Advances in Deep Learning Applications for Plant Disease and Pest Detection: A Review
Abstract
:1. Introduction
2. Method
3. Plant Pest and Disease Datasets and Traditional Detection Methods
3.1. Introduction to Datasets
3.2. Traditional Methods for Plant Disease and Pest Image Recognition
4. Comprehensive Review of the Application of Image Classification and Target Recognition in Plant Disease and Pest Management
4.1. Plant Disease and Pest Image Classification
4.2. Plant Disease and Pest Object Detection
5. Review of Applications in Semantic Segmentation and Change Detection of Plant Diseases and Pests
5.1. Semantic Segmentation of Vegetation Diseases and Pests
5.2. Detection of Changes in Plant Diseases and Insect Pests
6. Remote Sensing Large Model and Transfer Learning
6.1. Plant Pest and Disease Prediction
6.2. Pre-Training Large Remote Sensing Models
6.3. Transfer Learning
7. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPPC Secretariat. Scientific Review of the Impact of Climate Change on Plant Pests; FAO on behalf of the IPPC Secretariat: Rome, Italy, 2021; ISBN 978-92-5-134435-4. [Google Scholar]
- Phophi, M.M.; Mafongoya, P.L. Constraints to Vegetable Production Resulting from Pest and Diseases Induced by Climate Change and Globalization: A Review. J. Agric. Sci. 2017, 9, 11. [Google Scholar] [CrossRef]
- Wang, X.; Gan, P.; Tang, C.; Kang, Z. Plant Disease Resistance and Disease Green Prevention and Control: Major Scientific Issues and Future Research Directions. Bull. Natl. Nat. Sci. Found. China 2020, 34, 381–392. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Ding, X.; Wang, L.; Wang, X.; Chen, F. The Detection of Pine Wilt Disease: A Literature Review. Int. J. Mol. Sci. 2022, 23, 10797. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, W.; Lu, J.; Tian, Z.; Peng, K. The Application Status and Trends of Machine Vision in Tea Production. Appl. Sci. 2023, 13, 10744. [Google Scholar] [CrossRef]
- Zhong, E. Deep Mapping—A Critical Engagement of Cartography with Neuroscience. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1988–2002. [Google Scholar] [CrossRef]
- Tian, X.; Bai, Y.; Li, G.; Yang, X.; Huang, J.; Chen, Z. An Adaptive Feature Fusion Network with Superpixel Optimization for Crop Classification Using Sentinel-2 Imagery. Remote Sens. 2023, 15, 1990. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Chen, Z.; Bai, Y.; Chen, P. A Multi-Temporal Network for Improving Semantic Segmentation of Large-Scale Landsat Imagery. Remote Sens. 2022, 14, 5062. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, S.; Liang, H.; Wang, Z.; Zhang, X.; Chen, X.; Su, C. ReCovNet: Reinforcement Learning with Covering Information for Solving Maximal Coverage Billboards Location Problem. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103710. [Google Scholar] [CrossRef]
- Liang, H.; Wang, S.; Li, H.; Zhou, L.; Chen, H.; Zhang, X.; Chen, X. Sponet: Solve Spatial Optimization Problem Using Deep Reinforcement Learning for Urban Spatial Decision Analysis. Int. J. Digit. Earth 2023, 17, 2299211. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Niu, X.; Wang, F.; Zhang, X. Scene Classification of High-Resolution Remotely Sensed Image Based on ResNet. J. Geovisualization Spat. Anal. 2019, 3, 16. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic Object Detection: A Survey. Int. J. Comput. Vis. 2020, 128, 261–318. [Google Scholar] [CrossRef]
- Gong, X.; Liu, L.; Huang, Y.; Zou, B.; Sun, Y.; Luo, L.; Lin, Y. A Pruned Feed-Forward Neural Network (Pruned-FNN) Approach to Measure Air Pollution Exposure. Environ. Monit. Assess. 2023, 195, 1183. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, S.; Chen, Z.; Chanussot, J.; Jia, X.; Zhang, B.; Li, B.; Chen, P. An Attention-Fused Network for Semantic Segmentation of Very-High-Resolution Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 177, 238–262. [Google Scholar] [CrossRef]
- Krizhevsky, A. One Weird Trick for Parallelizing Convolutional Neural Networks. arXiv 2014. [Google Scholar] [CrossRef]
- Paymode, A.S.; Malode, V.B. Transfer Learning for Multi-Crop Leaf Disease Image Classification Using Convolutional Neural Network VGG. Artif. Intell. Agric. 2022, 6, 23–33. [Google Scholar] [CrossRef]
- Kolhar, S.; Jagtap, J. Plant Trait Estimation and Classification Studies in Plant Phenotyping Using Machine Vision—A Review. Inf. Process. Agric. 2023, 10, 114–135. [Google Scholar] [CrossRef]
- Rani, A.P.A.S.; Singh, N.S. Improved Detection and Classification of Multiple Tasks in Paddy Crops Using Optimized Deep Belief Networks with Bidirectional Long-Short Term Memory. SN Comput. Sci. 2024, 5, 831. [Google Scholar] [CrossRef]
- Ngugi, L.C.; Abelwahab, M.; Abo-Zahhad, M. Recent Advances in Image Processing Techniques for Automated Leaf Pest and Disease Recognition—A Review. Inf. Process. Agric. 2021, 8, 27–51. [Google Scholar] [CrossRef]
- Bezabh, Y.A.; Salau, A.O.; Abuhayi, B.M.; Mussa, A.A.; Ayalew, A.M. CPD-CCNN: Classification of Pepper Disease Using a Concatenation of Convolutional Neural Network Models. Sci. Rep. 2023, 13, 15581. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhang, S.; Zhu, Y. Forecasting of cotton diseases and pests based on adaptive discriminant deep belief network. Trans. Chin. Soc. Agric. Eng. 2018, 34, 157–164. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Huang, Y.; He, J.; Liu, G.; Li, D.; Hu, R.; Hu, X.; Bian, D. YOLO-EP: A Detection Algorithm to Detect Eggs of Pomacea Canaliculata in Rice Fields. Ecol. Inform. 2023, 77, 102211. [Google Scholar] [CrossRef]
- Johannes, A.; Picon, A.; Alvarez-Gila, A.; Echazarra, J.; Rodriguez-Vaamonde, S.; Navajas, A.D.; Ortiz-Barredo, A. Automatic Plant Disease Diagnosis Using Mobile Capture Devices, Applied on a Wheat Use Case. Comput. Electron. Agric. 2017, 138, 200–209. [Google Scholar] [CrossRef]
- Singh, V.; Misra, A.K. Detection of Plant Leaf Diseases Using Image Segmentation and Soft Computing Techniques. Inf. Process. Agric. 2017, 4, 41–49. [Google Scholar] [CrossRef]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of Rice Diseases Using Deep Convolutional Neural Networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep Learning Models for Plant Disease Detection and Diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Lu, J.; Hu, J.; Zhao, G.; Mei, F.; Zhang, C. An In-Field Automatic Wheat Disease Diagnosis System. Comput. Electron. Agric. 2017, 142, 369–379. [Google Scholar] [CrossRef]
- Mehdipour Ghazi, M.; Yanikoglu, B.; Aptoula, E. Plant Identification Using Deep Neural Networks via Optimization of Transfer Learning Parameters. Neurocomputing 2017, 235, 228–235. [Google Scholar] [CrossRef]
- Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A Comparative Study of Fine-Tuning Deep Learning Models for Plant Disease Identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Altaheri, H.; Alsulaiman, M.; Muhammad, G.; Amin, S.U.; Bencherif, M.; Mekhtiche, M. Date Fruit Dataset for Intelligent Harvesting. Data Brief 2019, 26, 104514. [Google Scholar] [CrossRef]
- Singh, D.; Jain, N.; Jain, P.; Kayal, P.; Kumawat, S.; Batra, N. PlantDoc: A Dataset for Visual Plant Disease Detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD ACM, Hyderabad, India, 5 January 2020; pp. 249–253. [Google Scholar]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-Borne Hyperspectral with High Spatial Resolution (H2) Benchmark Datasets and Classifier for Precise Crop Identification Based on Deep Convolutional Neural Network with CRF. Remote Sens. Environ. 2020, 250, 112012. [Google Scholar] [CrossRef]
- Cui, J.; Zheng, H.; Zeng, Z.; Yang, Y.; Ma, R.; Tian, Y.; Tan, J.; Feng, X.; Qi, L. Real-Time Missing Seedling Counting in Paddy Fields Based on Lightweight Network and Tracking-by-Detection Algorithm. Comput. Electron. Agric. 2023, 212, 108045. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, T.; Yang, C.; Song, H.; Jiang, Z.; Zhou, G.; Zhang, D.; Feng, H.; Xie, J. Segmenting Purple Rapeseed Leaves in the Field from UAV RGB Imagery Using Deep Learning as an Auxiliary Means for Nitrogen Stress Detection. Remote Sens. 2020, 12, 1403. [Google Scholar] [CrossRef]
- Wiesner-Hanks, T.; Stewart, E.L.; Kaczmar, N.; DeChant, C.; Wu, H.; Nelson, R.J.; Lipson, H.; Gore, M.A. Image Set for Deep Learning: Field Images of Maize Annotated with Disease Symptoms. BMC Res. Notes 2018, 11, 440. [Google Scholar] [CrossRef]
- Emon, Y.R.; Ahad, M.T.; Rabbany, G. Multi-Format Open-Source Sweet Orange Leaf Dataset for Disease Detection, Classification, and Analysis. Data Brief 2024, 55, 110713. [Google Scholar] [CrossRef] [PubMed]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep Learning for Image-Based Cassava Disease Detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar] [CrossRef]
- Ai, Y.; Sun, C.; Tie, J.; Cai, X. Research on Recognition Model of Crop Diseases and Insect Pests Based on Deep Learning in Harsh Environments. IEEE Access 2020, 8, 171686–171693. [Google Scholar] [CrossRef]
- Alfarisy, A.A.; Chen, Q.; Guo, M. Deep Learning Based Classification for Paddy Pests & Diseases Recognition. In Proceedings of the 2018 International Conference on Mathematics and Artificial Intelligence, ACM, Chengdu, China, 20 April 2018; pp. 21–25. [Google Scholar]
- Liu, J.; Wang, X. Plant Diseases and Pests Detection Based on Deep Learning: A Review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef]
- Arivazhagan, S.; Shebiah, R.N.; Ananthi, S.; Varthini, S.V. Detection of Unhealthy Region of Plant Leaves and Classification of Plant Leaf Diseases Using Texture Features. Agric. Eng. Int. CIGR J. 2013, 15, 211–217. [Google Scholar]
- Nisar, N.; Awasthi, A.; Chhabra, M.; Abidi, A.I. Image Based Recognition of Plant Leaf Diseases: A Review. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE, Palladam, India, 7 October 2020; pp. 373–378. [Google Scholar]
- Ahmad Loti, N.N.; Mohd Noor, M.R.; Chang, S. Integrated Analysis of Machine Learning and Deep Learning in Chili Pest and Disease Identification. J. Sci. Food Agric. 2021, 101, 3582–3594. [Google Scholar] [CrossRef] [PubMed]
- Padol, P.B.; Yadav, A.A. SVM Classifier Based Grape Leaf Disease Detection. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; pp. 175–179. [Google Scholar]
- Pydipati, R.; Burks, T.F.; Lee, W.S. Identification of Citrus Disease Using Color Texture Features and Discriminant Analysis. Comput. Electron. Agric. 2006, 52, 49–59. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Chakraborty, S.; Paul, S.; Rahat-uz-Zaman, M. Prediction of Apple Leaf Diseases Using Multiclass Support Vector Machine. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5 January 2021; pp. 147–151. [Google Scholar]
- Weizheng, S.; Yachun, W.; Zhanliang, C.; Hongda, W. Grading Method of Leaf Spot Disease Based on Image Processing. In Proceedings of the 2008 International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; pp. 491–494. [Google Scholar]
- Li, B.; Liu, Z.; Huang, J.; Zhang, L.; Zhou, W.; Shi, J. Hyperspectral Identification of Rice Diseases and Pests Based on Principal Component Analysis and Probabilistic Neural Network. Trans. Chin. Soc. Agric. Eng. 2009, 25, 143–147. [Google Scholar] [CrossRef]
- Huang, L.; Liu, W.; Huang, W.; Zhao, J.; Song, F. Remote Sensing Monitoring of Winter Wheat Powdery Mildew Based on Wavelet Analysis and Support Vector Machine. Trans. Chin. Soc. Agric. Eng. 2017, 33, 188–195. [Google Scholar] [CrossRef]
- Lu, B.; Ge, Y.; Qin, K.; Zheng, J. A Review on Geographically Weighted Regression. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1356–1366. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kolhe, S.; Kamal, R. An Improved Random Forest Classifier for Multi-Class Classification. Inf. Process. Agric. 2016, 3, 215–222. [Google Scholar] [CrossRef]
- Arnal Barbedo, J.G. Digital Image Processing Techniques for Detecting, Quantifying and Classifying Plant Diseases. SpringerPlus 2013, 2, 660. [Google Scholar] [CrossRef] [PubMed]
- Domingues, T.; Brandão, T.; Ferreira, J.C. Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey. Agriculture 2022, 12, 1350. [Google Scholar] [CrossRef]
- Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention Embedded Residual CNN for Disease Detection in Tomato Leaves. Appl. Soft Comput. 2020, 86, 105933. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, B.; EI-Sappagh, S.; Ali, A.; Ullah, A.; Alenezi, F.; Gechev, T.; Hussain, T.; Ali, F. An Advanced Deep Learning Models-Based Plant Disease Detection: A Review of Recent Research. Front. Plant Sci. 2023, 14, 1158933. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Steiner, U.; Hillnhütter, C.; Dehne, H.-W.; Oerke, E.-C. Hyperspectral Imaging for Small-Scale Analysis of Symptoms Caused by Different Sugar Beet Diseases. Plant Methods 2012, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, Y.; Liao, Y.; Chen, Y. Hyperspectral classification of citrus diseased leaves based on convolutional neural network. Inf. Technol. Informatiz. 2020, 3, 84–87. [Google Scholar]
- Wang, Z.; Zhang, S.; Zhao, B. Crop Disease Leaf Segmentation Based on Cascaded Convolutional Neural Network. J. Comput. Eng. Appl. 2020, 56, 242–250. [Google Scholar]
- Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [Google Scholar] [CrossRef]
- Yadav, P.K.; Burks, T.; Qin, J.; Kim, M.; Frederick, Q.K.; Dewdney, M.M.; Ritenour, M.A. Citrus Disease Classification with Convolution Neural Network Generated Features and Machine Learning Classifiers on Hyperspectral Image Data. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VIII; Bauer, C., Thomasson, J.A., Eds.; SPIE: Orlando, FL, USA, 13 June 2023; p. 5. [Google Scholar]
- Bezabh, Y.A.; Ayalew, A.M.; Abuhayi, B.M.; Demlie, T.N.; Awoke, E.A.; Mengistu, T.E. Classification of Mango Disease Using Ensemble Convolutional Neural Network. Smart Agric. Technol. 2024, 8, 100476. [Google Scholar] [CrossRef]
- Wen, C.; Wang, Q.; Chen, H.; Wu, J.; Ni, J.; Yang, C.; Su, H. Model for the Recognition of Large-Scale Multi-Class Diseases and Pests. Trans. Chin. Soc. Agric. Eng. 2022, 38, 169–177. [Google Scholar] [CrossRef]
- Shrivastava, V.K.; Pradhan, M.K.; Minz, S.; Thakur, M.P. Rice Plant Disease Classification Using Transfer Learning of Deep Convolution Neural Network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W6, 631–635. [Google Scholar] [CrossRef]
- Ma, J.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Sun, Z. A Recognition Method for Cucumber Diseases Using Leaf Symptom Images Based on Deep Convolutional Neural Network. Comput. Electron. Agric. 2018, 154, 18–24. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Comput. Intell. Neurosci. 2016, 3289801. [Google Scholar] [CrossRef] [PubMed]
- Abdulridha, J.; Ampatzidis, Y.; Ehsani, R.; De Castro, A.I. Evaluating the Performance of Spectral Features and Multivariate Analysis Tools to Detect Laurel Wilt Disease and Nutritional Deficiency in Avocado. Comput. Electron. Agric. 2018, 155, 203–211. [Google Scholar] [CrossRef]
- Susič, N.; Žibrat, U.; Širca, S.; Strajnar, P.; Razinger, J.; Knapič, M.; Vončina, A.; Urek, G.; Gerič Stare, B. Discrimination between Abiotic and Biotic Drought Stress in Tomatoes Using Hyperspectral Imaging. Sens. Actuators B Chem. 2018, 273, 842–852. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Hanifeloo, Z.; Sumari, P.; Arshad, M.R.M. Enhancing the Diagnosis of Corn Pests Using Gabor Wavelet Features and SVM Classification. J. Sci. Ind. Res. 2016, 75, 349–354. [Google Scholar]
- Faqe Ibrahim, G.R.; Rasul, A.; Abdullah, H. Improving Crop Classification Accuracy with Integrated Sentinel-1 and Sentinel-2 Data: A Case Study of Barley and Wheat. J. Geovisualization Spat. Anal. 2023, 7, 22. [Google Scholar] [CrossRef]
- Wahabzada, M.; Mahlein, A.-K.; Bauckhage, C.; Steiner, U.; Oerke, E.-C.; Kersting, K. Plant Phenotyping Using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants. Sci. Rep. 2016, 6, 22482. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Lu, A.; Pan, Y.; Huo, L.; Gao, Y.; Li, X.; Li, S.; Chen, Z. Additional Sampling Layout Optimization Method for Environmental Quality Grade Classifications of Farmland Soil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5350–5358. [Google Scholar] [CrossRef]
- Mallick, M.T.; Biswas, S.; Das, A.K.; Saha, H.N.; Chakrabarti, A.; Deb, N. Deep Learning Based Automated Disease Detection and Pest Classification in Indian Mung Bean. Multimed. Tools Appl. 2023, 82, 12017–12041. [Google Scholar] [CrossRef]
- Rahman, C.R.; Arko, P.S.; Ali, M.E.; Iqbal Khan, M.A.; Apon, S.H.; Nowrin, F.; Wasif, A. Identification and Recognition of Rice Diseases and Pests Using Convolutional Neural Networks. Biosyst. Eng. 2020, 194, 112–120. [Google Scholar] [CrossRef]
- Ahila Priyadharshini, R.; Arivazhagan, S.; Arun, M.; Mirnalini, A. Maize Leaf Disease Classification Using Deep Convolutional Neural Networks. Neural Comput. Appl. 2019, 31, 8887–8895. [Google Scholar] [CrossRef]
- Upreti, K.; Singh, P.; Jain, D.; Pandey, A.K.; Gupta, A.; Singh, H.R.; Srivastava, S.K.; Prasad, J.S. Progressive Loss-Aware Fine-Tuning Stepwise Learning with GAN Augmentation for Rice Plant Disease Detection. Multimed. Tools Appl. 2024, 83, 84565–84588. [Google Scholar] [CrossRef]
- Jesie, R.S.; Godwin Premi, M.S.; Jarin, T. Comparative Analysis of Paddy Leaf Diseases Sensing with a Hybrid Convolutional Neural Network Model. Meas. Sens. 2024, 31, 100966. [Google Scholar] [CrossRef]
- Mahadevan, K.; Punitha, A.; Suresh, J. Automatic Recognition of Rice Plant Leaf Diseases Detection Using Deep Neural Network with Improved Threshold Neural Network. E-Prime-Adv. Electr. Eng. Electron. Energy 2024, 8, 100534. [Google Scholar] [CrossRef]
- Dutta, M.; Gupta, D.; Gulzar, Y.; Mir, M.S.; Onn, C.W.; Soomro, A.B. Leveraging Inception V3 for Precise Early and Late Blight Disease Classification in Potato Crops. Trait. Signal 2024, 41, 705–715. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, H.; Zhang, G.; Cao, H. Rice Blast Disease Recognition Using a Deep Convolutional Neural Network. Sci. Rep. 2019, 9, 2869. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, L.; Tian, K.; Alaa, A.A. Detection of Leaf Diseases of Balsam Pear in the Field Based on Improved Faster R-CNN. Trans. Chin. Soc. Agric. Eng. 2020, 36, 179–185. [Google Scholar]
- Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef]
- Deng, X.; Tong, Z.; Lan, Y.; Huang, Z. Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing. AgriEngineering 2020, 2, 294–307. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, L.; Wang, M. Agricultural Pest Detection Algorithm Based on Improved Faster RCNN. In Proceedings of the International Conference on Computer Vision and Pattern Analysis (ICCPA 2021), Hangzhou, China, 19–21 November 2021; Hu, R., Yue, Y., Chen, S., Eds.; SPIE: Guangzhou, China, 2022; p. 8. [Google Scholar]
- Jacob, A.; Weixiu, S. Application of Target Detection Algorithm Based on Deep Learning in Farmland Pest Recognition. Int. J. Artif. Intell. Appl. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Li, M.-T.; Lee, S.-H. A Study on Small Pest Detection Based on a CascadeR-CNN-Swin Model. Comput. Mater. Contin. 2022, 72, 6155–6165. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4340–4354. [Google Scholar] [CrossRef]
- Lv, J.; Li, W.; Fan, M.; Zheng, T.; Yang, Z.; Chen, Y.; He, G.; Yang, X.; Liu, S.; Sun, C. Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation. Front. Plant Sci. 2022, 13, 939498. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Detection of Apple Lesions in Orchards Based on Deep Learning Methods of CycleGAN and YOLOV3-Dense. J. Sens. 2019, 2019, 7630926. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Liu, B. Apple Leaf Disease Detection Method Based on Improved Faster R-CNN. Comput. Eng. 2021, 47, 298–304. [Google Scholar]
- Zhang, W.; Sun, Y.; Huang, H.; Pei, H.; Sheng, J.; Yang, P. Pest Region Detection in Complex Backgrounds via Contextual Information and Multi-Scale Mixed Attention Mechanism. Agriculture 2022, 12, 1104. [Google Scholar] [CrossRef]
- Hu, Y.; Deng, X.; Lan, Y.; Chen, X.; Long, Y.; Liu, C. Detection of Rice Pests Based on Self-Attention Mechanism and Multi-Scale Feature Fusion. Insects 2023, 14, 280. [Google Scholar] [CrossRef]
- Li, D.; Ahmed, F.; Wu, N.; Sethi, A.I. YOLO-JD: A Deep Learning Network for Jute Diseases and Pests Detection from Images. Plants 2022, 11, 937. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Chen, Z.; Qi, F.; Zhang, L.; Chen, S. Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection. In Proceedings of the 2021 IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 7–10 December 2021; pp. 1348–1353. [Google Scholar]
- Yin, X.; Song, Y.; He, T.; Song, B.; Li, G. Forest Pest Detection Method Based on DenseNet and Pyramid Pooling. In Proceedings of the 2021 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 10 December 2021; pp. 641–645. [Google Scholar]
- Zhou, Y.; Liu, W.; Luo, Y.; Zong, S. Small object detection for infected trees based on the deep learning method. Sci. Silvae Sin. 2021, 57, 98–107. [Google Scholar]
- Wang, Z.; Ma, F.; Zhang, Y.; Ji, P.; Cao, M. Rice Pest Detection Based on MobileNetv2-YOLOv4. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25 November 2022; pp. 2499–2503. [Google Scholar]
- Wenjuan, G.; Shuo, F.; Quan, F.; Xiangzhou, L.; Xueze, G. Cotton Leaf Disease Detection Method Based on Improved SSD. Int. J. Agric. Biol. Eng. 2024, 17, 211–220. [Google Scholar] [CrossRef]
- Xu, L.; Shi, X.; Tang, Z.; He, Y.; Yang, N.; Ma, W.; Zheng, C.; Chen, H.; Zhou, T.; Huang, P.; et al. ASFL-YOLOX: An Adaptive Spatial Feature Fusion and Lightweight Detection Method for Insect Pests of the Papilionidae Family. Front. Plant Sci. 2023, 14, 1176300. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shang, S.; Wang, D.; He, X.; Feng, K.; Zhu, H. Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model. Agriculture 2022, 12, 931. [Google Scholar] [CrossRef]
- Uddin, M.S.; Mazumder, M.K.A.; Prity, A.J.; Mridha, M.F.; Alfarhood, S.; Safran, M.; Che, D. Cauli-Det: Enhancing Cauliflower Disease Detection with Modified YOLOv8. Front. Plant Sci. 2024, 15, 1373590. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zong, C.; Wang, M.; Zhang, H.; Fang, Y. Intelligent Identification of Rice Leaf Disease Based on YOLO V5-EFFICIENT. Crop Prot. 2024, 183, 106758. [Google Scholar] [CrossRef]
- Rezaei, M.; Diepeveen, D.; Laga, H.; Jones, M.G.K.; Sohel, F. Plant Disease Recognition in a Low Data Scenario Using Few-Shot Learning. Comput. Electron. Agric. 2024, 219, 108812. [Google Scholar] [CrossRef]
- Hassan, S.M.; Maji, A.K. Pest Identification Based on Fusion of Self-Attention With ResNet. IEEE Access 2024, 12, 6036–6050. [Google Scholar] [CrossRef]
- Fu, X.; Ma, Q.; Yang, F.; Zhang, C.; Zhao, X.; Chang, F.; Han, L. Crop Pest Image Recognition Based on the Improved ViT Method. Inf. Process. Agric. 2024, 11, 249–259. [Google Scholar] [CrossRef]
- Bhagat, S.; Kokare, M.; Haswani, V.; Hambarde, P.; Taori, T.; Ghante, P.H.; Patil, D.K. Advancing Real-Time Plant Disease Detection: A Lightweight Deep Learning Approach and Novel Dataset for Pigeon Pea Crop. Smart Agric. Technol. 2024, 7, 100408. [Google Scholar] [CrossRef]
- Mazumder, M.K.A.; Mridha, M.F.; Alfarhood, S.; Safran, M.; Abdullah-Al-Jubair, M.; Che, D. A Robust and Light-Weight Transfer Learning-Based Architecture for Accurate Detection of Leaf Diseases across Multiple Plants Using Less Amount of Images. Front. Plant Sci. 2024, 14, 1321877. [Google Scholar] [CrossRef] [PubMed]
- Feng, J. Research on UAV Image Classification and Semantic Segmentation of Maize Diseases and Pests Based on Deep Learning. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2022. [Google Scholar]
- Persello, C.; Wegner, J.D.; Hansch, R.; Tuia, D.; Ghamisi, P.; Koeva, M.; Camps-Valls, G. Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current Approaches, Open Challenges, and Future Opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 172–200. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Mu, Y.; Fujii, Y.; Takata, D.; Zheng, B.; Noshita, K.; Honda, K.; Ninomiya, S.; Guo, W. Characterization of Peach Tree Crown by Using High-Resolution Images from an Unmanned Aerial Vehicle. Hortic. Res. 2018, 5, 74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Goldberg, A.B. Introduction to Semi-Supervised Learning; Synthesis Lectures on Artificial Intelligence and Machine Learning; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; ISBN 978-3-031-01548-9. [Google Scholar]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Stewart, E.L.; Wiesner-Hanks, T.; Kaczmar, N.; DeChant, C.; Wu, H.; Lipson, H.; Nelson, R.J.; Gore, M.A. Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning. Remote Sens. 2019, 11, 2209. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Kim, S.; Park, D. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.; Qiu, D.; Li, K.; Yan, Q.; Lau, R.W.H. Guided Collaborative Training for Pixel-Wise Semi-Supervised Learning. In Computer Vision–ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12358, pp. 429–445. ISBN 978-3-030-58600-3. [Google Scholar]
- Ahmad, A.; Saraswat, D.; El Gamal, A. A Survey on Using Deep Learning Techniques for Plant Disease Diagnosis and Recommendations for Development of Appropriate Tools. Smart Agric. Technol. 2023, 3, 100083. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, W.; Yuan, Y.; Gou, R.; Li, X. Semantic Segmentation of Agricultural Images: A Survey. Inf. Process. Agric. 2023, 11, 172–186. [Google Scholar] [CrossRef]
- Tassis, L.M.; Tozzi De Souza, J.E.; Krohling, R.A. A Deep Learning Approach Combining Instance and Semantic Segmentation to Identify Diseases and Pests of Coffee Leaves from In-Field Images. Comput. Electron. Agric. 2021, 186, 106191. [Google Scholar] [CrossRef]
- Rezk, N.G.; Attia, A.-F.; El-Rashidy, M.A.; El-Sayed, A.; Hemdan, E.E.-D. An Efficient Plant Disease Recognition System Using Hybrid Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs) for Smart IoT Applications in Agriculture. Int. J. Comput. Intell. Syst. 2022, 15, 65. [Google Scholar] [CrossRef]
- Ji, M.; Wu, Z. Automatic Detection and Severity Analysis of Grape Black Measles Disease Based on Deep Learning and Fuzzy Logic. Comput. Electron. Agric. 2022, 193, 106718. [Google Scholar] [CrossRef]
- Zhu, S.; Ma, W.; Lu, J.; Ren, B.; Wang, C.; Wang, J. A Novel Approach for Apple Leaf Disease Image Segmentation in Complex Scenes Based on Two-Stage DeepLabv3+ with Adaptive Loss. Comput. Electron. Agric. 2023, 204, 107539. [Google Scholar] [CrossRef]
- Kouadio, L.; El Jarroudi, M.; Belabess, Z.; Laasli, S.-E.; Roni, M.Z.K.; Amine, I.D.I.; Mokhtari, N.; Mokrini, F.; Junk, J.; Lahlali, R. A Review on UAV-Based Applications for Plant Disease Detection and Monitoring. Remote Sens. 2023, 15, 4273. [Google Scholar] [CrossRef]
- Ding, W.; Abdel-Basset, M.; Alrashdi, I.; Hawash, H. Next Generation of Computer Vision for Plant Disease Monitoring in Precision Agriculture: A Contemporary Survey, Taxonomy, Experiments, and Future Direction. Inf. Sci. 2024, 665, 120338. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Z. The model of cotton intrusion detection system based on the CDAN technology and BP algorithm. Guangdong Agric. Sci. 2009, 7, 228–230+236. [Google Scholar] [CrossRef]
- Xu, Y.; Geng, X.; Zhao, W.; Zhang, Y.; Ning, H.; Lei, T. A Remote Sensing Image Change Detection Model Based on CNN-Transformer Hybrid Structure. Comput. Mod. 2023, 79–85. [Google Scholar]
- Liu, T.; Yang, L.; Lunga, D. Change Detection Using Deep Learning Approach with Object-Based Image Analysis. Remote Sens. Environ. 2021, 256, 112308. [Google Scholar] [CrossRef]
- Liu, M.; Chai, Z.; Deng, H.; Liu, R. A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4297–4306. [Google Scholar] [CrossRef]
- Bao, T.; Fu, C.; Fang, T.; Huo, H. PPCNET: A Combined Patch-Level and Pixel-Level End-to-End Deep Network for High-Resolution Remote Sensing Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1797–1801. [Google Scholar] [CrossRef]
- Das, S.; Biswas, A.; Vimalkumar, C.; Sinha, P. Deep Learning Analysis of Rice Blast Disease Using Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 2500905. [Google Scholar] [CrossRef]
- Wei, Y.; Lin, F. The Research of Prediction of Pests Based on Fuzzy RBF Neural Network. In Proceedings of the 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 11–13 December 2009; pp. 1–4. [Google Scholar]
- Zhang, X.; Wang, B.; Tian, Y.; Yuan, L.; Jiang, Y.; Dong, Y.; Huang, W.; Zhang, J. Research progress on forecasting mechanism and methodology for crop disease and insect pest. J. Agric. Sci. Technol. Beijing 2019, 21, 110–120. [Google Scholar]
- Michael, P.J.M.; Hussein, M.; Camilius, A.S.; Richard, R.M.; Beatrice, M.; Caroline, M. Artificial Intelligence and Deep Learning Based Technologies for Emerging Disease Recognition and Pest Prediction in Beans (Phaseolus Vulgaris L.): A Systematic Review. Afr. J. Agric. Res. 2023, 19, 260–271. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, W.; Chen, P.; Wang, B. Prediction of Crop Pests and Diseases in Cotton by Long Short Term Memory Network. In Intelligent Computing Theories and Application; Huang, D.-S., Jo, K.-H., Zhang, X.-L., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10955, pp. 11–16. ISBN 978-3-319-95932-0. [Google Scholar]
- Wahyono, T.; Heryadi, Y.; Soeparno, H.; Abbas, B.S. Enhanced LSTM Multivariate Time Series Forecasting for Crop Pest Attack Prediction. ICIC Express Lett. 2020, 14, 943–949. [Google Scholar] [CrossRef]
- Chen, P.; Xiao, Q.; Zhang, J.; Xie, C.; Wang, B. Occurrence Prediction of Cotton Pests and Diseases by Bidirectional Long Short-Term Memory Networks with Climate and Atmosphere Circulation. Comput. Electron. Agric. 2020, 176, 105612. [Google Scholar] [CrossRef]
- ShanWen Zhang; Zhen Wang; Zuliang Wang Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 172–178.
- Jain, S.; Ramesh, D. AI Based Hybrid CNN-LSTM Model for Crop Disease Prediction: An ML Advent for Rice Crop. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6 July 2021; pp. 1–7. [Google Scholar]
- Patil, J.; Mytri, V.D. A Prediction Model for Population Dynamics of Cotton Pest (Thrips Tabaci Linde) Using Multilayer-Perceptron Neural Network. Int. J. Comput. Appl. 2013, 67, 19–26. [Google Scholar] [CrossRef]
- Saleem, R.M.; Kazmi, R.; Bajwa, I.S.; Ashraf, A.; Ramzan, S.; Anwar, W. IOT-Based Cotton Whitefly Prediction Using Deep Learning. Sci. Program. 2021, 2021, 8824601. [Google Scholar] [CrossRef]
- Saleem, R.M.; Bashir, R.N.; Faheem, M.; Haq, M.A.; Alhussen, A.; Alzamil, Z.S.; Khan, S. Internet of Things Based Weekly Crop Pest Prediction by Using Deep Neural Network. IEEE Access 2023, 11, 85900–85913. [Google Scholar] [CrossRef]
- Grünig, M.; Razavi, E.; Calanca, P.; Mazzi, D.; Wegner, J.D.; Pellissier, L. Applying Deep Neural Networks to Predict Incidence and Phenology of Plant Pests and Diseases. Ecosphere 2021, 12, e03791. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Q.; Huang, Q.; Ge, Q.; Zhao, K.; Wu, X.; Wu, X.; Lei, L.; Hao, G. PDDD-PreTrain: A Series of Commonly Used Pre-Trained Models Support Image-Based Plant Disease Diagnosis. Plant Phenomics 2023, 5, 0054. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, S.; Kamsu-Foguem, B.; Kamissoko, D.; Traore, D. Deep Neural Networks with Transfer Learning in Millet Crop Images. Comput. Ind. 2019, 108, 115–120. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using Deep Transfer Learning for Image-Based Plant Disease Identification. Comput. Electron. Agric. 2020, 173, 105393. [Google Scholar] [CrossRef]
- Chen, H.; Liao, Y. The Function of Crop Pest and Disease Identification Based on the Improved ConvNeXt Network Model. In Proceedings of the 2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), Guangzhou, China, 12 May 2023; pp. 387–391. [Google Scholar]
- Zhang, J.; Guo, H.; Guo, J.; Zhang, J. An Information Entropy Masked Vision Transformer (IEM-ViT) Model for Recognition of Tea Diseases. Agronomy 2023, 13, 1156. [Google Scholar] [CrossRef]
- Song, Y.; Duan, X.; Ren, Y.; Xu, J.; Luo, L.; Li, D. Identification of the Agricultural Pests Based on Deep Learning Models. In Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 8–10 November 2019; pp. 195–198. [Google Scholar]
- Shafik, W.; Tufail, A.; De Silva Liyanage, C.; Apong, R.A.A.H.M. Using Transfer Learning-Based Plant Disease Classification and Detection for Sustainable Agriculture. BMC Plant Biol. 2024, 24, 136. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zhang, S.; Wang, P.; Xu, G.; Wang, D.; Qian, Y. The Identification of Corn Leaf Diseases Based on Transfer Learning and Data Augmentation. In Proceedings of the 2020 3rd International Conference on Computer Science and Software Engineering, Beijing, China, 22 May 2020; pp. 58–65. [Google Scholar]
- Wu, J.; Wen, C.; Chen, H.; Ma, Z.; Zhang, T.; Su, H.; Yang, C. DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation. Agronomy 2022, 12, 2023. [Google Scholar] [CrossRef]
- Lee, S.; Choi, G.; Park, H.-C.; Choi, C. Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning. Sensors 2022, 22, 8911. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Lee, H.J. Crop Pests and Diseases Recognition Using DANet with TLDP. Comput. Electron. Agric. 2022, 199, 107144. [Google Scholar] [CrossRef]
- Rajeswarappa, G.; Depuru, S.; Sirisala, S. Crop Pests Identification Based on Fusion CNN Model: A Deep Learning. In Proceedings of the 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 1 June 2023; pp. 968–974. [Google Scholar]
- Li, M.; Cheng, S.; Cui, J.; Li, C.; Li, Z.; Zhou, C.; Lv, C. High-Performance Plant Pest and Disease Detection Based on Model Ensemble with Inception Module and Cluster Algorithm. Plants 2023, 12, 200. [Google Scholar] [CrossRef]
- Zhou, C.; Zhong, Y.; Zhou, S.; Song, J.; Xiang, W. Rice Leaf Disease Identification by Residual-Distilled Transformer. Eng. Appl. Artif. Intell. 2023, 121, 106020. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, Y.; Xia, H.; Mao, Q.; Tan, Y. Self-Supervised Transformer-Based Pre-Training Method Using Latent Semantic Masking Auto-Encoder for Pest and Disease Classification. Comput. Electron. Agric. 2022, 203, 107448. [Google Scholar] [CrossRef]
- Kar, S.; Nagasubramanian, K.; Elango, D.; Carroll, M.E.; Abel, C.A.; Nair, A.; Mueller, D.S.; O’Neal, M.E.; Singh, A.K.; Sarkar, S.; et al. Self-supervised Learning Improves Classification of Agriculturally Important Insect Pests in Plants. Plant Phenome J. 2023, 6, e20079. [Google Scholar] [CrossRef]
- Pattnaik, G.; Shrivastava, V.K.; Parvathi, K. Transfer Learning-Based Framework for Classification of Pest in Tomato Plants. Appl. Artif. Intell. 2020, 34, 981–993. [Google Scholar] [CrossRef]
- Abbas, A.; Jain, S.; Gour, M.; Vankudothu, S. Tomato Plant Disease Detection Using Transfer Learning with C-GAN Synthetic Images. Comput. Electron. Agric. 2021, 187, 106279. [Google Scholar] [CrossRef]
- Geetharamani, G.; Arun Pandian, J. Identification of Plant Leaf Diseases Using a Nine-Layer Deep Convolutional Neural Network. Comput. Electr. Eng. 2019, 76, 323–338. [Google Scholar] [CrossRef]
- Zhang, S. Research on Identification of Rose Diseases and Insect Pests Based on Deep Learning. Master’s Thesis, Yunnan University, Kunming, China, 2022. [Google Scholar]
- Oppenheim, D.; Shani, G.; Erlich, O.; Tsror, L. Using Deep Learning for Image-Based Potato Tuber Disease Detection. Phytopathology 2019, 109, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.; Das, N. A Precise Model for Accurate Rice Disease Diagnosis: A Transfer Learning Approach. Proc. Indian Natl. Sci. Acad. 2023, 89, 162–171. [Google Scholar] [CrossRef]
- Dawei, W.; Limiao, D.; Jiangong, N.; Jiyue, G.; Hongfei, Z.; Zhongzhi, H. Recognition Pest by Image-based Transfer Learning. J. Sci. Food Agric. 2019, 99, 4524–4531. [Google Scholar] [CrossRef]
- Sanath Rao, U.; Swathi, R.; Sanjana, V.; Arpitha, L.; Chandrasekhar, K.; Chinmayi; Naik, P.K. Deep Learning Precision Farming: Grapes and Mango Leaf Disease Detection by Transfer Learning. Glob. Transit. Proc. 2021, 2, 535–544. [Google Scholar] [CrossRef]
- Rangarajan, A.K.; Purushothaman, R.; Ramesh, A. Tomato Crop Disease Classification Using Pre-Trained Deep Learning Algorithm. Procedia Comput. Sci. 2018, 133, 1040–1047. [Google Scholar] [CrossRef]
- Selvaraj, M.G.; Vergara, A.; Ruiz, H.; Safari, N.; Elayabalan, S.; Ocimati, W.; Blomme, G. AI-Powered Banana Diseases and Pest Detection. Plant Methods 2019, 15, 92. [Google Scholar] [CrossRef]
- Hassan, S.M.; Maji, A.K.; Jasiński, M.; Leonowicz, Z.; Jasińska, E. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Electronics 2021, 10, 1388. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Srinivasulu Reddy, U. Crop Pest Classification Based on Deep Convolutional Neural Network and Transfer Learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Hong, H.; Lin, J.; Huang, F. Tomato Disease Detection and Classification by Deep Learning. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020; pp. 25–29. [Google Scholar]
- Mahlein, A.-K.; Arnal Barbedo, J.G.; Chiang, K.-S.; Del Ponte, E.M.; Bock, C.H. From Detection to Protection: The Role of Optical Sensors, Robots, and Artificial Intelligence in Modern Plant Disease Management. Phytopathology 2024, 114, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Kunduracioglu, I.; Pacal, I. Advancements in Deep Learning for Accurate Classification of Grape Leaves and Diagnosis of Grape Diseases. J. Plant Dis. Prot. 2024, 131, 1061–1080. [Google Scholar] [CrossRef]
- Prasad, K.V.; Vaidya, H.; Rajashekhar, C.; Karekal, K.S.; Sali, R.; Nisar, K.S. Multiclass Classification of Diseased Grape Leaf Identification Using Deep Convolutional Neural Network (DCNN) Classifier. Sci. Rep. 2024, 14, 9002. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Hong, D.; Li, C.; Yao, J.; Yang, Z.; Zhang, Z.; Chanussot, J. RustQNet: Multimodal Deep Learning for Quantitative Inversion of Wheat Stripe Rust Disease Index. Comput. Electron. Agric. 2024, 225, 109245. [Google Scholar] [CrossRef]
- Khanna, M.; Singh, L.K.; Thawkar, S.; Goyal, M. PlaNet: A Robust Deep Convolutional Neural Network Model for Plant Leaves Disease Recognition. Multimed. Tools Appl. 2024, 83, 4465–4517. [Google Scholar] [CrossRef]
- Yun, Y.; Yu, Q.; Yang, Z.; An, X.; Li, D.; Huang, J.; Zheng, D.; Feng, Q.; Ma, D. Research on a Method for Identification of Peanut Pests and Diseases Based on a Lightweight LSCDNet Model. Phytopathology 2024, 114, 2162–2175. [Google Scholar] [CrossRef] [PubMed]
- Lachure, J.; Doriya, R. Designing of Lightweight Deep Learning Framework for Plant Disease Detection. SN Comput. Sci. 2024, 5, 761. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, C. TinySegformer: A Lightweight Visual Segmentation Model for Real-Time Agricultural Pest Detection. Comput. Electron. Agric. 2024, 218, 108740. [Google Scholar] [CrossRef]
- Karim, M.J.; Goni, M.O.F.; Nahiduzzaman, M.; Ahsan, M.; Haider, J.; Kowalski, M. Enhancing Agriculture through Real-Time Grape Leaf Disease Classification via an Edge Device with a Lightweight CNN Architecture and Grad-CAM. Sci. Rep. 2024, 14, 16022. [Google Scholar] [CrossRef]
- Dai, G.; Tian, Z.; Fan, J.; Sunil, C.K.; Dewi, C. DFN-PSAN: Multi-Level Deep Information Feature Fusion Extraction Network for Interpretable Plant Disease Classification. Comput. Electron. Agric. 2024, 216, 108481. [Google Scholar] [CrossRef]
Dataset Name | Contributors | Data Content |
---|---|---|
ACFR Orchard Fruit Dataset | The University of Sydney, Australia and the Australian Center for Field Robotics | Apple, Mango, and Apricot |
Date Fruit Dataset | King Saud University | Jujube |
Fruit Recognition Dataset | Crop Disease Dataset | Fruit Photos |
Multi-species fruit flower detection | United States Department of Agriculture (USDA) | Fruit Flowering Stage |
PlantVillage Dataset | Cornell University, Marcel Salathé’s Team | Recognition and Image Classification |
PlantDoc | RML Information Services Pvt. Ltd. in India | Diseases and Providing Relevant Information |
WHU-HI (Unmanned Aerial Vehicle Hyperspectral Dataset) | Wuhan University | Accurate Crop Classification and Hyperspectral Image Classification |
RiceSeedling Dataset | Remote Sensing | Rice Object Detection and Rice Seedling Classification |
Purple rapeseed leaves Dataset | https://figshare.com/s/e7471d81a1e35d5ab0d1 (accessed on 17 August 2023) | Separation Study of Purple Mustard Seed Leaves |
Stewart NLBimages 2019 | Gore Lab | Detection of Northern Corn Leaf Blight |
Field Images of Maize Annotated with Disease Symptoms | Tyr Wiesner-Hanks Mohammed Brahimi | Corn Disease Detection |
RSC | Jintao Wu | Rice Counting |
Mendeley Data | Yousuf Rayhan Emon, Md Taimur Ahad | Healthy and Diseased Leaf Dataset of Sweet Oranges |
Application Scenario | Model | Methodology | Result |
---|---|---|---|
Maize pest detection | Improved YOLOv3 | Two residual units are added to the second residual block of the original YOLOv3 network. | 77.2% (mAP) |
Apple diseases | YOLOV3-Dense | Densely connected neural network is utilized to optimize feature layers of the YOLO-V3 model. | 91.7% (IoU) |
Maize pest area detection | MAF–YOLOv4 | Propose a multi-scale mixed attention mechanism to selectively integrate effective information from auxiliary features across different scales. | 80.1% (AP) |
Rice pest detection | YOLO-GBS | The YOLO-GBS is enhanced with an added detection head, GC attention, BiFPN, and Swin Transformer for improved detection and feature fusion. | 79.8% (mAP) |
Pest detection | Pest-YOLO | A squeeze-and-excitation module is added to CNN for key feature extraction, and a cross-stage fusion method improves the feature pyramid, enhancing small target detection like pests. | 71.6% (mAP) |
Forest pest detection | ds-YOLOv3-tiny | DenseNet replaces the feature extraction network for better semantic features, and Swish activation replaces Leaky ReLU to reduce information loss. | 81.2% (mAP) |
Rice pests and diseases detection | MobileNetv2-YOLOv4 | MobileNetv2 replaces CSPDarknet53 in YOLOv4 to reduce parameters, and focal loss balances sample recognition during training. | 90.5% (mAP) |
Detection method for insect pests of the Papilionidae family | ASFL-YOLOX | Using the Tanh-Softplus activation function, integrating an efficient channel attention mechanism, adopting an adaptive spatial feature fusion module. | 95.7% (mAP) |
Detection and classification of peanut diseases | Optimized YOLOv5 | The IASM mechanism enhances accuracy and efficiency, reduces model weights with GhostNet and WBF, and accelerates feature learning using BiFPN and fast normalization fusion. | 92.9% (F1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, D.; Liang, H.; Bai, Y.; Li, X.; Zhou, J.; Su, C.; Wei, W. Advances in Deep Learning Applications for Plant Disease and Pest Detection: A Review. Remote Sens. 2025, 17, 698. https://doi.org/10.3390/rs17040698
Wang S, Xu D, Liang H, Bai Y, Li X, Zhou J, Su C, Wei W. Advances in Deep Learning Applications for Plant Disease and Pest Detection: A Review. Remote Sensing. 2025; 17(4):698. https://doi.org/10.3390/rs17040698
Chicago/Turabian StyleWang, Shaohua, Dachuan Xu, Haojian Liang, Yongqing Bai, Xiao Li, Junyuan Zhou, Cheng Su, and Wenyu Wei. 2025. "Advances in Deep Learning Applications for Plant Disease and Pest Detection: A Review" Remote Sensing 17, no. 4: 698. https://doi.org/10.3390/rs17040698
APA StyleWang, S., Xu, D., Liang, H., Bai, Y., Li, X., Zhou, J., Su, C., & Wei, W. (2025). Advances in Deep Learning Applications for Plant Disease and Pest Detection: A Review. Remote Sensing, 17(4), 698. https://doi.org/10.3390/rs17040698