), the computational complexity for matrix operations is , and performing the soft-thresholding operation requires . We disregard the impact of k; therefore, the overall complexity of the iterative denoising process is .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [Google Scholar] [CrossRef]
- Peng, J.; Sun, W.; Li, H.-C.; Li, W.; Meng, X.; Ge, C.; Du, Q. Low-rank and sparse representation for hyperspectral image processing: A review. IEEE Geosci. Remote Sens. Mag. 2021, 10, 10–43. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.; Willmott, J.R. Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef] [PubMed]
- Goetz, A.F. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hyperspectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L.; Liu, T. Joint sparse representation and multitask learning for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2016, 55, 894–906. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, Z.; Gao, C.; Kang, Z.; Feng, D. Hyperspectral image classification with global–local discriminant analysis and spatial–spectral context. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 5005–5018. [Google Scholar] [CrossRef]
- Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [Google Scholar] [CrossRef]
- Rasti, B.; Sveinsson, J.R.; Ulfarsson, M.O. Wavelet-based sparse reduced-rank regression for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6688–6698. [Google Scholar] [CrossRef]
- Zhao, Y.-Q.; Yang, J. Hyperspectral image denoising via sparse representation and low-rank constraint. IEEE Trans. Geosci. Remote Sens. 2014, 53, 296–308. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 2862–2869. [Google Scholar]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4729–4743. [Google Scholar] [CrossRef]
- Lu, T.; Li, S.; Fang, L.; Ma, Y.; Benediktsson, J.A. Spectral–spatial adaptive sparse representation for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2015, 54, 373–385. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Kong, S.G. Joint spatial and spectral low-rank regularization for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1940–1958. [Google Scholar] [CrossRef]
- Fan, H.; Chen, Y.; Guo, Y.; Zhang, H.; Kuang, G. Hyperspectral image restoration using low-rank tensor recovery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4589–4604. [Google Scholar] [CrossRef]
- Huang, Z.; Li, S.; Fang, L.; Li, H.; Benediktsson, J.A. Hyperspectral image denoising with group sparse and low-rank tensor decomposition. IEEE Access 2017, 6, 1380–1390. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Huang, S.; Liao, W.; Chan, J.C.-W.; Kong, S.G. Multilayer sparsity-based tensor decomposition for low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6916–6930. [Google Scholar] [CrossRef]
- Fan, H.; Li, C.; Guo, Y.; Kuang, G.; Ma, J. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6196–6213. [Google Scholar] [CrossRef]
- Peng, J.; Xie, Q.; Zhao, Q.; Wang, Y.; Yee, L.; Meng, D. Enhanced 3DTV regularization and its applications on HSI denoising and compressed sensing. IEEE Trans. Image Process. 2020, 29, 7889–7903. [Google Scholar] [CrossRef]
- Sarkar, S.; Sahay, R.R. A non-local superpatch-based algorithm exploiting low rank prior for restoration of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2021, 30, 6335–6348. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z. Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1888–1902. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5174–5189. [Google Scholar] [CrossRef]
- Zhuang, L.; Bioucas-Dias, J.M. Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 730–742. [Google Scholar] [CrossRef]
- Zhuang, L.; Fu, X.; Ng, M.K.; Bioucas-Dias, J.M. Hyperspectral image denoising based on global and nonlocal low-rank factorizations. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10438–10454. [Google Scholar] [CrossRef]
- Lin, J.; Huang, T.-Z.; Zhao, X.-L.; Jiang, T.-X.; Zhuang, L. A tensor subspace representation-based method for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7739–7757. [Google Scholar] [CrossRef]
- He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q.; Zhang, H.; Zhang, L. Non-local meets global: An iterative paradigm for hyperspectral image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2089–2107. [Google Scholar] [CrossRef]
- Xu, S.; Cao, X.; Peng, J.; Ke, Q.; Ma, C.; Meng, D. Hyperspectral image denoising by asymmetric noise modeling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5545214. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Z.; Yang, F. Fast hyperspectral image denoising and destriping method based on graph Laplacian regularization. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5511214. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, J.; He, W.; Zhao, X.-L.; Jiang, T.-X.; Huang, Q. Fast Large-Scale Hyperspectral Image Denoising via Non-Iterative Low-Rank Subspace Representation. IEEE Trans. Geosci. Remote Sens. 2024, 33, 1211–1226. [Google Scholar]
- Ashraf, M.; Chen, L.; Zhou, X.; Rakha, M.A. A Joint Architecture of Mixed-Attention Transformer and Octave Module for Hyperspectral Image Denoising. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4331–4349. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Cao, X.; Wang, J.; Zhao, Q.; Meng, D. Hyperspectral image denoising via nonlocal spectral sparse subspace representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5189–5203. [Google Scholar] [CrossRef]
- Sun, L.; Jeon, B.; Soomro, B.N.; Zheng, Y.; Wu, Z.; Xiao, L. Fast superpixel based subspace low rank learning method for hyperspectral denoising. IEEE Access 2018, 6, 12031–12043. [Google Scholar] [CrossRef]
- Cao, C.; Yu, J.; Zhou, C.; Hu, K.; Xiao, F.; Gao, X. Hyperspectral image denoising via subspace-based nonlocal low-rank and sparse factorization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 973–988. [Google Scholar] [CrossRef]
- Zheng, Y.-B.; Huang, T.-Z.; Zhao, X.-L.; Chen, Y.; He, W. Double-factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8450–8464. [Google Scholar] [CrossRef]
- He, C.; Cao, Q.; Xu, Y.; Sun, L.; Wu, Z.; Wei, Z. Weighted order-p tensor nuclear norm minimization and its application to hyperspectral image mixed denoising. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5510505. [Google Scholar] [CrossRef]
- Fu, X.; Guo, Y.; Xu, M.; Jia, S. Hyperspectral image denoising via robust subspace estimation and group sparsity constraint. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5512716. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Fu, Y.; Zhang, Y.; Dou, D. Spectral Enhanced Rectangle Transformer for Hyperspectral Image Denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles, CA, USA, 24–27 June 2023; pp. 5805–5814. [Google Scholar]
- He, C.; Sun, L.; Huang, W.; Zhang, J.; Zheng, Y.; Jeon, B. TSLRLN: Tensor subspace low-rank learning with non-local prior for hyperspectral image mixed denoising. Signal Process. 2021, 184, 108060. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Yuan, Q.; Song, M.; Yu, H.; Xiao, Y. Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 13143–13163. [Google Scholar] [CrossRef]
- Yi, L.; Zhao, Q.; Xu, Z. Hyperspectral Image Denoising by Pixel-Wise Noise Modeling and TV-Oriented Deep Image Prior. Remote Sens. 2024, 16, 2694. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Nascimento, J.M. Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2435–2445. [Google Scholar] [CrossRef]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Gower, J.C.; Dijksterhuis, G.B. Procrustes Problems; OUP: Oxford, UK, 2004; Volume 30. [Google Scholar]
- Erichson, N.B.; Zheng, P.; Manohar, K.; Brunton, S.L.; Kutz, J.N.; Aravkin, A.Y. Sparse principal component analysis via variable projection. SIAM J. Appl. Math. 2020, 80, 977–1002. [Google Scholar] [CrossRef]
- Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 2012, 22, 119–133. [Google Scholar] [CrossRef]
- He, C.; Xu, Y.; Wu, Z.; Zheng, S.; Wei, Z. Multi-Dimensional Visual Data Restoration: Uncovering the Global Discrepancy in Transformed High-Order Tensor Singular Values. IEEE Trans. Image Process. 2024, 33, 6409–6424. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Wald, L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions; Presses des Mines: Paris, France, 2002. [Google Scholar]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2015, 54, 178–188. [Google Scholar] [CrossRef]
- Maffei, A.; Haut, J.M.; Paoletti, M.E.; Plaza, J.; Bruzzone, L.; Plaza, A. A single model CNN for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2516–2529. [Google Scholar] [CrossRef]
- Zhuang, L.; Ng, M.K. FastHyMix: Fast and parameter-free hyperspectral image mixed noise removal. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 4702–4716. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, J.; Zhao, Q.; Lu, J.; Qian, Y. MAC-Net: Model-aided nonlocal neural network for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5519414. [Google Scholar] [CrossRef]
Data | Case | Index | Noisy | BM4D | LRMR | NG-Meet | Fast- HyDe | GLF | SNL- RSF | NS3R | HyW-TNN | DT- SVD | RRG- NLA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WDC | 1 | MPSNR | 16.35 | 30.19 | 31.34 | 35.42 | 35.69 | 36.57 | 36.55 | 35.31 | 36.24 | 36.41 | 36.66 |
MSSIM | 0.265 | 0.847 | 0.889 | 0.958 | 0.957 | 0.965 | 0.966 | 0.961 | 0.963 | 0.965 | 0.967 | ||
MFSIM | 0.619 | 0.910 | 0.943 | 0.974 | 0.974 | 0.979 | 0.979 | 0.975 | 0.9778 | 0.979 | 0.980 | ||
ERGAS | 612.87 | 118.18 | 103.55 | 66.47 | 62.39 | 56.78 | 57.01 | 66.69 | 59.02 | 57.94 | 56.32 | ||
SAM | 35.577 | 6.641 | 6.922 | 3.791 | 3.542 | 3.166 | 3.223 | 3.500 | 3.356 | 3.266 | 3.191 | ||
Time(s) | - | 579.10 | 221.37 | 94.83 | 9.97 | 1046.41 | 796.05 | 38.28 | 38.67 | 36.10 | 35.07 | ||
2 | MPSNR | 15.77 | 29.10 | 30.17 | 32.43 | 33.88 | 34.92 | 36.14 | 32.35 | 35.87 | 35.76 | 36.32 | |
MSSIM | 0.244 | 0.812 | 0.859 | 0.911 | 0.935 | 0.945 | 0.963 | 0.913 | 0.961 | 0.958 | 0.965 | ||
MFSIM | 0.605 | 0.897 | 0.931 | 0.952 | 0.967 | 0.973 | 0.977 | 0.952 | 0.976 | 0.975 | 0.979 | ||
ERGAS | 686.98 | 149.77 | 151.94 | 172.92 | 133.19 | 129.44 | 59.87 | 175.62 | 61.89 | 64.54 | 58.62 | ||
SAM | 37.812 | 9.119 | 10.148 | 10.281 | 8.504 | 8.343 | 3.390 | 10.330 | 3.495 | 3.615 | 3.314 | ||
Time(s) | - | 587.23 | 228.44 | 105.68 | 9.33 | 1129.33 | 805.21 | 39.37 | 37.41 | 35.33 | 34.66 | ||
3 | MPSNR | 15.61 | 28.19 | 29.67 | 31.94 | 32.86 | 34.13 | 35.84 | 31.72 | 35.09 | 35.26 | 36.06 | |
MSSIM | 0.243 | 0.801 | 0.853 | 0.913 | 0.919 | 0.936 | 0.961 | 0.904 | 0.959 | 0.952 | 0.963 | ||
MFSIM | 0.601 | 0.888 | 0.925 | 0.952 | 0.958 | 0.968 | 0.976 | 0.947 | 0.974 | 0.972 | 0.978 | ||
ERGAS | 706.86 | 227.97 | 179.58 | 182.52 | 165.45 | 154.32 | 62.07 | 213.97 | 67.74 | 89.01 | 60.44 | ||
SAM | 38.269 | 13.032 | 11.647 | 10.983 | 9.998 | 9.586 | 3.534 | 12.283 | 3.685 | 4.339 | 3.449 | ||
Time(s) | - | 593.59 | 225.44 | 95.86 | 8.72 | 1044.09 | 848.29 | 47.05 | 36.96 | 35.73 | 35.24 | ||
4 | MPSNR | 15.26 | 27.08 | 28.93 | 31.05 | 31.36 | 33.26 | 34.76 | 31.09 | 34.73 | 34.69 | 35.04 | |
MSSIM | 0.233 | 0.769 | 0.839 | 0.898 | 0.888 | 0.922 | 0.956 | 0.894 | 0.955 | 0.945 | 0.960 | ||
MFSIM | 0.594 | 0.872 | 0.916 | 0.944 | 0.942 | 0.960 | 0.972 | 0.942 | 0.972 | 0.968 | 0.975 | ||
ERGAS | 726.73 | 282.70 | 191.22 | 178.64 | 175.884 | 159.303 | 70.413 | 190.590 | 70.809 | 86.587 | 68.391 | ||
SAM | 39.671 | 19.112 | 13.132 | 11.516 | 11.573 | 10.150 | 3.918 | 12.858 | 3.949 | 4.782 | 3.783 | ||
Time(s) | - | 581.96 | 230.53 | 96.34 | 8.39 | 1017.04 | 844.06 | 42.67 | 38.55 | 36.71 | 34.41 |
Data | Case | Index | Noisy | BM4D | LRMR | NG-Meet | Fast- HyDe | GLF | SNL- RSF | NS3R | HyW-TNN | DT- SVD | RRG- NLA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PaU | 1 | MPSNR | 16.52 | 32.00 | 29.89 | 34.77 | 34.97 | 35.91 | 35.82 | 35.34 | 35.28 | 35.49 | 36.56 |
MSSIM | 0.202 | 0.867 | 0.772 | 0.915 | 0.930 | 0.939 | 0.936 | 0.936 | 0.931 | 0.932 | 0.946 | ||
MFSIM | 0.556 | 0.916 | 0.908 | 0.959 | 0.960 | 0.966 | 0.967 | 0.965 | 0.963 | 0.964 | 0.971 | ||
ERGAS | 612.03 | 99.43 | 130.57 | 81.37 | 72.31 | 65.27 | 66.11 | 70.89 | 69.94 | 68.07 | 60.93 | ||
SAM | 41.323 | 6.992 | 11.141 | 6.877 | 5.136 | 4.733 | 4.764 | 5.246 | 5.006 | 4.841 | 4.404 | ||
Time(s) | - | 331.90 | 201.25 | 138.38 | 6.42 | 1236.6 | 1057.7 | 44.09 | 43.40 | 36.91 | 32.64 | ||
2 | MPSNR | 15.331 | 29.77 | 28.12 | 30.11 | 31.59 | 32.93 | 34.59 | 30.08 | 34.64 | 33.91 | 35.39 | |
MSSIM | 0.173 | 0.795 | 0.711 | 0.819 | 0.884 | 0.904 | 0.923 | 0.827 | 0.925 | 0.916 | 0.937 | ||
MFSIM | 0.529 | 0.887 | 0.880 | 0.916 | 0.941 | 0.954 | 0.960 | 0.920 | 0.958 | 0.955 | 0.966 | ||
ERGAS | 754.73 | 149.88 | 213.34 | 223.66 | 168.57 | 158.78 | 77.01 | 220.89 | 75.31 | 86.78 | 69.91 | ||
SAM | 44.518 | 11.010 | 15.688 | 15.368 | 12.201 | 11.858 | 5.197 | 14.926 | 5.242 | 6.103 | 5.114 | ||
Time(s) | - | 333.93 | 206.87 | 136.16 | 9.20 | 1260.59 | 1059.9 | 47.52 | 42.26 | 35.39 | 34.22 | ||
3 | MPSNR | 15.076 | 28.02 | 27.43 | 29.46 | 30.63 | 31.99 | 34.00 | 29.13 | 34.36 | 33.36 | 34.98 | |
MSSIM | 0.171 | 0.772 | 0.703 | 0.834 | 0.860 | 0.894 | 0.918 | 0.823 | 0.921 | 0.911 | 0.934 | ||
MFSIM | 0.524 | 0.871 | 0.870 | 0.918 | 0.930 | 0.949 | 0.958 | 0.915 | 0.957 | 0.952 | 0.964 | ||
ERGAS | 780.03 | 257.54 | 246.79 | 236.86 | 196.70 | 182.48 | 83.03 | 251.63 | 80.35 | 90.69 | 72.81 | ||
SAM | 44.940 | 17.148 | 17.552 | 15.693 | 13.626 | 13.049 | 5.535 | 16.457 | 5.424 | 6.203 | 5.252 | ||
Time(s) | - | 329.52 | 207.03 | 137.96 | 9.44 | 1221.31 | 1065.4 | 45.35 | 43.06 | 35.61 | 33.03 | ||
4 | MPSNR | 14.40 | 25.42 | 26.01 | 28.07 | 28.16 | 31.53 | 33.37 | 27.79 | 33.58 | 32.71 | 34.34 | |
MSSIM | 0.161 | 0.693 | 0.667 | 0.800 | 0.748 | 0.886 | 0.907 | 0.777 | 0.905 | 0.897 | 0.924 | ||
MFSIM | 0.510 | 0.831 | 0.848 | 0.905 | 0.887 | 0.946 | 0.954 | 0.897 | 0.949 | 0.947 | 0.959 | ||
ERGAS | 827.45 | 376.33 | 270.67 | 240.76 | 238.75 | 182.21 | 89.39 | 264.99 | 84.34 | 96.51 | 78.32 | ||
SAM | 47.039 | 27.129 | 19.849 | 16.592 | 17.083 | 13.058 | 5.908 | 18.136 | 5.907 | 6.435 | 5.505 | ||
Time(s) | - | 334.42 | 201.34 | 135.09 | 9.74 | 1261.73 | 1049.35 | 47.81 | 46.72 | 33.46 | 32.79 |
Data | Index | BM4D | LRMR | NG-Meet | Fast- HyDe | GLF | SNLRSF | NS3R | HyW-TNN | DT- SVD | RRG- NLA |
---|---|---|---|---|---|---|---|---|---|---|---|
Indian | Time(s) | 163.77 | 78.52 | 50.09 | 3.38 | 334.81 | 269.18 | 9.32 | 13.74 | 11.17 | 15.56 |
Urban | Time(s) | 732.08 | 411.41 | 149.49 | 14.42 | 1755.66 | 1193.03 | 39.97 | 53.14 | 42.19 | 49.53 |
Data | Index | Noisy | PCA | SPCA in [32] | Ours |
---|---|---|---|---|---|
WDC | MPSNR | 15.26 | 23.04 | 31.06 | 31.87 |
MSSIM | 0.233 | 0.817 | 0.896 | 0.910 | |
SAM | 39.671 | 26.251 | 12.412 | 9.418 | |
PaU | MPSNR | 14.40 | 27.06 | 27.51 | 28.87 |
MSSIM | 0.161 | 0.779 | 0.768 | 0.804 | |
SAM | 47.039 | 18.391 | 18.586 | 17.046 |
Data | Case | Index | NLA | RRG | RRGN | RRGNLA |
---|---|---|---|---|---|---|
WDC | 3 | MPSNR | 35.62 | 32.66 | 34.40 | 36.06 |
MSSIM | 0.957 | 0.929 | 0.942 | 0.963 | ||
SAM | 4.149 | 7.228 | 9.237 | 3.449 | ||
4 | MPSNR | 34.55 | 32.10 | 33.22 | 35.04 | |
MSSIM | 0.950 | 0.918 | 0.930 | 0.960 | ||
SAM | 4.621 | 7.788 | 9.893 | 3.783 | ||
PaU | 3 | MPSNR | 34.45 | 30.13 | 32.63 | 34.98 |
MSSIM | 0.927 | 0.865 | 0.907 | 0.934 | ||
SAM | 5.587 | 11.487 | 10.736 | 5.252 | ||
4 | MPSNR | 33.72 | 29.41 | 31.99 | 34.34 | |
MSSIM | 0.916 | 0.831 | 0.897 | 0.924 | ||
SAM | 6.009 | 12.308 | 11.037 | 5.505 |
Data | Case | Index | SDeCNN | FastHyMix | MAC-Net | RRGNLA |
---|---|---|---|---|---|---|
WDC | 1 | MPSNR | 31.06 | 36.06 | 36.48 | 36.66 |
MSSIM | 0.883 | 0.960 | 0.964 | 0.967 | ||
SAM | 7.051 | 3.429 | 3.210 | 3.191 | ||
2 | MPSNR | 29.16 | 34.59 | 35.97 | 36.32 | |
MSSIM | 0.832 | 0.943 | 0.961 | 0.965 | ||
SAM | 10.863 | 8.078 | 3.423 | 3.314 | ||
3 | MPSNR | 28.44 | 33.98 | 35.67 | 36.06 | |
MSSIM | 0.819 | 0.936 | 0.960 | 0.963 | ||
SAM | 12.716 | 9.259 | 3.492 | 3.449 | ||
4 | MPSNR | 27.77 | 33.18 | 34.84 | 35.04 | |
MSSIM | 0.799 | 0.934 | 0.957 | 0.960 | ||
SAM | 14.338 | 9.267 | 3.824 | 3.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Guo, B.; Yuan, Z.; Wang, C.; He, F.; Li, C. Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation. Remote Sens. 2025, 17, 1021. https://doi.org/10.3390/rs17061021
Song J, Guo B, Yuan Z, Wang C, He F, Li C. Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation. Remote Sensing. 2025; 17(6):1021. https://doi.org/10.3390/rs17061021
Chicago/Turabian StyleSong, Jiawei, Baolong Guo, Zhe Yuan, Chao Wang, Fangliang He, and Cheng Li. 2025. "Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation" Remote Sensing 17, no. 6: 1021. https://doi.org/10.3390/rs17061021
APA StyleSong, J., Guo, B., Yuan, Z., Wang, C., He, F., & Li, C. (2025). Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation. Remote Sensing, 17(6), 1021. https://doi.org/10.3390/rs17061021