Evolution of Spaceborne SAR Missions in Earth Orbit
Highlights
- What are the main findings?
- Since 1978 and until 4 July 2025, 200 SAR satellites have been launched, which can be roughly grouped into four broad categories depending on bus dimension and SAR antenna type. The number of SAR satellites has grown exponentially, with 16 satellites launched from 1978 to 2006, 41 from 2007 and 2018, 34 from 2019 to 2021 and 109 from 2022.
- The average mass of SAR satellites is 1025 kg (3697 kg) for civilian (military) satellites and it has been rapidly decreasing for the last twenty years. Mass reduction is currently supported by the large number of launched SAR microsatellites, the newest category among the four.
- SAR resolutions have evolved from a few tens of meters to the meter level in Stripmap mode, from the meter to the submeter level in Spotlight mode, and from the hundreds of meters level to a few tens of meters in ScanSAR mode.
- What is the implication of the main finding?
- Future satellite missions will be based on classical SAR satellites, with masses of 1–2 tonnes and a large rectangular active phased array antenna. They have large swaths and high resolution and can also fulfill the needs of many applications thanks to a variety of polarimetric capabilities. In addition, the SAR microsatellite family, started with Capella and ICEYE programs, strengthened with QPR, Umbra and StriX constellations, are likely to continue their development with new constellations (e.g., IRIDE). They can fulfill the applications which require frequent data updates thanks to the constellation approach.
- Applications will likely arise that can benefit from synergies between both approaches to SAR missions.
Abstract
1. Introduction
2. SAR Mission Overview
2.1. First SAR Satellite and SAR Program in USA
2.1.1. Seasat
2.1.2. Shuttle Imaging Radar Program
2.1.3. US Military SAR Missions
2.2. European SAR Program
2.2.1. ERS-1 and ERS-2
2.2.2. Envisat
2.2.3. European Tandem Missions
- First operation: From September 2007 to February 2008 with 30 min time separation between the satellites.
- Second operation: From November 2008 to April 2009 with 28 min time separation.
- Third operation: From February to April 2010 with 30 min time separation, covering for the first time Antarctica’s coastal glaciers and ice shelves.
- Fourth operation: From July to October 2010.
2.2.4. Sentinel-1
- Stripmap (continuity with ERS/Envisat) provides a 5 m × 5 m resolution over a swath width of 80 km. Swath can be selected out of six by changing beam incidence and elevation beamwidth.
- Interferometric Wide Swath allows for a 250 km swath width at resolutions of 5 m × 20 m (3 sub-swaths are imaged by Progressive Scans SAR).
- Extra-Wide Swath enables the acquisition of a 400 km swath width at the resolutions of 20 m × 40 m and it has been designed for maritime, ice and polar zone operational services (five sub-swaths imaged).
- Wave mode acquires a 20 km × 20 km Stripmap image every 100 km at two alternate incidence angles to estimate direction, wavelength and heights of waves on open oceans.
2.2.5. Biomass
2.3. Japanese SAR Program
2.3.1. JERS-1
2.3.2. ALOS
- AVNIR-2, a four-band (visible and near-infrared) radiometer with 10 m resolution (successor of the instrument on board JERS-1).
- PRISM, a system of three panchromatic telescopes (forward, nadir, backward).
- PALSAR, an L-band (≈23.2 cm) SAR.
- Fine resolution Beam mode (FB): A total of 18 selections of the off-nadir angle, selecting single selectable (HH or VV) polarization and dual selectable polarization (HH+HV or VV+VH).
- Polarimetric mode: Quad-polarization with 12 selectable off-nadir angles.
- ScanSAR: Single selectable (HH or VV) polarization with three, four or five beams with two different bandwidths (12 selectable modes).
2.3.3. ALOS-2
2.3.4. ALOS-4
2.4. Canadian RADARSAT Missions
2.4.1. RADARSAT-1
2.4.2. RADARSAT-2
2.4.3. RADARSAT Constellation Mission (RCM)
- Ice monitoring requirement was improved from 2 to 3 days at 100 m resolution (RADARSAT-2) to daily (average) revisit at 50 m resolution;
- Oil pollution monitoring from 2 to 4 days at 50 m resolution to daily at 50 m;
- Ship detection from 3 to 4 days at 50 m to daily at azimuth resolution better than 1.3 m.
2.5. Italian SAR Program
2.5.1. COSMO-SkyMed Constellation Mission
2.5.2. COSMO Second Generation (CSG)
2.6. Argentinian SAR Mission
2.6.1. SAOCOM
2.6.2. SIASGE
2.7. German Civilian and Military SAR Programs
2.7.1. TerraSAR-X Mission
2.7.2. TanDEM-X
2.7.3. SAR-Lupe
2.7.4. SARah
2.8. Spanish PAZ Mission
2.9. Soviet/Russian S-Band SAR Missions
2.9.1. Cosmos-1870 and Almaz-1
2.9.2. Kondor Satellites
2.10. Spaceborne SAR Development in China
2.10.1. Huan Jing (HJ) Minisatellite Constellation
- HJ-1A carrying a CCD camera and an infrared camera;
- HJ-1B carrying a CCD camera and a hyperspectral camera;
- HJ-1C carrying an S-band SAR.
2.10.2. Gaofen 3
2.10.3. LuTan 1
2.10.4. LuTan 4
2.10.5. Gaofen 12
2.10.6. Chinese Military SAR Missions
2.11. Indian SAR Missions
2.11.1. RISAT-1 Series
2.11.2. RISAT-2 Series
2.11.3. NISAR
2.12. SAR Missions in South Korea
2.12.1. KOMPSAT 5
2.12.2. KOMPSAT 6
2.12.3. 425 Project
2.13. SAR Missions Based on Lightweight Platform
2.13.1. TecSAR Program
2.13.2. NovaSAR-1
2.13.3. ICEYE Constellation
2.13.4. Capella
2.14. Most Recent SAR Constellations
3. Evolution of SAR Missions
3.1. Analysis of Satellite Mass
- Classical SAR satellites with a large, rectangular antenna (typically a slotted waveguide array before 2000 and an active phased array afterwards) which have masses of a few tonnes (mostly in the range 1–2.5 tonnes), apart from ENVISAT-1 (8 tonnes);
- Very large military satellites and first Soviet satellites with mass in the range 8–19 tonnes;
- Small satellites, mainly for military purposes, with parabolic reflector antennas with different levels of sophistication and with masses below one tonne and ranging (with the exception of NISAR and SARah-2 and -3) between 300 and 800 kg;
- Microsatellite spacecraft (Capella, ICEYE, QPR, Umbra and StriX) with either parabolic reflector or active phased array antennas, designed with an extremely innovative approach at both bus and payload levels. Their masses are below 200 kg and in many cases below 100 kg.
3.2. Analysis of Radar Swaths and Resolutions
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Love, A.W. In Memory of Carl A. Wiley. IEEE Antennas Propag. Soc. Newsl. 1985, 27, 17–18. [Google Scholar] [CrossRef]
- Sherwin, C.W.; Ruina, J.P.; Rawcliffe, R.D. Some Early Developments in Synthetic Aperture Radar Systems. IRE Trans. Mil. Electron. 1962, MIL-6, 111–115. [Google Scholar] [CrossRef]
- Cutrona, L.J.; Vivian, W.E.; Leith, E.N.; Hall, G.O. A High-Resolution Radar Combat-Intelligence System. IRE Trans. Mil. Electron. 1961, MIL-5, 127–131. [Google Scholar] [CrossRef]
- Tomiyasu, K. Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface. Proc. IEEE 1978, 66, 563–583. [Google Scholar] [CrossRef]
- Ausherman, D.A.; Kozma, A.; Walker, J.L.; Jones, H.M.; Poggio, E.C. Developments in Radar Imaging. Trans. Aerosp. Electron. Syst. 1984, AES-20, 363–400. [Google Scholar] [CrossRef]
- Bamler, R.; Philipp Hartl, P. Synthetic Aperture Radar Interferometry. Inverse Probl. 1998, 14, r1–r54. [Google Scholar] [CrossRef]
- Moccia, A.; Renga, A. Spatial Resolution of Bistatic Synthetic Aperture Radar: Impact of Acquisition Geometry on Imaging Performance. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3487–3503. [Google Scholar] [CrossRef]
- Butterworth, R.L. QUILL—The First Imaging Radar Satellite. National Reconnaissance Office, Note 74, 2004. Available online: https://nsarchive.gwu.edu/document/28397-document-39-robert-l-butterworth-national-reconnaissance-office-quill-first-imaging (accessed on 30 October 2025).
- SeaSat. Available online: https://www.eoportal.org/satellite-missions/seasat (accessed on 30 October 2025).
- Jordan, R.L. The Seasat-A Synthetic Aperture Radar System. IEEE J Ocean Eng. 1980, OE-5, 154–164. [Google Scholar] [CrossRef]
- Way, J.B.; Smith, E.A. The Evolution of Synthetic Aperture Radar Systems and their Progression to the EOS SAR. IEEE Trans. Geosci. Remote Sens. 1991, 29, 962. [Google Scholar] [CrossRef]
- D’Errico, M. (Ed.) Distributed Space Missions for Earth System Monitoring; Springer Science + Business Media: New York, NY, USA, 2013; pp. 1–675. [Google Scholar]
- Pettengill, G.H.; Horwood, D.F.; Keller, C.H. Pioneer Venus Orbiter Radar Mapper: Design and Operation. IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 28–32. [Google Scholar] [CrossRef]
- Johnson, W.T.K. Magellan imaging radar mission to Venus. Proc. IEEE 1991, 79, 777–790. [Google Scholar] [CrossRef]
- Elachi, C.; Im, E.; Roth, L.E.; Werner, C.L. Cassini Titan Radar Mapper. Proc. IEEE 1991, 79, 867–880. [Google Scholar] [CrossRef]
- Rzhiga, O.N. Venera-15 and -16 spacecraft: Images and maps of Venus. Adv. Space Res. 1987, 7, 269–278. [Google Scholar] [CrossRef]
- Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; et al. Shuttle Imaging Radar Experiment. Science 1982, 218, 996–1003. [Google Scholar] [CrossRef]
- SIR (Shuttle Imaging Radar) Missions. Available online: https://www.eoportal.org/other-space-activities/sir (accessed on 30 October 2025).
- Cimino, J.; Elachi, C.; Settle, M. SIR-B-The Second Shuttle Imaging Radar Experiment. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 445–452. [Google Scholar] [CrossRef]
- Huneycutt, B.L. Spaceborne imaging radar-C instrument. IEEE Trans. Geosci. Remote Sens. 1989, GE-27, 164–169. [Google Scholar] [CrossRef]
- Jordan, R.J.; Huneycutt, B.L.; Werner, M. The SIR-C/X-SAR synthetic aperture radar system. IEEE Trans. Geosci. Remote Sens. 1995, 33, 829–839. [Google Scholar]
- Stuhr, F.; RJordan, R.J.; Werner, M. SIR-C/X-SAR: A multifaceted radar. IEEE Aerosp. Electron. Syst. Mag. 1995, 10, 15–24. [Google Scholar] [CrossRef]
- SRTM (Shuttle Radar Topography Mission). Available online: https://www.eoportal.org/satellite-missions/srtm (accessed on 30 October 2025).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Onyx 1, 2, 3, 4, 5 (Lacrosse 1, 2, 3, 4, 5). Available online: https://space.skyrocket.de/doc_sdat/onyx.htm (accessed on 30 October 2025).
- Day, D.A. Radar Love: The Tortured History of American Space Radar Programs. The Space Review, 2007. Available online: https://www.thespacereview.com/article/790/1 (accessed on 30 October 2025).
- Richelson, J.T. Ups and Downs of Space Radars. AIR FORCE Mag. 2009, 92, 67–70. [Google Scholar]
- Topaz 1, 2, 3, 4, 5 (FIA-Radar 1, 2, 3, 4, 5). Available online: https://space.skyrocket.de/doc_sdat/topaz-1.htm (accessed on 30 October 2025).
- USA 354, …, TBD (NROL 146, 186, 113, 167). Available online: https://space.skyrocket.de/doc_sdat/usa-354.htm (accessed on 30 October 2025).
- ERS-1 (European Remote-Sensing Satellite-1). Available online: https://www.eoportal.org/satellite-missions/ers-1 (accessed on 30 October 2025).
- ERS-2 (European Remote-Sensing Satellite-2). Available online: https://www.eoportal.org/satellite-missions/ers-2 (accessed on 30 October 2025).
- Duchossois, G. The ERS-1 Mission Objectives. ESA Bull. 1991, 65, 16–25. [Google Scholar]
- Francis, R.; Graf, G.; Edwards, P.G.; McCaig, M.; McCarthy, C.; Dubock, P.; Lefebvre, A.; Pieper, B.; Pouvreau, P.-V.; Wall, R.; et al. The ERS-1 Spacecraft and Its Payload. ESA Bull. 1991, 65, 27–48. [Google Scholar]
- Attema, E.P.W. The Active Microwave Instrument On-Board the ERS-1 Satellite. Proc. IEEE 1991, 79, 791–799. [Google Scholar] [CrossRef]
- This Week in Rocket History: Envisat. Available online: https://cosmoquest.org/x/2022/03/this-week-in-rocket-history-envisat/ (accessed on 30 October 2025).
- Envisat. Available online: https://earth.esa.int/eogateway/missions/envisat (accessed on 30 October 2025).
- EnviSat (Environmental Satellite). Available online: https://www.eoportal.org/satellite-missions/envisat (accessed on 30 October 2025).
- Louet, J. The Envisat Mission and System. ESA Bull. 2001, 106, 11–25. [Google Scholar]
- Dubock, P.A.; Spoto, F.; Simpson, J.; Spencer, D.; Schutte, E.; Sontag, H. The Envisat Satellite and lts Integration. ESA Bull. 2001, 106, 26–45. [Google Scholar]
- Desnos, Y.L.; Buck, C.; Guijarro, J.; Suchail, J.L.; Torres, R.; Attema, E. ASAR—Envisat’s Advanced Synthetic Aperture Radar. ESA Bull. 2000, 102, 91–100. [Google Scholar]
- Zink, M.; Buck, C.; Suchail, J.L.; Torres, R.; Bellini, A.; Closa, J.; Desnos, Y.L.; Rosich, B. The Radar lmaging Instrument and lts Applications: ASAR. ESA Bull. 2001, 106, 46–55. [Google Scholar]
- Duchossois, G.; Martin, P. ERS-1 and ERS-2 Tandem Operations. ESA Bull. 1995, 83, 54–60. [Google Scholar]
- SAR (ERS) Overview. Available online: https://earth.esa.int/eogateway/instruments/sar-ers/description (accessed on 30 October 2025).
- Martín Serrano, M.A.; García Matatoros, M.A.; Engdahl, M.A. Achieving the ERS-2—ENVISAT Inter-Satellite interferometry Tandem Constellation. In Proceedings of the 21st Int Symp Space Flight Dynamics, Toulouse, France, 28 September–2 October 2009. [Google Scholar]
- Santoro, M.; Askne, J.I.H.; Wegmüller, U.; LWerner, C.L. Observations, Modeling, and Applications of ERS-ENVISAT Coherence Over Land Surfaces. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2600–2611. [Google Scholar] [CrossRef]
- Wegmüller, U.; Santoro, M.; Werner, C.; Strozzi, T.; Wiesmann, A.; Lengert, W. DEM generation using ERS–ENVISAT interferometry. J. Appl. Geophys. 2009, 69, 51–58. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B. Continent-Wide Interferometric SAR Phase Mapping of Antarctic Ice. Geophys. Res. Lett. 2019, 46, 9710–9718. [Google Scholar] [CrossRef]
- Aschbacher, J.; Milagro-Pérez, M.P. The European Earth monitoring (GMES) programme: Status and perspectives. Remote Sens. Environ. 2012, 120, 3–8. [Google Scholar] [CrossRef]
- Sentinel-1 Mission. Available online: https://sentiwiki.copernicus.eu/web/s1-mission (accessed on 30 October 2025).
- Copernicus: Sentinel-1. Available online: https://www.eoportal.org/satellite-missions/copernicus-sentinel-1 (accessed on 30 October 2025).
- Attema, E.; Bargellini, P.; Edwards, P.; Levrini, G.; Lokas, S.; Moeller, L.; Rosich-Tell, B.; Secchi, P.; Torres, R.; Davidson, D.; et al. Sentinel-1—The Radar Mission for GMES Operational Land and Sea Services. ESA Bull. 2007, 131, 10–17. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Zonno, M.; Matar, J.; Queiroz de Almeida, F.; Younis, M.; Reinman, J.; Rodriguez-Cassola, M. Sentinel-1 Next Generation: Main mission and instrument performance of the Phase 0. In Proceedings of the 13th European Conference on Synthetic Aperture Radar, Online, 29 March–1 April 2021; pp. 1–5. [Google Scholar]
- Biomass (Earth Explorer 7). Available online: https://www.eoportal.org/satellite-missions/biomass (accessed on 30 October 2025).
- Le Toan, T.; Chave, J.; Dall, J.; Papathanassiou, K.; Paillou, P.; Rechstein, N. The Biomass Mission: Objectives and Requirements. In Proceedings of the International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8563–8566. [Google Scholar]
- About Japanese Earth Resources Satellite “FUYO-1” (JERS-1). Available online: https://global.jaxa.jp/projects/sat/jers1/index.html (accessed on 30 October 2025).
- JERS-1 (Japan Earth Resources Satellite). Available online: https://www.eoportal.org/satellite-missions/jers-1 (accessed on 30 October 2025).
- Nemoto, Y.; Nishino, H.; Ono, M.; Mizutamari, H.; Nishikawa, K.; Tanaka, K. Japanese Earth Resources Satellite-1 Synthetic Aperture Radar. Proc. IEEE 1991, 79, 800–809. [Google Scholar] [CrossRef]
- ALOS Overview. Available online: https://www.eorc.jaxa.jp/ALOS/en/alos/a1_about_e.htm (accessed on 30 October 2025).
- ALOS (Advanced Land Observing Satellite)/Daichi. Available online: https://www.eoportal.org/satellite-missions/alos (accessed on 30 October 2025).
- Shimada, M.; Tadono, T.; Rosenqvist, A. Advanced Land Observing Satellite (ALOS) and Monitoring Global Environmental Change. Proc. IEEE 2010, 98, 780–799. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- ALOS-2 Project/ALOS-2 Overview. Available online: https://www.eorc.jaxa.jp/ALOS-2/en/about/overview.htm (accessed on 30 October 2025).
- Shimada, M.; Osawa, Y. ALOS-2 Science Program and High Resolution SAR Applications; Proceedings of SPIE; JAXA: Tokyo, Japan, 2012; Volume 8528, pp. 1–6. [Google Scholar]
- ALOS-2 (Advanced Land Observing Satellite-2)/Daichi-2. Available online: https://www.eoportal.org/satellite-missions/alos-2 (accessed on 30 October 2025).
- Okada, Y.; Nakamura, S.; Iribe, K.; Yokota, Y.; Tsuji, M.; Tsuchida, M.; Hariu, K.; Kankaku, Y.; Suzuki, S.; Osawa, Y.; et al. System design of wide swath, high resolution, full polarimetric L-band SAR onboard ALOS-2. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21–26 July 2013; pp. 2408–2411. [Google Scholar]
- Sobue, S.; Fukuda, T.; Kamimura, H.; Ochiai, O.; Noda, A.; Miyashita, T. Alos-2 Operation Status. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5267–5270. [Google Scholar]
- Sobue, S.; Noda, A.; Omote, T.; Kido, H.; Kudoh, F. ALOS-2 Operation Status and Data Distribution. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 372–374. [Google Scholar]
- Tadono, T.; Ohki, M.; Motohka, T.; Rosenqvist, A.; Sobue, S. Advanced Land Observing Satellite-2 “DAICHI-2” (ALOS-2): Overview and operational status. IEEE Geosci. Remote Sens. Mag. 2025; in print. [Google Scholar]
- About Advanced Land Observing Satellite-4 “DAICHI-4” (ALOS-4). Available online: https://global.jaxa.jp/projects/sat/alos4/ (accessed on 30 October 2025).
- Motohka, T.; Kankaku, Y.; Suzuki, S. Advanced Land Observing Satellite-2 (ALOS-2) and its follow-on L-band SAR mission. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 953–956. [Google Scholar]
- Advanced Land Observing Satellite-4 (ALOS-4). Available online: https://www.eorc.jaxa.jp/ALOS/en/alos-4/a4_about_e.htm (accessed on 30 October 2025).
- ALOS-4 (Advanced Land Observing Satellite-4). Available online: https://www.eoportal.org/satellite-missions/alos-4 (accessed on 30 October 2025).
- Motohka, T.; Kankaku, Y.; Miura, S.; Suzuki, S. Overview of ALOS-2 and ALOS-4 L-band SAR. In Proceedings of the IEEE Radar Conference, Atlanta, GA, USA, 10–14 May 2021; pp. 1–4. [Google Scholar]
- Kankaku, Y.; Arikawa, Y.; Miura, S.; Motohka, T.; Kojima, Y. ALOS-4 System Design and PFM Current Status. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 1998–2001. [Google Scholar]
- Shibata, M.; Kuriyamaa, T.; Hoshino, T.; Nakamura, S.; Kankaku, Y.; Motohka, T.; Suzuki, S. System Design of High Resolution, Wide Swath, L-band SAR onboard ALOS-4. In Proceedings of the 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–4. [Google Scholar]
- Seguin, G.; Srivastava, S.; Auger, D. Evolution of the RADARSAT Program. IEEE Geosci. Remote Sens. Mag. 2014, 2, 56–58. [Google Scholar] [CrossRef]
- Parashar, S.; Langham, E.; McNally, J.; Ahmed, S. RADARSAT Mission Requirements and Concept. Can. J. Remote Sens. 1993, 19, 280–288. [Google Scholar] [CrossRef]
- RADARSAT-1. Available online: https://www.eoportal.org/satellite-missions/radarsat-1 (accessed on 28 May 2025).
- Moore, J.E.; Shepphard, J.; Pizzacaroli, J.; Lyman, P.; Warren, H.R. RADARSAT: The Bus and Solar Array. Can. J. Remote Sens. 1993, 19, 289–297. [Google Scholar] [CrossRef]
- Luscombe, A.P.; Ferguson, I.; Shepherd, N.; Zimcik, D.G.; Naraine, P. The RADARSAT Synthetic Aperture Radar Development. Can. J. Remote Sens. 1993, 19, 298–310. [Google Scholar] [CrossRef]
- Morena, L.C.; James, K.V.; Beck, J. An introduction to the RADARSAT-2 mission. Can. J. Remote Sens. 2004, 30, 221–234. [Google Scholar] [CrossRef]
- RADARSAT-2. Available online: https://www.eoportal.org/satellite-missions/radarsat-2 (accessed on 30 October 2025).
- Ali, Z.; Kroupnik, G.; Matharu, G.; Graham, J.; Barnard, I.; Fox, P.; Raimondo, G. RADARSAT-2 space segment design and its enhanced capabilities with respect to RADARSAT-1. Can. J. Remote Sens. 2004, 30, 235–245. [Google Scholar] [CrossRef]
- Lee, T.; Leitch, R.; Ali, Z.; Kroupnik, G.; Raimondo, G. RADARSAT-2 spacecraft bus design and performance. Can. J. Remote Sens. 2004, 30, 265–281. [Google Scholar] [CrossRef]
- Ali, Z.; Barnard, I.; Fox, P.; Duggan, P.; Gray, R.; Allan, P.; Brand, A.; Ste-Mari, R. Description of RADARSAT-2 synthetic aperture radar design. Can. J. Remote Sens. 2004, 30, 246–257. [Google Scholar] [CrossRef]
- Fox, P.A.; Luscombe, A.P.; Thompson, A.A. RADARSAT-2 SAR modes development and utilization. Can. J. Remote Sens. 2004, 30, 258–264. [Google Scholar] [CrossRef]
- RADARSAT Constellation. Available online: https://www.eoportal.org/satellite-missions/rcm (accessed on 30 October 2025).
- Thompson, A.A. Overview of the RADARSAT Constellation Mission. Can. J. Remote Sens. 2015, 41, 401–407. [Google Scholar] [CrossRef]
- Cote, S.; Lapointe, M.; De Lisle, D.; Arsenault, E.; Wierus, M. The RADARSAT Constellation: Mission Overview and Status. In Proceedings of the 13th European Conference on Synthetic Aperture Radar, Online, 29–31 April 2021; pp. 1–5. [Google Scholar]
- Cote, S.; Lapointe, M.; Vezina, P.-P.; Arsenault, E.; Casgrain, C.; Boyer, A. Status of the RADARSAT Constellation Mission in the Third Year of Operation. In Proceedings of the 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–6. [Google Scholar]
- Observing Earth from Space: Canada Defines the Future of Satellite Data. Available online: https://www.canada.ca/en/space-agency/news/2023/10/observing-earth-from-space-canada-defines-the-future-of-satellite-data.html (accessed on 30 October 2025).
- COSMO-SkyMed. Available online: https://www.eoportal.org/satellite-missions/cosmo-skymed (accessed on 16 June 2025).
- Caltagirone, F.; Spera, P.; Gallon, A.; Manoni, G.; Bianchi, L. COSMO-SkyMed: A Dual Use Earth Observation Constellation. In Proceedings of the 2nd International Workshop on Satellite Constellation and Formation Flying, Haifa, Israel, 19–20 February 2001; pp. 87–94. [Google Scholar]
- Di Lazzaro, M.; Angino, G.; Piemontese, M.; Capuzi, A.; Leonardi, R. COSMO-SkyMed: The Dual-Use Component of a Geospatial System for Environment and Security. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–10. [Google Scholar]
- Battazza, F.; Coletta, A.; Covello, F.; Lopinto, E.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed Mission Status. In Proceedings of the 59th International Astronautical Congress, Glasgow, UK, 29 September–3 October 2008. [Google Scholar]
- Virelli, M.; Coletta, A.; Battagliere, M.L. ASI COSMO-SkyMed: Mission Overview and Data Exploitation. IEEE Geosci. Remote Sens. Mag. 2014, 2, 64–66. [Google Scholar] [CrossRef]
- COSMO-SkyMed—Second Generation. Available online: https://www.eoportal.org/satellite-missions/cosmo-skymed-second-generation (accessed on 30 October 2025).
- Calabrese, D.; Croce, A.; Spera, G.; Venturini, R.; De Luca, G.F.; Serva, S. COSMO SG, System Overview and Performance. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Scorzafava, E.; Monaci, F.; Zampolini Faustini, E.; L’Abbate MCapece, P.; Lumaca, F.; Campolo, G.; Panetti, A.; Spera, G.; Pavia, P.; Occhigrossi, S.; et al. COSMO SG, Spacecraft design and technological challenge. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2–6 June 2014; pp. 1–4. [Google Scholar]
- Venturini, R.; Spadoni, F.; Croci, R.; Torre, A.; Capece, P.; Caltagirone, F.; Monaci, F. COSMO SG, SAR Instrument Design. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2–6 June 2014; pp. 1–4. [Google Scholar]
- SAOCOM (SAR Observation & Communications Satellite). Available online: https://www.eoportal.org/satellite-missions/saocom (accessed on 30 October 2025).
- Giraldez, A.E. SAOCOM-1 Argentina L-band SAR Mission Overview. In Proceedings of the 2nd Workshop on Coastal and Marine Applications of SAR (CMASAR), Svalbard, Norway, 8–12 September 2003; pp. 1–5. [Google Scholar]
- Fioretti, L.; Giudici, D.; Guccione, P.; Recchia, A.; Steinisch, M. SAOCOM-1B Independent Commissioning Phase Results. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1–4. [Google Scholar]
- Azcueta, M.; Gonzalez, J.P.C.; Zajc, T.; Ferreyra, J.; Thibeault, M. External Calibration Results of the SAOCOM-1A Commissioning Phase. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5207308. [Google Scholar] [CrossRef]
- Palomeque, M.; Ferreyra, J.; Thibeault, M. Monitoring Results of the SAOCOM-1 Constellation: A mission overview and summary of results. IEEE Geosci. Remote Sens. Mag. 2025; in print. [Google Scholar]
- Battagliere, M.L.; Pisani, A.R.; Daraio, M.; Coletta, A. Italian/Argentinian satellite system for emergency management. In Proceedings of the 68th International Astronautical Congress, Bremen, Germany, 1–5 October 2018; pp. 1–7. [Google Scholar]
- TerraSAR-X. Available online: https://www.eoportal.org/satellite-missions/terrasar-x (accessed on 30 October 2025).
- Werninghaus, R.; Buckreuss, S. The TerraSAR-X Mission and System Design. IEEE Trans. on Geosci. Remote Sens. 2010, 48, 606–614. [Google Scholar] [CrossRef]
- Pitz, W.; Miller, D. The TerraSAR-X Satellite. IEEE Trans. Geosci. Remote Sens. 2010, 48, 615–622. [Google Scholar] [CrossRef]
- Mittermayer, J.; Younis, M.; Metzig, R.; Wollstadt, S.; Marquez Martinez, J.; Meta, A. TerraSAR-X System Performance Characterization and Verification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 660–676. [Google Scholar] [CrossRef]
- TDX (TanDEM-X). Available online: https://www.eoportal.org/satellite-missions/tandem-x (accessed on 30 October 2025).
- Zebker, H.A.; Farr, T.G.; Salazar, R.P.; Dixon, T.H. Mapping the world’s topography using radar interferometry: The TOPSAT mission. Proc. IEEE 1994, 82, 1774–1786. [Google Scholar] [CrossRef]
- D’Errico, M.; Grassi, M.; Vetrella, S. A bistatic SAR mission for earth observation based on a small satellite. Acta Astronaut. 1996, 39, 837–846. [Google Scholar] [CrossRef]
- D’Errico, M.; Moccia, A. Attitude and antenna pointing design of bistatic radar formations. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 949–960. [Google Scholar] [CrossRef]
- Krieger, G.; Hajnsek, I.; Papathanassiou, K.P.; Younis, M.; Moreira, A. Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying. Proc. IEEE 2010, 98, 816–843. [Google Scholar] [CrossRef]
- Krieger, G.; Zink, M.; Bachmann, M.; Bräutigam, B.; Schulze, D.; Martone, M.; Rizzoli, P.; Steinbrecher, U.; Antony, J.W.; De Zan, F.; et al. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronaut. 2013, 89, 83–98. [Google Scholar] [CrossRef]
- Zink, M.; Bachmann, M.; Bräutigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. TanDEM-X: The New Global DEM Takes Shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- SAR (Synthetic Aperture Radar)-Lupe Constellation. Available online: https://www.eoportal.org/satellite-missions/sar-lupe (accessed on 30 October 2025).
- SARah (Satellite-Based Radar Reconnaissance System). Available online: https://www.eoportal.org/satellite-missions/sarah (accessed on 30 October 2025).
- PAZ SAR Satellite Mission of Spain. Available online: https://www.eoportal.org/satellite-missions/paz (accessed on 30 October 2025).
- NSSDCA/COSPAR ID: 1983-054A. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1983-054A (accessed on 20 June 2025).
- Almaz (Almaz Space Station Program). Available online: https://www.eoportal.org/satellite-missions/almaz (accessed on 30 October 2025).
- Almaz-T (Resurs-R, 11F668). Available online: https://space.skyrocket.de/doc_sdat/almaz-t.htm (accessed on 20 June 2025).
- Satellite Programme: Kondor-Experimental SAR Spacecraft. Available online: https://space.oscar.wmo.int/satelliteprogrammes/view/kondor_e (accessed on 30 October 2025).
- Kondor-E (Kondor-Experimental SAR Spacecraft). Available online: https://www.eoportal.org/satellite-missions/kondor-e (accessed on 30 October 2025).
- Kondor, F.K.A. Available online: https://www.eoportal.org/satellite-missions/kondor-fka (accessed on 30 October 2025).
- Roskosmos Launches Radar-Observation Satellite. Available online: https://www.russianspaceweb.com/kondor-fka.html (accessed on 30 October 2025).
- HJ-1 (Huan Jing-1: Environmental Protection & Disaster Monitoring Constellation). Available online: https://www.eoportal.org/satellite-missions/hj-1 (accessed on 22 June 2025).
- Wang, X.; Wang, G.; Guan, Y.; Chen, Q.; Gao, L. Small satellite constellation for disaster monitoring in China. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 25–29 July 2005; p. 3. [Google Scholar]
- Satellite Programme: Huan Jing. Available online: https://space.oscar.wmo.int/satelliteprogrammes/view/hj (accessed on 22 June 2025).
- Microwave Remote Sensing Product. Available online: https://www.cast.cn/english/channel/2026 (accessed on 30 October 2025).
- GF-3 (Gaofen-3). Available online: https://www.eoportal.org/satellite-missions/gaofen-3 (accessed on 30 October 2025).
- Zhang, Q.; Liu, Y. Overview of Chinese First C-Band Multi-Polarization SAR Satellite GF-3. Aerosp. China 2017, 18, 22–31. [Google Scholar]
- Sun, J.; Yu, W.; Deng, Y. The SAR Payload Design and Performance for the GF-3 Mission. Sensors 2017, 17, 2419. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Q.; Li, Y.; Qi, Y.; Yuan, X.; Liu, J.; Li, H. China’s Gaofen-3 Satellite System and Its Application and Prospect. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11019–11028. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, Y.; Zhang, Q.; Li, Y.; Liu, J.; Yuan, X.; Zhao, L.; Li, M.; Cao, S. China’s GaoFen-3 Mission: A Review. IEEE Geosci. Remote Sens. Mag. 2025; in print. [Google Scholar]
- Liu, K.; Wang, R.; Zhang, H.; Liu, D.; Ou, N.; Chen, J.; Yue, H.; Yu, W.; Deng, Y.; Liang, D.; et al. An Innovative L-band Spaceborne SAR Mission. In Proceedings of the 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–5. [Google Scholar]
- Tang, A.; Li, T.; Chen JWei, C.; Zhang, X.; Liu, Y.; Liu, D.; Zhang, X.; Zhou, X.; Lu, J.; Yue, Q.; et al. Twin-Satellite Constellation Design and Realization for Terrain Mapping and Deformation Monitoring: LuTan-1. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5214014. [Google Scholar] [CrossRef]
- Satellite Programme: L-Band Differential Interferometric Synthetic Aperture Radar Satellites. Available online: https://space.oscar.wmo.int/satelliteprogrammes/view/ludi_tance (accessed on 23 June 2025).
- Wang, R.; Liu, K.; Liu, D.; Ou, N.; Yue, H.; Chen, Y.; Yu, W.; Liang, D.; Cai, Y. LuTan-1: An innovative L-band spaceborne bistatic interferometric synthetic aperture radar mission. IEEE Geosci. Remote Sens. Mag. 2025; in print. [Google Scholar]
- Yu, W.; Wang, K.; Wu, J.; Li, S.; Xie, W.; Sun, H.; Ou, N. The LuTan-1 SAR Antenna System. In Proceedings of the 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–4. [Google Scholar]
- Lin, H.; Zhang, H.; Liu, D.; Chen, Y.; Liu, K. Dual-Channel working mode of LuTan-1 SAR System. In Proceedings of the 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–6. [Google Scholar]
- Ludi Tance 4-01 (L-SAR 04A). Available online: https://space.skyrocket.de/doc_sdat/ludi-tance-4-01.htm (accessed on 23 June 2025).
- Gaofen 12-01, …, 12-05. Available online: https://space.skyrocket.de/doc_sdat/gf-12.htm (accessed on 23 June 2025).
- Satellite: GF-12. Available online: https://space.oscar.wmo.int/satellites/view/gf_12 (accessed on 23 June 2025).
- Yaogan 1, 3, 10 (JB-5 1, 2, 3). Available online: https://space.skyrocket.de/doc_sdat/yaogan-1.htm (accessed on 23 June 2025).
- Yaogan 6, 13, 18, 23 (JB-7 1, 2, 3, 4). Available online: https://space.skyrocket.de/doc_sdat/yaogan-6.htm (accessed on 23 June 2025).
- Yaogan 29, 33, 33R. Available online: https://space.skyrocket.de/doc_sdat/yaogan-29.htm (accessed on 23 June 2025).
- RISAT-1 (Radar Imaging Satellite-1). Available online: https://www.eoportal.org/satellite-missions/risat-1 (accessed on 23 June 2025).
- Valarmathi, N.; Tyagi, R.N.; Kamath, S.M.; Trinatha Reddy, B.; Venkata Ramana, M.; Srinivasan, V.V.; Dutta, C.; Veena, N.; Venketesh, K.; Raveendranath, G.N.; et al. RISAT-1 spacecraft configuration: Architecture, technology and performance. Curr. Sci. 2013, 104, 462–471. [Google Scholar]
- Misra, T.; Rana, S.S.; Desai, N.M.; Dave, D.B.; Rajeevjyoti; Arora, R.K.; Rao, C.V.N.; Bakori, B.V.; Neelakantan, R.; Vachchani, J.G. Synthetic Aperture Radar payload on-board RISAT-1: Configuration, technology and performance. Curr. Sci. 2013, 104, 449–461. [Google Scholar]
- Rao, C.V.N.; Dhar, J.; Nandy, P.S.; Hait, A.; Kulshrestha, S.; Kumar, S.V.; Sinha, P.; Desai, N.; Shukla, S.; Khatri, R.; et al. Advancements in system configuration, realization and characterization of EOS-04 SAR over its predecessor RISAT-1. Curr. Sci. 2024, 126, 1011–1018. [Google Scholar] [CrossRef]
- RISAT-2 (Radar Imaging Satellite-2). Available online: https://www.eoportal.org/satellite-missions/risat-2 (accessed on 23 June 2025).
- RISAT 2B, 2BR1, 2BR2 (EOS 01). Available online: https://space.skyrocket.de/doc_sdat/risat-2b.htm (accessed on 23 June 2025).
- EOS-01 (Earth Observation Satellite—01). Available online: https://www.eoportal.org/satellite-missions/eos-01 (accessed on 23 June 2025).
- NISAR (NASA-ISRO SAR Mission). Available online: https://nisar.jpl.nasa.gov (accessed on 23 June 2025).
- NASA-ISRO SAR (NISAR) Satellite. Available online: https://www.isro.gov.in/NISARSatellite.html (accessed on 23 June 2025).
- NISAR (NASA-ISRO Synthetic Aperture Radar). Available online: https://www.eoportal.org/satellite-missions/nisar (accessed on 30 October 2025).
- Xaypraseuth, P.; Satish, R.; Chatterjee, A. NISAR spacecraft concept overview: Design challenges for a proposed flagship dual-frequency SAR mission. In Proceedings of the IEEE Aerospace Conference, Big Sky, CA, USA, 7–14 March 2015; pp. 1–11. [Google Scholar]
- Rosen, P.; Hensley, S.; Shaffer, S.; Edelstein, W.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, R. The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 3832–3835. [Google Scholar]
- Kellogg, K.; Hoffman, P.; Standley Sh Shaffer, S.; Rosen, P.; Eldstein, W.; Dunn, C.; Baker, C.; Barela, P.; Shen, Y.; Guerrero, A.M.; et al. NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. In Proceedings of the IEEE Aerospace Conference, Big Sky, CA, USA, 7–14 March 2020; pp. 1–21. [Google Scholar]
- Hoffman, P.; Eldstein, W.; Arenas, D.; Shaffer, S.; Bhan, R.; Khan, D.; Waldman, J.; Nowak, S.; Mora, V.; Xaypraseuth, P.; et al. NASA-ISRO Synthetic Aperture Radar (NISAR) Mission: System Integration & Test. In Proceedings of the IEEE Aerospace Conference, Big Sky, CA, USA, 5–12 March 2022; pp. 1–17. [Google Scholar]
- KOMPSAT-5 (Korea Multi-Purpose Satellite-5)/Arirang-5. Available online: https://www.eoportal.org/satellite-missions/kompsat-5 (accessed on 30 October 2025).
- Lee, S.G.; Lee, S.J.; Kim, H.; Chea, T.B.; Ryu, D. Status of the Kompsat-5 SAR Mission, Utilization and Future Plans. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3552–3555. [Google Scholar]
- KOMPSAT-6 (Korea Multi-Purpose Satellite-6)/Arirang-6. Available online: https://www.eoportal.org/satellite-missions/kompsat-6 (accessed on 30 October 2025).
- Lim, B.G.; Lee, S.H.; Yoon, J.C.; Kim, J.H. Development and Mission Objectives of KOMPSAT-6 and Next Advanced SAR Satellite System. In Proceedings of the International Symposium on Antennas and Propagation, Incheon, Republic of Korea, 5–8 November 2024; pp. 1–2. [Google Scholar]
- KORSAT 1, …, 4 (425 Project SAR Sat 1, …, 4). Available online: https://space.skyrocket.de/doc_sdat/425-project-sar.htm (accessed on 30 October 2025).
- TecSAR (SAR Technology Demonstration Satellite). Available online: https://www.eoportal.org/satellite-missions/tecsar (accessed on 30 October 2025).
- Naftaly, U.; Levy-Nathansohn, R. Overview of the TECSAR Satellite Hardware and Mosaic Mode. IEEE Geosci. Remote Sens. Lett. 2008, 5, 423–426. [Google Scholar] [CrossRef]
- Ofeq 8, 10, 13 (TECSAR 1, 2, 3/TechSAR 1, 2, 3). Available online: https://space.skyrocket.de/doc_sdat/techsar-1.htm (accessed on 30 October 2025).
- Naftaly, U.; Oron, O. TECSAR—Program Status. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2–6 June 2014; pp. 1–4. [Google Scholar]
- NovaSAR-1. Available online: https://www.eoportal.org/satellite-missions/novasar-1 (accessed on 30 October 2025).
- Cohen, M.; Larkins, A.; Semedo, P.L.; Burbidge, G. NovaSAR-S low cost spaceborne SAR payload design, development and deployment of a new benchmark in spaceborne radar. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 903–907. [Google Scholar]
- ICEYE Microsatellites Constellation. Available online: https://www.eoportal.org/satellite-missions/iceye-constellation (accessed on 30 October 2025).
- Laaninen, M.; Neerot, M.; Homssi, J.; Szczygielska, K.; Niemczyk, J. ICEYE Radar Constellation Development and Evolution. In Proceedings of the 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–3. [Google Scholar]
- Capella Space X-Band Synthetic Aperture Radar. Available online: https://www.eoportal.org/satellite-missions/capella-x-sar (accessed on 30 October 2025).
- Farquharson, G.; Castelletti, D.; Stringham, C.; Ryu, J.; Yague-Martinez, N.; Goncharenko, Y. Capella Space: The first seven years. IEEE Geosci. Remote Sens. Mag. 2025; in print. [Google Scholar]
- Farquharson, G.; Woods, W.; Stringham, C.; Sankarambadi, N.; Riggi, L. The Capella Synthetic Aperture Radar Constellation. In Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 5–7 June 2018; pp. 1–5. [Google Scholar]
- Farquharson, G.; Castelletti, D.; Stringham, C.; Eddy, D. An Update on the Capella Space Radar Constellation. In Proceedings of the 13th European Conference on Synthetic Aperture Radar, Online, 29 March–1 April 2021; pp. 1–4. [Google Scholar]
- Castelletti, D.; Farquharson, G.; Stringham, C.; Duersch, M.; Eddy, D. Capella Space First Operational SAR Satellite. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 1483–1486. [Google Scholar]
- Farquharson, G.; Castelletti, D.; De, S.; Stringham, C.; Yague, N.; Cazcarra Bes, V. The New Capella Space Satellite Generation: Acadia. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 1513–1516. [Google Scholar]
- QPS-SAR (Q-shu Pioneers of Space—Synthetic Aperture Radar) Constellation. Available online: https://www.eoportal.org/satellite-missions/qps-sar (accessed on 30 October 2025).
- QPS-SAR 1, 2. Available online: https://space.skyrocket.de/doc_sdat/qps-sar-1.htm (accessed on 30 October 2025).
- QPS-SAR 3, …, 19. Available online: https://space.skyrocket.de/doc_sdat/qps-sar-3.htm (accessed on 30 October 2025).
- Umbra SAR Constellation. Available online: https://www.eoportal.org/satellite-missions/umbra-sar (accessed on 30 October 2025).
- Umbra-SAR 2001. Available online: https://space.skyrocket.de/doc_sdat/umbra-sar-2001.htm (accessed on 30 October 2025).
- StriX Constellation. Available online: https://www.eoportal.org/satellite-missions/synspective (accessed on 30 October 2025).
- StriX α, β. Available online: https://space.skyrocket.de/doc_sdat/strix-alpha.htm (accessed on 30 October 2025).
- StriX 1, …, 25. Available online: https://space.skyrocket.de/doc_sdat/strix-1.htm (accessed on 30 October 2025).
- PredaSAR 1, …, 48. Available online: https://space.skyrocket.de/doc_sdat/predasar-1.htm (accessed on 30 October 2025).
- Drishti (GalaxEye). Available online: https://www.eoportal.org/satellite-missions/galaxeye (accessed on 30 October 2025).
- Costa, G.; Rumpf, T.; Cadau, E.G.; Sapia, L.; Faccin, V.; Papa, A. IRIDE: The New Italian Space Programme. In Proceedings of the International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 6663–6665. [Google Scholar]
- Cadau, E.G.; Minchella, A.; Faccin, V.; Festa, L.; Marques, L.; Papa, A. The IRIDE Project: Satellites, Algorithms and Products of the New Italian Space Programme. In Proceedings of the International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 6763–6766. [Google Scholar]








| Parameter | Seasat | SIR-A | SIR-B | SIR-C |
|---|---|---|---|---|
| Band | L | L | L | L/C |
| Wavelength (cm) | 23.5 | 23.5 | 23.4 | 23.9 (L)/5.7 (C) |
| Antenna (L × W, meters) | 10.7 × 2.16 | 9.4 × 2.16 | 10.7 × 2.16 | 12 × 2.95 (L)/0.7 (C) |
| Bandwidth (MHz) | 19 | 6 | 12 | 10, 20, 40 |
| Polarization | HH | HH | HH | HH, HC, VH, VV |
| Transmitted peak power (kW) | 1 | 1 | 1.2 | 4.4 (L)/1.2 (C) |
| PRF (pps) | 1464–1647 | 1464–1824 | not available | 1395–1736 |
| Elevation angle (°) | 20.5 | 47 | 15–60 | 20–55 |
| Swath width (km) | 100 | 50 | 10–60 | 15–60 |
| Ground-range resolution (m) | 25 | 40 | 17–58 | 10–60 |
| Azimuth resolution (m) | 25 | 40 | 25 | 25 |
| Mode | Polarization | Incidence (°) | Resolution (m) | Swath (km) |
|---|---|---|---|---|
| Alternating Polarization | HH/VV or HH/HV or VV/VH | 15–45 | 30–150 | 58–110 |
| Image | HH or VV | 15–45 | 30–150 | 58–110 |
| Wave | HH or VV | not available | 9 | 5 × 5 (every 100 km) |
| Suivi global (ScanSAR) | HH or VV | not available | 1000 | 405 |
| Wide swath (ScanSAR) | HH or VV | not available | 150 | 405 |
| Parameter | RADARSAT-1 | RADARSAT-2 | RCM |
|---|---|---|---|
| Launch | 4 November 1995 | 14 December 2007 | 12 June 2019 |
| Altitude | 793–821 km | 793–821 km | 586–615 km |
| Inclination | 98.6° | 98.6° | 97.7° |
| Repeat cycle | 343/24 | 343/24 | 179/12 |
| LTAN | 18:00 | 18:00 | 18:00 |
| Launch mass | 2750 kg | 2200 kg | 1400 kg |
| Nominal lifetime | 5 years | 7 years | 7 years |
| Complete coverage | 2–3 days | 2–3 days | daily |
| Bus dimensions | 3.55 m × 2.46 m | 3.7 m × 1.36 m | 3.6 m × 1.1 m |
| SAR antenna mass | 679 kg | 750 kg | 400 kg |
| SAR antenna dimensions | 15 m × 1.5 m | 15 m × 1.5 m | 6.75 m × 1.38 m |
| Polarization | HH | quad | quad |
| Bandwidth | 30 MHz | 100 MHz | 100 MHz |
| Finest resolutions | 8 m × 8 m (Stripmap) | 1 m × 3 m (spotlight) | 1 m × 3 m (spotlight) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Errico, M. Evolution of Spaceborne SAR Missions in Earth Orbit. Remote Sens. 2025, 17, 3773. https://doi.org/10.3390/rs17223773
D’Errico M. Evolution of Spaceborne SAR Missions in Earth Orbit. Remote Sensing. 2025; 17(22):3773. https://doi.org/10.3390/rs17223773
Chicago/Turabian StyleD’Errico, Marco. 2025. "Evolution of Spaceborne SAR Missions in Earth Orbit" Remote Sensing 17, no. 22: 3773. https://doi.org/10.3390/rs17223773
APA StyleD’Errico, M. (2025). Evolution of Spaceborne SAR Missions in Earth Orbit. Remote Sensing, 17(22), 3773. https://doi.org/10.3390/rs17223773

