Spectral Indices Enable Early Detection of Top Kill in Quaking Aspen (Populus tremuloides) Saplings Exposed to Varying Fire Intensity Levels
Highlights
- Fire intensity most strongly influenced the spectral changes at weeks 1–2 post-fire.
- ΔCCI and ΔPRI were most effective at predicting aspen top kill.
- Narrow band indices have potential to assess fire severity.
- The findings advance knowledge of how deciduous species respond to fires.
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Fire Setup
2.3. Spectral and Photosynthesis Measurements
2.4. Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CCI | Chlorophyll/carotenoid index |
| CSI | Char soil index |
| MIRBI | Mid-infrared burn Index |
| NBR | Normalized burn ratio |
| NDVI | Normalized differenced vegetation index |
| NDVIL8 | Normalized differenced vegetation index using Landsat Band 8 |
| PRI | Photochemical reflective index |
| SAVI | Soil adjusted vegetation index |
| SW-NIRratio | Shortwave near-infrared ratio |
| SW-SWratio | Shortwave shortwave near-infrared ratio |
| ΔCCI | Differenced chlorophyll/carotenoid index |
| ΔCSI | Differenced char soil index |
| ΔMIRBI | Differenced mid-infrared burn index |
| ΔNBR | Differenced normalized burn ratio |
| ΔSAVI | Differenced normalized differenced soil adjusted vegetation index |
| ΔNDVIL8 | Differenced normalized differenced vegetation index using Landsat Band 8 |
| ΔPRI | Differenced photochemical reflective index |
| ΔSW-NIRratio | Differenced shortwave near-infrared ratio |
| ΔSW-SWratio | Differenced shortwave shortwave near-infrared ratio |
| PCG | Percentage crown that is green |
| WA | Washington State |
| IFIRE | Idaho Fire Initiative for Research and Education |
| FRE | Fire radiative energy |
| NH | New Hampshire |
| USA | United States of America |
| OLI | Operational Land Imager |
| BER | Band-equivalent reflectance |
References
- Abatzoglou, J.T.; Kolden, C.A.; Williams, A.P.; Lutz, J.A.; Smith, A.M.S. Climatic influences on interannual variability in regional burn severity across western US forests. Int. J. Wild. Fire 2017, 26, 269–275. [Google Scholar] [CrossRef]
- Parks, S.A.; Abatzoglou, J.T. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Sparks, A.M.; Kolden, C.A.; Talhelm, A.F.; Smith, A.M.S.; Apostol, K.G.; Johnson, D.M.; Boschetti, L. Spectral Indices Accurately Quantify Changes in Seedling Physiology Following Fire: Towards Mechanistic Assessments of Post-Fire Carbon Cycling. Remote Sens. 2016, 8, 572. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Koontz, M.J.; Collins, L.; Whitman, E.; Parisien, M.-A.; Loehman, R.A.; Barnes, J.L.; Bourdon, J.-F.; Boucher, J.; et al. Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sens. 2019, 11, 1735. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Vanderhoof, M.; Hawbaker, T.; Ku, A.; Merriam, K.; Berryman, E.; Cattau, M. Tracking rates of postfire conifer regeneration vs. deciduous vegetation recovery across the western United States. Ecol. Appl. 2020, 31, e02237. [Google Scholar] [CrossRef]
- Kreider, M.R.; Yocom, L.L. Aspen seedling establishment, survival, and growth following a high-severity wildfire. For. Ecol. Manag. 2021, 493, 119248. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Sparks, A.M.; Kolden, C.A.; Abatzoglou, J.T.; Talhelm, A.F.; Johnson, D.M.; Boschetti, L.; Lutz, J.A.; Apostol, K.G.; Yedinak, K.M.; et al. Towards a new paradigm in fire severity research using dose-response experiments. Int. J. Wildland Fire 2016, 25, 158–166. [Google Scholar] [CrossRef]
- Barbour, M.G.; Billings, W.D. North American Terrestrial Vegetation; Cambridge University Press: Cambridge, UK, 2000; p. 708. [Google Scholar]
- Strand, E.K.; Vierling, L.A.; Bunting, S.C.; Gessler, P.E. Quantifying successional rates in western aspen woodlands: Current conditions, future predictions. For. Ecol. Manag. 2009, 257, 1705–1715. [Google Scholar] [CrossRef]
- Turner, M.G.; Romme, W.H.; Gardner, R.H.; Hargrove, W.W. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol. Monogr. 1997, 67, 411–433. [Google Scholar] [CrossRef]
- Fechner, G.H.; Barrows, J.S. Aspen Stands as Wildfire Fuel Breaks; Eisenhower Consortium Bulletin 4; U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1976. [Google Scholar]
- Harris, M.P.; Coop, J.D.; Balik, J.A.; McFarland, J.R.; Parks, S.A.; Stevens-Rumann, C.S. Aspen impedes wildfire spread in southwestern United States landscapes. Ecol. Appl. 2025, 35, e70061. [Google Scholar] [CrossRef]
- Turner, M.G.; Romme, W.H.; Reed, R.A.; Tiskan, G.A. Post-fire aspen seedling recruitment across the Yellowstone (USA) Landscape. Landsc. Ecol. 2003, 18, 127–140. [Google Scholar] [CrossRef]
- Wan, H.Y.; Olson, A.C.; Muncey, K.D.; St. Clair, S.B. Legacy effects of fire size and severity on forest regeneration, recruitment, and wildlife activity in aspen forests. For. Ecol. Manag. 2014, 329, 59–68. [Google Scholar] [CrossRef]
- Brown, J.K.; DeByle, N.V. Fire damage, mortality, and suckering in aspen. Can. J. For. Res. 1987, 17, 1100–1109. [Google Scholar] [CrossRef]
- Eisenberg, C.; Eisenberg, C.; Eisenberg, C.; Anderson, C.L.; Collingwood, A.; Sissons, R.; Dunn, C.J.; Meigs, G.W.; Hibbs, D.E.; Murphy, S.; et al. Out of the Ashes: Ecological Resilience to Extreme Wildfire, Prescribed Burns, and Indigenous Burning in Ecosystems. Front. Ecol. Evol. 2019, 7, 00436. [Google Scholar] [CrossRef]
- Nesbit, K.A.; Yocom, L.L.; Trudgeon, A.M.; DeRose, R.J.; Rogers, P.C. Tamm review: Quaking aspen’s influence on fire occurrence, behavior, and severity. For. Ecol. Manag. 2023, 531, 120752. [Google Scholar] [CrossRef]
- Holden, Z.; Smith, A.M.S.; Morgan, P.; Rollins, M.G.; Gessler, P.E. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int. J. Remote Sens. 2005, 26, 4801–4808. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Smith, A.M.S. Satellite remote sensing of fires; Chapter 5. In Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; Belcher, C.M., Rein, G., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; 368p, ISBN 978-0-470-65748-5. [Google Scholar]
- Lentile, L.B.; Smith, A.M.S.; Hudak, A.T.; Morgan, P.; Bobbitt, M.; Lewis, S.A.; Robichaud, P. Remote sensing for prediction of 1-year post-fire ecosystem condition. Int. J. Wildland Fire 2009, 18, 594–608. [Google Scholar] [CrossRef]
- Varner, J.M.; Hood, S.M.; Aubrey, D.P.; Yedinak, K.; Hiers, J.K.; Jolly, W.M.; Shearman, T.M.; McDaniel, J.K.; O’Brien, J.J.; Rowell, E.M. Tree crown injury from wildland fires: Causes, measurement and ecological and physiological consequences. New Phytol. 2021, 231, 1676–1685. [Google Scholar] [CrossRef]
- Sparks, A.M.; Blanco, A.S.; Wilson, D.R.; Schwilk, D.W.; Johnson, D.M.; Adams, H.D.; Bowman, D.M.J.S.; Hardman, D.D.; Smith, A.M.S. Fire intensity impacts on physiological performance and mortality in Pinus monticola and Pseudotsuga menziesii saplings: A dose-response analysis. Tree Physiol. 2023, 43, 1365–1382. [Google Scholar] [CrossRef] [PubMed]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Lentile, L.B.; Hudak, A.T.; Morgan, P. Evaluation of linear spectral unmixing and dNBR for predicting post-fire recovery in a N. American ponderosa pine forest. Int. J. Remote Sens. 2007, 22, 5159–5166. [Google Scholar] [CrossRef]
- Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Clark, J.T.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol. 2007, 3, 64–90. [Google Scholar] [CrossRef]
- Harris, S.; Veraverbeke, S.; Hook, S. Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data. Remote Sens. 2011, 3, 2403–2419. [Google Scholar] [CrossRef]
- Pozo, D.; Olrno, F.J.; Alados-Arboledas, L. Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels. Remote Sens. Environ. 1997, 60, 111–120. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Hook, S.; Hulley, G. An alternative spectral index for rapid fire severity assessments. Remote Sens. Environ. 2012, 123, 72–80. [Google Scholar] [CrossRef]
- Lu, B.; He, Y.; Tong, A. Evaluation of spectral indices for estimating burn severity in semiarid grasslands. Int. J. Wildland Fire 2015, 25, 147–157. [Google Scholar] [CrossRef]
- Sparks, A.M.; Boschetti, L.; Smith, A.M.S.; Tinkham, W.T.; Lannom, K.O.; Newingham, B.A. An accuracy assessment of the MTBS burned area polygons for shrub-steppe fires in the northern Great Basin, United States. Int. J. Wildland Fire 2015, 24, 70–78. [Google Scholar] [CrossRef]
- McCarley, T.R.; Smith, A.M.S.; Kolden, C.A.; Kreitler, J. Evaluating the mid-infrared bi-spectral index for assessing severity and area burned in a conifer forest. Int. J. Wildland Fire 2018, 27, 407–412. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steve, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef]
- Lad, L.E.; Tinkham, W.T.; Sparks, A.M.; Smith, A.M.S. Evaluating Predictive Models of Tree Foliar Moisture Content using Multispectral UAS Data: A Laboratory Study. Remote Sens. 2023, 15, 5703. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, C.; Ji, T.; Hu, Y.; Li, L. Water Quality Retrieval from ZY1-02D Hyperspectral Imagery in Urban Water Bodies and Comparison with Sentinel-2. Remote Sens. 2022, 14, 5029. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral considerations for modeling yield of canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Soudani, K.; Hmimina, G.; Dufrene, E.; Berveiller, D.; Delpierre, N.; Ourcival, J.-C.; Rambal, S.; Jaffre, R. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests. Remote Sens. Environ. 2014, 144, 73–84. [Google Scholar] [CrossRef]
- Drolet, D.G.; Huemmrich, K.F.; Hall, F.G.; Middleton, E.M.; Black, T.A.; Barr, A.G.; Margolis, H.A. A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest. Remote Sens. Environ. 2005, 98, 212–224. [Google Scholar] [CrossRef]
- Filella, I.; Zhang, C.; Seco, R.; Potosnak, M.; Guenther, A.; Karl, T.; Gamon, J.; Pallardy, S.; Gu, L.; Kim, S.; et al. A MODIS Photochemical Reflectance Index (PRI) as an Estimator of Isoprene Emissions in a Temperate Deciduous Forest. Remote Sens. 2018, 10, 557. [Google Scholar] [CrossRef]
- Zhang, C.; Filella, I.; Liu, D.; Ogaya, R.; Llusià, J.; Asensio, D.; Peñuelas, J. Photochemical Reflectance Index (PRI) for Detecting Responses of Diurnal and Seasonal Photosynthetic Activity to Experimental Drought and Warming in a Mediterranean Shrubland. Remote Sens. 2017, 9, 1189. [Google Scholar] [CrossRef]
- Song, G.; Wang, Q. Developing Hyperspectral Indices for Assessing Seasonal Variations in the Ratio of Chlorophyll to Carotenoid in Deciduous Forests. Remote Sens. 2022, 14, 1324. [Google Scholar] [CrossRef]
- Weng, C.Y.S.; D’Odorico, P.; Bhathena, Y.; Arain, M.A.; Ensminger, I. Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sens. Environ. 2019, 233, 11407. [Google Scholar] [CrossRef]
- Avetisyan, D.; Stankova, N.; Dimitrov, Z. Assessment of Spectral Vegetation Indices Performance for Post-Fire Monitoring of Different Forest Environments. Fire 2023, 6, 290. [Google Scholar] [CrossRef]
- Cuevas-Gonzalez, M.; Gerad, F.; Baltzer, H.; Riano, D. Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices. Glob. Change Biol. 2009, 15, 561–577. [Google Scholar] [CrossRef]
- Li, K.; Lu, Z.; Xu, W.; Wang, W.; Su, J.; Lv, Q.; Guo, W.; Johnson, M. Post-fire spectral recovery and driving factors across the boreal and temperate forests. Philos. Trans. R. Soc. B 2025, 380, 20230453. [Google Scholar] [CrossRef]
- Numata, I.; Cochrane, M.A.; Galvao, L.S. Analyzing the Impacts of Frequency and Severity of Forest Fire on the Recovery of Disturbed Forest using Landsat Time Series and EO-1 Hyperion in the Southern Brazilian Amazon. Earth Interact. 2011, 13, 1–17. [Google Scholar] [CrossRef]
- Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.S.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Noormets, A.; Penuelas, J. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Matthews, S. Effect of drying temperature on fuel moisture content measurements. Int. J. Wildland Fire 2010, 19, 800–802. [Google Scholar] [CrossRef]
- Brewer, N.W.; Smith, A.M.S.; Hatten, J.A.; Higuera, P.E.; Hudak, A.T.; Ottmar, R.D.; Tinkham, W.T. Fuel Moisture Influences on Fire-altered Carbon in Masticated Fuels: An Experimental Study. J. Geophys. Res. 2013, 118, 30–40. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Tinkham, W.T.; Roy, D.P.; Boschetti, L.; Kumar, S.; Sparks, A.M.; Kremens, R.L.; Falkowski, M.J. Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals. Geophys. Res. Lett. 2013, 40, 6298–6302. [Google Scholar] [CrossRef]
- Lyon, Z.D.; Morgan, P.; Stevens-Rumann, C.S.; Sparks, A.M.; Keefe, R.F.; Smith, A.M.S. Fire Behavior in Masticated Forest Fuels: Lab and Prescribed Fire Experiments. Int. J. Wild. Fire 2018, 27, 280–292. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Adasme, R.; Haridasan, M.; de Carvalho, M.T.; Geiger, E.L.; Pereira, M.A.B.; Gotsch, S.G.; Franco, A.C. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 2009, 90, 1326–1337. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Eitel, J.U.H.; Hudak, A.T. Spectral Analysis of Charcoal on Soils: Implications for Wildland Fire Severity Mapping Methods. Int. J. Wildland Fire 2010, 19, 976–983. [Google Scholar] [CrossRef]
- Trigg, S.; Flasse, S. Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry. Int. J. Remote Sens. 2000, 21, 3161–3168. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Wooster, M.J.; Drake, N.A.; Dipotso, F.M.; Falkowski, M.J.; Hudak, A.T. Testing the Potential of Multi-Spectral Remote Sensing for Retrospectively Estimating Fire Severity in African Savanna Environments. Remote Sens. Environ. 2005, 97, 92–115. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- McCarley, T.R.; Kolden, C.A.; Vaillant, N.M.; Hudak, A.T.; Smith, A.M.S.; Wing, B.M.; Kellogg, B.S.; Kreitler, J. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure. Remote Sens. Environ. 2017, 191, 419–432. [Google Scholar] [CrossRef]
- Furniss, T.J.; Kane, V.R.; Larson, A.J.; Lutz, J.A. Detecting tree mortality with Landsat-derived spectral indices: Improving ecological accuracy by examining uncertainty. Remote Sens. Environ. 2020, 237, 111497. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global trends of forest loss due to fire from 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Yinghai, K.; Jungho, I.; Junghee, L.; Huili, G.; Youngryel, R. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation of Natural Vegetation; NASA/GSFC, Final Report; NASA: Greenbelt, MD, USA, 1974. [Google Scholar]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; General Technical Report; RMRS-GTR-164-CD; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006. [Google Scholar]
- Kushla, J.D.; Ripple, W.J. Assessing wildfire effects with Landsat thematic mapper data. Int. J. Rem. Sens. 1998, 19, 2493–2507. [Google Scholar] [CrossRef]
- Epting, S.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Partelli-Feltrin, R.; Johnson, D.M.; Sparks, A.M.; Adams, H.D.; Kolden, C.A.; Nelson, A.S.; Smith, A.M.S. Drought increases vulnerability of Pinus ponderosa saplings to fire-induced mortality. Fire 2020, 3, 56. [Google Scholar] [CrossRef]
- Sparks, A.M.; Armstrong, R.; Smith, A.M.S.; Scharosch, S.; Corrao, M.V.; Monzka, T. Predicting fire-induced individual tree mortality at the landscape level using fire intensity and airborne laser scanning data. Remote Sens. Environ. 2025, 331, 115007. [Google Scholar] [CrossRef]
- Hughes, G.; Choudhury, R.A.; McRoberts, N. Summary measures of predictive power associated with logistic regression models of disease risk. Phytopathology 2019, 109, 712–715. [Google Scholar] [CrossRef]
- Tjur, T. Coefficients of Determination in Logistic Regression Models: A New Proposal: The Coefficient of Discrimination. Am. Stat. 2009, 63, 366–372. [Google Scholar] [CrossRef]
- Biddle, R.; Solis-Ponce, I.; Jones, M.; Marsden, S.; Pilgrim, M.; Devenish, C. The value of local community knowledge in species distribution modelling for a threatened Neotropical parrot. Biodivers. Conserv. 2021, 30, 1803–1823. [Google Scholar] [CrossRef]
- Muschelli, J. ROC and AUC with a Binary Predictor: A Potentially Misleading Metric. J. Classif. 2020, 37, 696–708. [Google Scholar] [CrossRef]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.F.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.S.; Drake, N.A.; Wooster, M.J.; Hudak, A.T.; Holden, Z.A.; Gibbons, C.J. Production of Landsat ETM+ Reference Imagery of Burned Areas within Southern African Savannahs: Comparison of Methods and Application to MODIS. Int. J. Remote Sens. 2007, 28, 2753–2775. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Pereira, J.M.C. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans. Geosci. Remote Sens. 1999, 37, 217–226. [Google Scholar] [CrossRef]
- Wong, C.Y.S.; Gamon, J.A. Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers. New Phytol. 2014, 206, 187–195. [Google Scholar] [CrossRef]
- Kováč, D.; Veselovská, P.; Klem, K.; Večeřová, K.; Ač, A.; Peñuelas, J.; Urban, O. Potential of Photochemical Reflectance Index for Indicating Photochemistry and Light Use Efficiency in Leaves of European Beech and Norway Spruce Trees. Remote Sens. 2018, 10, 1202. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Talhelm, A.F.; Johnson, D.M.; Sparks, A.M.; Yedinak, K.M.; Apostol, K.G.; Tinkham, W.T.; Kolden, C.A.; Abatzoglou, J.T.; Lutz, J.A.; et al. Effects of fire radiative energy density doses on Pinus contorta and Larix occidentalis seedling physiology and mortality. Int. J. Wildland Fire 2017, 26, 82–94. [Google Scholar] [CrossRef]
- Blanco, A.S.; Wilson, D.R.; Hardman, D.D.; Rainsford, S.W.; Sparks, A.M.; Bhatta, R.P.; Adams, H.D.; Johnson, D.M.; Schwilk, D.W.; Lutz, J.A.; et al. Predicting the mortality of Pinus monticola and Pseudotsuga menziesii saplings using a pyro-ecophysiology fire severity approach. Int. J. Wildland Fire 2025, 34, WF25003. [Google Scholar] [CrossRef]
- Dhami, N.; Cazzonelli, C.I. Environmental impacts on carotenoid metabolism in leaves. Plant Growth Regul. 2020, 92, 455–477. [Google Scholar] [CrossRef]
- Wolter, P.T.; Mladenoff, D.J.; Host, G.E.; Crow, T.R. Improved forest classification in the northern lake states using multi-temporal Landsat imagery. Photogramm. Eng. Remote Sens. 1995, 61, 1129–1143. [Google Scholar]
- Sparks, A.M.; Talhelm, A.F.; Partelli-Feltrin, R.; Smith, A.M.S.; Johnson, D.M.; Kolden, C.A.; Boschetti, L. An experimental assessment of the impact of drought and fire on western larch mortality and recovery. Int. J. Wildland Fire 2018, 27, 490–497. [Google Scholar] [CrossRef]
- Partelli-Feltrin, R.; Smith, A.M.S.; Adams, H.D.; Kolden, C.A.; Johnson, D.M. Short- and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings. Plant Cell Environ. 2021, 44, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Partelli-Feltrin, R.; Smith, A.M.S.; Adams, H.D.; Thompson, A.; Kolden, C.A.; Yedinak, K.M.; Johnson, D.M. Death from hunger or thirst? Phloem dysfunction, rather than xylem hydraulic failure, as a driver of fire-induced conifer mortality. New Phytol. 2023, 237, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.A.; Spencer, R.N.; Aubrey, D.P.; O’Brien, J.J.; Smith, A.M.S.; Thomas, R.W.; Johnson, D.M. Longleaf Pine Seedlings are Extremely Resilient to the Combined Effects of Experimental Fire and Drought. Fire 2022, 5, 128. [Google Scholar] [CrossRef]
- Hood, S.M.; Varner, J.M.; Van Mantgem, P.; Cansler, C.A. Fire and tree death: Understanding and improving modeling of fire-induced tree mortality. Environ. Res. Lett. 2018, 13, 113004. [Google Scholar] [CrossRef]
- Shearman, T.M.; Varner, J.M.; Hood, S.M.; van Mantgem, P.J.; Cansler, C.A.; Wright, M. Predictive accuracy of post-fire conifer death declines over time in models based on crown and bole injury. Ecol. Appl. 2023, 33, e2760. [Google Scholar] [CrossRef]
- Muraoka, H.; Noda, H.M.; Nagai, S.; Motohka, T.; Saitoh, T.M.; Nasahara, K.N.; Saigusa, N. Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest. J. Plant Ecol. 2013, 6, 393–407. [Google Scholar] [CrossRef]
- Wright, T.E.; Chikamoto, Y.; Birch, J.D.; Lutz, J.A. Remote Sensing Direction of Growing Season Freeze-Induced Defoliation of Montane Quaking Aspen (Populus tremuloides) in Southern Utah, USA. Remote Sens. 2024, 16, 3477. [Google Scholar] [CrossRef]
- Romme, W.H.; Boyce, M.S.; Gresswell, R.; Merrill, E.H.; Minshall, G.W.; Whitlock, C.; Turner, M.G. Twenty Years After the 1988 Yellowstone Fires: Lessons About Disturbance and Ecosystems. Ecosystems 2011, 14, 1196–1215. [Google Scholar] [CrossRef]
- McIlroy, S.K.; Shinneman, D.J. Post-fire aspen (Populus tremuloides) regeneration varies in response to winter precipitation across a regional climate gradient. For. Ecol. Manag. 2020, 455, 117681. [Google Scholar] [CrossRef]
- Kolden, C.A.; Smith, A.M.S.; Abatzoglou, J.T. Limitations and utilization of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA. Int. J. Wildland Fire 2015, 24, 1023–1028. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Greenberg, J.; Vierling, L.A. Introduction to Special Section: The Remote Characterization of Vegetation Structure: New methods and applications to landscape-regional-global scale processes. J. Geophys. Res. 2018, 113, G03S91. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Partelli-Feltrin, R.; Sparks, A.M.; Moberly, J.G.; Adams, H.D.; Schwilk, D.W.; Tinkham, W.T.; Kok, J.R.; Wilson, D.R.; Thompson, R.A.; et al. Methods to assess fire-induced tree mortality: Review of fire behavior proxy and real fire experiments. Int. J. Wildland Fire 2025, 34, WF24136. [Google Scholar] [CrossRef]






| FRE (MJ m−2) | 0.0 | 0.3 | 0.6 | 1.0 | 1.5 | 2.0 | 3.0 | 4.0 |
|---|---|---|---|---|---|---|---|---|
| Pre-fire needle load (kg m−2) | 0.000 | 0.100 | 0.100 | 0.180 | 0.210 | 0.240 | 0.270 | 0.300 |
| Pre-fire wood load (kg m−2) | 0.000 | 0.011 | 0.121 | 0.188 | 0.343 | 0.497 | 0.835 | 1.174 |
| Spectral Index | Formula | Reference |
|---|---|---|
| CCI | [52] | |
| CSI | [61] | |
| MIRBI | [25] | |
| NDVIL8 | [66,67] | |
| NBRL8 | [68] | |
| PRI | [53] | |
| SW-NIRratio | [69] | |
| SW-SWratio | [70] | |
| SAVI | [37] |
| Rank | Time Point | Index | Tjur R2 | AUC | Accuracy |
|---|---|---|---|---|---|
| 1 | Week 1 | CCI | 0.633 | 0.961 | 0.891 |
| 2 | Week 2 | PRI | 0.619 | 0.960 | 0.906 |
| 3 | Week 2 | CCI | 0.598 | 0.960 | 0.906 |
| 4 | Post-fire | CSI | 0.566 | 0.945 | 0.859 |
| 5 | Week 2 | SW-NIRratio | 0.548 | 0.916 | 0.859 |
| 6 | Week 2 | NDVIL8 | 0.536 | 0.927 | 0.891 |
| 7 | Week 2 | NBRL8 | 0.534 | 0.914 | 0.875 |
| 8 | Week 2 | CSI | 0.525 | 0.925 | 0.844 |
| 9 | Week 1 | SW-NIRratio | 0.513 | 0.911 | 0.875 |
| 10 | Week 1 | NBRL8 | 0.496 | 0.909 | 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rainsford, S.W.; Brown, L.M.; Sparks, A.M.; Swanson, S.L.; You, R.; Adams, H.D.; Huang, L.; Wilson, D.R.; Halsey, C.W.; Smith, A.M.S. Spectral Indices Enable Early Detection of Top Kill in Quaking Aspen (Populus tremuloides) Saplings Exposed to Varying Fire Intensity Levels. Remote Sens. 2025, 17, 4005. https://doi.org/10.3390/rs17244005
Rainsford SW, Brown LM, Sparks AM, Swanson SL, You R, Adams HD, Huang L, Wilson DR, Halsey CW, Smith AMS. Spectral Indices Enable Early Detection of Top Kill in Quaking Aspen (Populus tremuloides) Saplings Exposed to Varying Fire Intensity Levels. Remote Sensing. 2025; 17(24):4005. https://doi.org/10.3390/rs17244005
Chicago/Turabian StyleRainsford, Scott W., Lauren May Brown, Aaron M. Sparks, Savannah L. Swanson, Ren You, Henry D. Adams, Li Huang, David R. Wilson, Corbin W. Halsey, and Alistair M. S. Smith. 2025. "Spectral Indices Enable Early Detection of Top Kill in Quaking Aspen (Populus tremuloides) Saplings Exposed to Varying Fire Intensity Levels" Remote Sensing 17, no. 24: 4005. https://doi.org/10.3390/rs17244005
APA StyleRainsford, S. W., Brown, L. M., Sparks, A. M., Swanson, S. L., You, R., Adams, H. D., Huang, L., Wilson, D. R., Halsey, C. W., & Smith, A. M. S. (2025). Spectral Indices Enable Early Detection of Top Kill in Quaking Aspen (Populus tremuloides) Saplings Exposed to Varying Fire Intensity Levels. Remote Sensing, 17(24), 4005. https://doi.org/10.3390/rs17244005

