Remote Sensing Standardized Soil Moisture Index for Drought Monitoring: A Case Study in the Ebro Basin
Highlights
- The satellite-derived Standardized Soil Moisture Index (SSI) is a versatile drought indicator capable of monitoring across different scales, including long-term hydrological deficits.
- The 1 km disaggregated SSI provides enhanced spatial detail and granularity, surpassing the spatial representation of state-of-the-art indices.
- The SSI’s reliance only on satellite data (not site-calibrated) establishes it as potentially globally applicable and a high-resolution drought monitoring tool.
- This approach paves the way for accurate, high-resolution drought assessment in data-scarce regions.
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Remote Sensing Soil Moisture
3.2. SPI from Meteorological Stations
3.3. Gridded SPI
3.4. Methodology
4. Results and Discussions
4.1. Temporal Evolution
4.2. Integration Time
4.3. Time Lag
4.4. SSI vs. Gridded SPI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Brun, P.; Buri, P.; Fatichi, S.; Gessler, A.; McCarthy, M.J.; Pellicciotti, F.; Stocker, B.; Karger, D.N. Global increase in the occurrence and impact of multiyear droughts. Science 2025, 387, 278–284. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Policy Statement. Bull. Am. Meteorol. Soc. 1997, 78, 847–852. [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index: User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28–36. [Google Scholar] [CrossRef]
- Crow, W.T.; Huffman, G.J.; Bindlish, R.; Jackson, T.J. Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals. J. Hydrometeorol. 2009, 10, 199–212. [Google Scholar] [CrossRef]
- Ramoelo, A.; Dzikiti, S.; Van Deventer, H.; Maherry, A.; Cho, M.A.; Gush, M. Potential to monitor plant stress using remote sensing tools. J. Arid Environ. 2015, 113, 134–144. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Jasinski, M.F. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale. Remote Sens. Environ. 1990, 32, 169–187. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri-Strati, M.; Woodhouse, I.; Mallinis, G. Vegetation biomass estimation with remote sensing: Focus on forest and other wooded land over the Mediterranean ecosystem. Int. J. Remote Sens. 2017, 38, 1940–1966. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens. Drought Innov. Monit. Approaches 2012, 23, 20. [Google Scholar]
- Jiao, W.; Zhang, L.; Chang, Q.; Fu, D.; Cen, Y.; Tong, Q. Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States. Remote Sens. 2016, 8, 224. [Google Scholar] [CrossRef]
- Winkler, K.; Gessner, U.; Hochschild, V. Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: Rainfall anomalies and vegetation condition in the context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.; Cosh, M.; Dunbar, R.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Moran, M.S.; Goodrich, D.C.; Kerr, Y.H.; et al. Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the US. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1530–1543. [Google Scholar] [CrossRef]
- Samaniego, L.; Kumar, R.; Zink, M. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeorol. 2013, 14, 47–68. [Google Scholar] [CrossRef]
- Carrão, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 2008, 21, 432–458. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized soil moisture index for drought monitoring based on soil moisture active passive observations and 36 years of north American land data assimilation system data: A case study in the southeast United States. Remote Sens. 2018, 10, 301. [Google Scholar] [CrossRef]
- Khlif, M.; Escorihuela, M.J.; Chahbi Bellakanji, A.; Paolini, G.; Lili Chabaane, Z. Remotely Sensed Agriculture Drought Indices for Assessing the Impact on Cereal Yield. Remote Sens. 2023, 15, 4298. [Google Scholar] [CrossRef]
- Gaona, J.; Quintana-Seguí, P.; Escorihuela, M.J.; Boone, A.; Llasat, M.C. Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data. Nat. Hazards Earth Syst. Sci. 2022, 22, 3461–3485. [Google Scholar] [CrossRef]
- AghaKouchak, A. A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrol. Earth Syst. Sci. 2014, 18, 2485–2492. [Google Scholar] [CrossRef]
- Zeri, M.; Williams, K.; Cunha, A.P.M.; Cunha-Zeri, G.; Vianna, M.S.; Blyth, E.M.; Marthews, T.R.; Hayman, G.D.; Costa, J.M.; Marengo, J.A.; et al. Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing. Clim. Resil. Sustain. 2022, 1, e7. [Google Scholar] [CrossRef]
- Sousa, P.M.; Trigo, R.M.; Aizpurua, P.; Nieto, R.; Gimeno, L.; Garcia-Herrera, R. Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat. Hazards Earth Syst. Sci. 2011, 11, 33–51. [Google Scholar] [CrossRef]
- Turco, M.; Llasat, M.C. Trends in indices of daily precipitation extremes in Catalonia (NE Spain), 1951–2003. Nat. Hazards Earth Syst. Sci. 2011, 11, 3213–3226. [Google Scholar] [CrossRef]
- MMA: Libro Blanco del Agua en España, Spanish Ministry of Environment (MMA), 2000. Available online: http://www.cedex.es/CEDEX/LANG_CASTELLANO/ORGANISMO/CENTYLAB/CEH/Documentos_Descargas/LB_LibroBlancoAgua.htm (accessed on 18 October 2022).
- Merlin, O.; Escorihuela, M.J.; Mayoral, M.A.; Hagolle, O.; Al Bitar, A.; Kerr, Y. Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain. Remote Sens. Environ. 2013, 130, 25–38. [Google Scholar] [CrossRef]
- Molero, B.; Merlin, O.; Malbéteau, Y.; Al Bitar, A.; Cabot, F.; Stefan, V.; Kerr, Y.; Bacon, S.; Cosh, M.; Bindlish, R.; et al. SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Remote Sens. Environ. 2016, 180, 361–376. [Google Scholar] [CrossRef]
- Ojha, N.; Merlin, O.; Suere, C.; Escorihuela, M.J. Extending the spatio-temporal applicability of DISPATCH soil moisture downscaling algorithm: A study case using SMAP, MODIS and Sentinel-3 data. Front. Environ. Sci. 2021, 9, 555216. [Google Scholar] [CrossRef]
- Merlin, O.; Rudiger, C.; Al Bitar, A.; Richaume, P.; Walker, J.P.; Kerr, Y.H. Disaggregation of SMOS soil moisture in Southeastern Australia. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1556–1571. [Google Scholar] [CrossRef]
- Stefan, V.G.; Merlin, O.; Escorihuela, M.J.; Molero, B.; Chihrane, J.; Villar, J.M.; Er-Raki, S. Temporal calibration of an evaporation-based spatial disaggregation method of SMOS soil moisture data. Remote Sens. 2020, 12, 1671. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Quintana-Seguí, P. Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes. Remote Sens. Environ. 2016, 180, 99–114. [Google Scholar] [CrossRef]
- Faroux, S.; Kaptué Tchuenté, A.; Roujean, J.L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe: A twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev. 2013, 6, 563–582. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Tomas-Burguera, M.; Beguería, S.; Reig, F.; Latorre, B.; Peña-Gallardo, M.; Luna, M.Y.; Morata, A.; González-Hidalgo, J.C. A high resolution dataset of drought indices for Spain. Data 2017, 2, 22. [Google Scholar] [CrossRef]
- Farahmand, A.; AghaKouchak, A. A generalized framework for deriving nonparametric standardized drought indicators. Adv. Water Resour. 2015, 76, 140–145. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wen, F.; Wood, E.F. A simulated soil moisture based drought analysis for the United States. J. Geophys. Res. Atmos. 2004, 109, D2410. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res. Atmos. 2007, 112, D17115. [Google Scholar] [CrossRef]
- Shukla, S.; Steinemann, A.C.; Lettenmaier, D.P. Drought monitoring for Washington State: Indicators and applications. J. Hydrometeorol. 2011, 12, 66–83. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Gringorten, I.I. A plotting rule for extreme probability paper. J. Geophys. Res. 1963, 68, 813–814. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global integrated drought monitoring and prediction system. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef]






| Case | ||||
|---|---|---|---|---|
| SSI-1 & SPI-1 | 0.079 | 0.597 | 0.301 | 0.058 |
| SSI-1 & SPI-2 | 0.448 | 0.627 | 0.253 | 0.107 |
| SSI-3 & SPI-3 | 0.403 | 0.649 | 0.607 | 0.396 |
| SSI-3 & SPI-4 | 0.552 | 0.663 | 0.559 | 0.363 |
| SSI-6 & SPI-6 | 0.507 | 0.632 | 0.628 | 0.556 |
| SSI-9 & SPI-9 | 0.527 | 0.627 | 0.637 | 0.597 |
| SSI-9 & SPI-10 | 0.581 | 0.643 | 0.631 | 0.583 |
| SSI-12 & SPI-12 | 0.538 | 0.624 | 0.629 | 0.590 |
| SSI-12 & SPI-13 | 0.584 | 0.637 | 0.621 | 0.580 |
| SSI-24 & SPI-24 | 0.563 | 0.604 | 0.610 | 0.600 |
| SSI-24 & SPI-25 | 0.584 | 0.611 | 0.609 | 0.597 |
| SSI-24 & SPI-26 | 0.588 | 0.607 | 0.603 | 0.587 |
| SSI and SAIH | ||||
|---|---|---|---|---|
| Case | Correlation (p-Value) | RMSD | Bias | Slope |
| SSI-1 & SPI-1 | 0.603 (0.000) | 0.890 | 0.003 | 0.601 |
| SSI-1 & SPI-2 | 0.628 (0.000) | 0.861 | 0.004 | 0.627 |
| SSI-3 & SPI-3 | 0.653 (0.000) | 0.833 | −0.002 | 0.653 |
| SSI-3 & SPI-4 | 0.667 (0.000) | 0.815 | 0.007 | 0.666 |
| SSI-6 & SPI-6 | 0.651 (0.003) | 0.835 | 0.000 | 0.652 |
| SSI-9 & SPI-9 | 0.651 (0.013) | 0.835 | 0.001 | 0.651 |
| SSI-9 & SPI-10 | 0.664 (0.012) | 0.819 | 0.006 | 0.664 |
| SSI-12 & SPI-12 | 0.648 (0.023) | 0.839 | 0.000 | 0.480 |
| SSI-12 & SPI-13 | 0.659 (0.020) | 0.825 | 0.005 | 0.659 |
| SSI-24 & SPI-24 | 0.616 (0.028) | 0.876 | −0.001 | 0.615 |
| SSI-24 & SPI-25 | 0.618 (0.030) | 0.871 | 0.011 | 0.613 |
| SSI-24 & SPI-26 | 0.610 (0.032) | 0.877 | 0.024 | 0.600 |
| LCSC and SAIH | ||||
| Case | Correlation (p-Value) | RMSD | Bias | Slope |
| SPI-1 & SPI-1 | 0.612 (0.000) | 0.812 | 0.035 | 0.482 |
| SPI-3 & SPI-3 | 0.736 (0.000) | 0.693 | 0.037 | 0.646 |
| SPI-6 & SPI-6 | 0.750 (0.000) | 0.685 | 0.062 | 0.684 |
| SPI-9 & SPI-9 | 0.769 (0.001) | 0.675 | 0.085 | 0.743 |
| SPI-12 & SPI-12 | 0.771 (0.003) | 0.682 | 0.121 | 0.757 |
| SPI-24 & SPI-24 | 0.704 (0.008) | 0.807 | 0.307 | 0.657 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Alcalde, G.; Escorihuela, M.J. Remote Sensing Standardized Soil Moisture Index for Drought Monitoring: A Case Study in the Ebro Basin. Remote Sens. 2025, 17, 3916. https://doi.org/10.3390/rs17233916
Sánchez Alcalde G, Escorihuela MJ. Remote Sensing Standardized Soil Moisture Index for Drought Monitoring: A Case Study in the Ebro Basin. Remote Sensing. 2025; 17(23):3916. https://doi.org/10.3390/rs17233916
Chicago/Turabian StyleSánchez Alcalde, Guillem, and Maria José Escorihuela. 2025. "Remote Sensing Standardized Soil Moisture Index for Drought Monitoring: A Case Study in the Ebro Basin" Remote Sensing 17, no. 23: 3916. https://doi.org/10.3390/rs17233916
APA StyleSánchez Alcalde, G., & Escorihuela, M. J. (2025). Remote Sensing Standardized Soil Moisture Index for Drought Monitoring: A Case Study in the Ebro Basin. Remote Sensing, 17(23), 3916. https://doi.org/10.3390/rs17233916

