Estimation of the Relationship Between Urban Landscape Pattern and Crop Yield by Remote Sensing Data and Field Measurement
Highlights
- The suburban crop yield decreased consistently with increasing ISA and decreasing forest coverage.
- The driving mechanisms of landscape patterns and diversity on crop yield differed across urbanization intensities.
- That crop yield was affected by urban landscape patterns and diversity.
- Our study is critical for landscape optimization to increase food production under rapid urbanization.
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.2. Heterogeneous Landscape and Urbanization Intensity Identification
- (1)
- Impervious surface-cropland landscape (CI, cropland-dominated, 40–60% cropland, and 20–40% impervious surface).
- (2)
- Impervious surface-cropland landscape (IC, impervious-surface-dominated, 50–80% impervious surface, and 1–10% cropland).
- (3)
- Impervious surface-cropland landscape (CIE, cropland-impervious surface equilibrium, 35–50% impervious surface, and 35–50% cropland).
- (4)
- Impervious surface-grassland landscape (IG, impervious-surface-dominated, 50–60% impervious surface, and 15–20% grassland).
- (5)
- Impervious surface-grassland landscape (GI, grassland-dominated, 30–40% grassland and 20–30% impervious surface).
- (6)
- Impervious surface-bare land landscape (BI, bare-land-dominated, 30–40% impervious surface, 40–60% bare land).
2.3. Landscape Pattern and Diversity Metrics
2.4. Spatial Estimation of Crop Yield
2.5. Data Analysis
3. Results
3.1. Spatial Pattern of Crop Yield Across Different Urbanization Intensity
3.2. Relative Importance of Landscape Pattern and Diversity on Crop Yield
3.3. Driving Mechanism of Landscape Pattern and Diversity on Crop Yield
4. Discussion
4.1. Urbanization Plays a Key Role in the Changes in Suburban Crop Yield
4.2. Key Landscape Pattern and Diversity Factors Affecting Crop Yield
4.3. Direct and Indirect Effects of Landscape Pattern and Diversity on Crop Yield in the Context of Rapid Urbanization
4.4. Limitations, Implications for Other Regions, and Directions for Future Research
- (1)
- Are the observed transformations in dominant drivers robust across contexts?
- (2)
- How do thresholds vary with climate, crops, and irrigation regimes?
- (3)
- How strong is the regulatory role of landscape diversity under different biodiversity and governance conditions?
- (4)
- Can urban impervious surfaces, cropland protection belts, and urban greenways alleviate urbanization-related stress and boost agricultural sustainability?
5. Conclusions
- (1)
- We found that crop yield declined continuously with increasing urbanization intensity. The crop yield under low urbanization was 46.5% higher than that under heavy urbanization. Within heterogeneous agricultural landscapes, impervious surface-cropland landscape dominated by cropland landscapes (CI) landscapes have the highest crop yield at 6.25 t/ha, whereas impervious surface-cropland landscapes dominated by impervious surface landscapes (IC) have the lowest crop yield at 4.06 t/ha, and that of impervious surface-cropland landscapes with cropland-impervious surface equilibrium landscapes (CIE) is 5.95 t/ha.
- (2)
- The main factors of landscape patterns and diversity that influence crop yield differ with different urbanization intensities. Overall, edge density ED, proportion, and largest patch index of the impervious surface were the main factors influencing crop yield, where the threshold for ED_ISA = 200 m/ha. In low-urbanization areas, forest patch density, forest proportion, and impervious surface proportion were important drivers, and the threshold for PD_forest = 40 patches/ha. Under medium urbanization, Shannon’s diversity indices, impervious surface edge density, and largest impervious surface patch index were important factors influencing crop yield. During heavy urbanization, the patch density, edge density, and largest cropland patch index of cropland are important factors. This indicates that the control landscape indicators of croplands, forests, and impervious surface can effectively influence cropland productivity.
- (3)
- We found that crop yield was mainly affected by the landscape composition and configuration of croplands and impervious surface. The crop yield effect mechanisms of the driving factors at different urbanization intensities are complex. In low-urbanization areas, forest proportion indirectly enhanced crop yield through forest edge density and forest patch density. Under moderate urbanization, cropland proportion positively influenced crop yield by enhancing largest cropland patch index and Shannon’s diversity indices. Finally, under heavy urbanization, cropland proportion was directly positively correlated with crop yield and indirectly affected crop yield through largest cropland patch index and cropland edge density. Limiting impervious surface and their irregular shapes as well as increasing vegetation cover to alleviate cropland fragmentation can help sustain crop yields and mitigate the negative impacts of urbanization.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- UN-HABITAT. Envisaging the Future of Cities, World Cities Report. 2022. Available online: https://unhabitat.org/world-cities-report-2022-envisaging-the-future-of-cities (accessed on 1 October 2024).
- Wenban-Smith, H.; Faße, A.; Grote, U. Food security in Tanzania: The challenge of rapid urbanisation. Food Secur. 2016, 8, 973–984. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Sun, R.; Han, B.; Yang, X.; Gu, Z.; Xu, C.; Sui, X.; Zhou, Y. Influential factors and classification of cultivated land fragmentation, and implications for future land consolidation: A case study of Jiangsu Province in eastern China. Land Use Policy 2019, 88, 104185. [Google Scholar] [CrossRef]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. CATENA 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Su, M.; Sun, K.; Deng, B.; Cheng, N.; Cao, Y. Quantification and Driving Factors of Cultivated Land Fragmentation in Rapidly Urbanizing Area: A Case Study in Guangdong Province. Remote Sens. 2024, 16, 2633. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, J.; Pan, Y.; Wu, S.; Dang, Y.; Xu, B.; Yang, H. The positive impacts of landscape fragmentation on the diversification of agricultural production in Zhejiang Province, China. J. Clean. Prod. 2020, 251, 119722. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Q. Identifying spatial and temporal dynamics and driving factors of cultivated land fragmentation in Shaanxi province. Agric. Syst. 2024, 217, 103948. [Google Scholar] [CrossRef]
- Xie, H.; Wen, Y.; Choi, Y.; Zhang, X. Global Trends on Food Security Research: A Bibliometric Analysis. Land 2021, 10, 119. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Beillouin, D.; Schauberger, B.; Bastos, A.; Ciais, P.; Makowski, D. Impact of extreme weather conditions on European crop production in 2018. Phil. Trans. R. Soc. B 2020, 375, 20190510. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Feng, J.; Wang, Y.; Jiang, F. Influence of surface ozone on crop yield of maize in China. J. Integr. Agric. 2020, 19, 578–589. [Google Scholar] [CrossRef]
- Folberth, C.; Skalský, R.; Moltchanova, E.; Balkovič, J.; Azevedo, L.B.; Obersteiner, M.; Van Der Velde, M. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 2016, 7, 11872. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, H.; Li, Y.; Wen, Q.; Liu, Z.; Liu, X.; Zhong, H.; Jian, Y.; Li, Y.; Wen, Q.; et al. Change in grain production in China and its impacts on spatial supply and demand distributions in recent two decades. J. Nat. Resour. 2021, 36, 1413–1425. [Google Scholar] [CrossRef]
- Houx, J.H.; Wiebold, W.J.; Fritschi, F.B. Long term tillage treatment effects on corn grain nutrient composition and yield. Field Crops Res. 2016, 191, 33–40. [Google Scholar] [CrossRef]
- Xin, J.; Peng, Y.; Peng, N.; Yang, L.; Huang, J.; Yuan, J.; Wei, B.; Ren, Y. Both class- and landscape-level patterns influence crop yield. Eur. J. Agron. 2024, 153, 127057. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing eco system services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef]
- Nelson, K.S.; Patalee, B.; Yao, B. Higher landscape diversity associated with improved crop production resilience in Kansas-USA. Environ. Res. Lett. 2022, 17, 084011. [Google Scholar] [CrossRef]
- Zymaroieva, A.; Zhukov, O.; Fedoniuk, T.; Pinkina, T.; Hurelia, V. The Relationship Between Landscape Diversity and Crops Productivity: Landscape Scale Study. J. Landsc. Ecol. 2021, 14, 39–58. [Google Scholar] [CrossRef]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Wade, A.S.I.; Asase, A.; Hadley, P.; Mason, J.; Ofori-Frimpong, K.; Preece, D.; Spring, N.; Norris, K. Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing landscapes. Agric. Ecosyst. Environ. 2010, 138, 324–334. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- López-Angulo, J.; Stefan, L.; Engbersen, N.; Schöb, C. Ecological and evolutionary effects of crop diversity decrease yield variability. J. Ecol. 2023, 111, 1242–1253. [Google Scholar] [CrossRef]
- Nguyen, L.; Robinson, S.; Galpern, P. Effects of landscape complexity on crop productivity: An assessment from space. Agric. Ecosyst. Environ. 2022, 328, 107849. [Google Scholar] [CrossRef]
- Parker, J.E.; Crowder, D.W.; Eigenbrode, S.D.; Snyder, W.E. Trap crop diversity enhances crop yield. Agric. Ecosyst. Environ. 2016, 232, 254–262. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Nelson, K.S.; Burchfield, E.K. Landscape complexity and US crop production. Nat. Food 2021, 2, 330–338. [Google Scholar] [CrossRef]
- Burchfield, E.K.; Nelson, K.S.; Spangler, K. The impact of agricultural landscape diversification on U.S. crop production. Agric. Ecosyst. Environ. 2019, 285, 106615. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.; Guo, Y.; Wang, C.; Wang, G.; Ma, Z.; Zhou, W.; Zhang, D.; Ren, Z.; Wang, W. Urban forest soil is becoming alkaline under rapid urbanization: A case study of Changchun, northeast China. CATENA 2023, 224, 106993. [Google Scholar] [CrossRef]
- Hou, D.; Meng, F.; Prishchepov, A.V. How is urbanization shaping agricultural land-use? Unraveling the nexus between farmland abandonment and urbanization in China. Landsc. Urban Plan. 2021, 214, 104170. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Seo, B.; Jihye, L.; Kyung-Do, L.; Sukyoung, H.; Sinkyu, K. Improving remotely sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA. Field Crops Res. 2019, 238, 113–128. [Google Scholar] [CrossRef]
- Ren, Z.; He, X.; Zheng, H.; Zhang, D.; Yu, X.; Shen, G.; Guo, R. Estimation of the Relationship between Urban Park Characteristics and Park Cool Island Intensity by Remote Sensing Data and Field Measurement. Forests 2013, 4, 868–886. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, H.; He, X.; Ren, Z.; Zhai, C.; Yu, X.; Mao, Z.; Wang, P. Effects of forest type and urbanization on species composition and diversity of urban forest in Changchun, Northeast China. Urban Ecosyst. 2016, 19, 455–473. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Zhang, D.; Gong, C.; Zhai, C.; Wang, Y. Effects of Structural and Diversity Attributes on Biomass in Different Types of Urban Forests in Changchun, Northeast China, and Suggestions for Urban Forest Planning. Forests 2022, 13, 1805. [Google Scholar] [CrossRef]
- Dong, Y.; Ren, Z.; Fu, Y.; Miao, Z.; Yang, R.; Sun, Y.; He, X. Recording Urban Land Dynamic and Its Effects during 2000–2019 at 15-m Resolution by Cloud Computing with Landsat Series. Remote Sens. 2020, 12, 2451. [Google Scholar] [CrossRef]
- Liu, D.; Song, C.; Xin, Z.; Fang, C.; Liu, Z. China can enhance its carbon and nitrogen reduction potential by optimizing maize trade across provinces. Commun. Earth Environ. 2024, 5, 358. [Google Scholar] [CrossRef]
- Ma, Z.; Zhai, C.; Ren, Z.; Zhang, D.; Hu, N.; Zhang, P.; Guo, Y.; Wang, C.; Hong, S.; Hong, W. Spatial pattern of urban forest diversity and its potential drivers in a snow climate city, Northeast China. Urban For. Urban Green. 2024, 94, 128260. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, Z.; Dong, Y.; Zhang, P.; Wang, C.; Ma, Z.; He, X. Multifunctionality can be promoted by increasing agriculture-dominated heterogeneous landscapes in an agro-forestry interlacing zone in northeast China. Landsc. Urban Plan. 2023, 238, 104832. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a intensity of urbanization: A study of the Seattle, WA region. Glob. Change Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Cao, Y.S.; Peng, Y.; Peng, N.Y.; Xin, J.X.; Dong, Q.S. Effects of landscape pattern evolution on plant species and functional trait diversity in Hunshandak Sandland. J. Arid Environ. 2023, 208, 104860. [Google Scholar] [CrossRef]
- Fan, M.; Wang, Q.H.; Mi, K.; Peng, Y. Scale-dependent effects of landscape pattern on plant diversity in Hunshandak Sandland. Biodivers. Conserv. 2017, 26, 2169–2185. [Google Scholar] [CrossRef]
- Jin, H.N.; Xu, J.; Peng, Y.; Xin, J.X.; Peng, N.Y.; Li, Y.Y.; Huang, J.J.; Zhang, R.Q.; Li, C.; Wu, Y.M.; et al. Impacts of landscape patterns on plant species diversity at a global scale. Sci. Total Environ. 2023, 896, 165193. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Available online: http://www.umass.edu/landeco/index.html (accessed on 1 October 2024).
- Nowak, D.; Walton, J.; Stevens, J.; Crane, D.; Hoehn, R. Effect of Plot and Sample Size on Timing and Precision of Urban Forest Assessments. Arboric. Urban For. 2008, 34, 386–390. [Google Scholar] [CrossRef]
- Ngoune Tandzi, L.; Mutengwa, C.S. Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods. Agronomy 2019, 10, 29. [Google Scholar] [CrossRef]
- Shammi, S.A.; Meng, Q. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Shirsath, P.B.; Sehgal, V.K.; Aggarwal, P.K. Downscaling Regional Crop Yields to Local Scale Using Remote Sensing. Agriculture 2020, 10, 58. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, Z.; Wang, C.; Zhang, P.; Ma, Z.; Hong, S.; Hong, W.; He, X. Spatiotemporal patterns of urban forest carbon sequestration capacity: Implications for urban CO2 emission mitigation during China’s rapid urbanization. Sci. Total Environ. 2024, 912, 168781. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Gao, L.; Chen, F.; Xu, X.; Zhang, F.; Zhou, Y.; LI, F.; Niu, B.; Li, Z. Time Phase Selection and Accuracy Analysis for Predicting Winter Wheat Yield Based on Time Series Vegetation Index. Remote Sens. 2024, 16, 1995. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Dewi, C.; Chen, R.-C. Random Forest and Support Vector Machine on Features Selection for Regression Analysis. Int. J. Innov. Comput. Inf. Control. 2019, 15, 2027–2037. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; Sun, Y.; An, Y.; Zhao, S.; Liu, Y.; Li, M. Ecological network construction of the heterogeneous agro-pastoral areas in the upper Yellow River basin. Agric. Ecosyst. Environ. 2020, 302, 107069. [Google Scholar] [CrossRef]
- Bentler, P.M. Comparative fit indexes in structural models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef]
- Zhou, Z.; Robinson, G.M.; Song, B. Experimental research on trade-offs in ecosystem services: The agro-ecosystem functional spectrum. Ecol. Indic. 2019, 106, 105536. [Google Scholar] [CrossRef]
- Tamburini, G.; Pevere, I.; Fornasini, N.; De Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Conservation tillage reduces the negative impact of urbanisation on carabid communities. Insect Conserv. Divers. 2016, 9, 438–445. [Google Scholar] [CrossRef]
- Yan, T.; Wang, J.; Huang, J. Urbanization, agricultural water use, and regional and national crop production in China. Ecol. Model. 2015, 318, 226–235. [Google Scholar] [CrossRef]
- Diem, J.E.; Hill, T.C.; Milligan, R.A. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region. J. Hydrol. 2018, 556, 61–71. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Du, Y.; Guo, Y.; Zhang, P.; Wang, G.; Hong, S.; Ma, Z.; Hong, W.; Li, T. Urban vegetation cooling capacity was enhanced under rapid urbanization in China. J. Clean. Prod. 2023, 425, 138906. [Google Scholar] [CrossRef]
- Bian, Z.; Zui, R.; Yu, Z.; Wang, Q.; Li, J. Effect of urban expansion on non-agricultural habitats in farmland landscape: A case study of Shenbei New District, Shenyang City, Liaoning Province. Chin. J. Eco-Agric. 2015, 23, 1053–1060. [Google Scholar] [CrossRef]
- Raderschall, C.A.; Bommarco, R.; Lindström, S.A.M.; Lundin, O. Landscape crop diversity and semi-natural habitat affect crop pollinators, pollination benefit and yield. Agric. Ecosyst. Environ. 2021, 306, 107189. [Google Scholar] [CrossRef]
- Graffigna, S.; González-Vaquero, R.A.; Torretta, J.P.; Marrero, H.J. Importance of urban green areas’ connectivity for the conservation of pollinators. Urban Ecosyst. 2024, 27, 417–426. [Google Scholar] [CrossRef]
- Hulsmans, E.; Daelemans, R.; Cuypers, V.; Van Der Straeten, E.; Vanderlinden, M.; De Blanck, T.; Vertommen, W.; Boeraeve, M.; Proesmans, W.; Honnay, O. Cascading effects of management and landscape on insect pollinators, pollination services and yield in apple orchards. Agric. Ecosyst. Environ. 2023, 352, 108509. [Google Scholar] [CrossRef]
- Fu, B.; Liang, D.; Lu, N. Landscape ecology: Coupling of pattern, process, and scale. Chin. Geogr. Sci. 2011, 21, 385–391. [Google Scholar] [CrossRef]
- Alamgir, M.; Turton, S.M.; Macgregor, C.J.; Pert, P.L. Assessing regulating and provisioning ecosystem services in a contrasting tropical forest landscape. Ecol. Indic. 2016, 64, 319–334. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef]
- Levé, M.; Baudry, E.; Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 2019, 647, 420–430. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of Crop Diversity on Agroecosystem Function: Crop Yield Response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Shao, R.; Wang, Y.; Shao, W.; Ni, G. Assessing the synergistic modulation of evapotranspiration by global impervious surface and vegetation changes. Agric. For. Meteorol. 2022, 327, 109194. [Google Scholar] [CrossRef]
- Lin, S.; Xie, D.; Liu, Y.; Chen, W. Study on the Relationship between Landscape Pattern and Regional Biodiversity. Ecol. Environ. Sci. 2017, 26, 1681–1688. [Google Scholar] [CrossRef]
- Min, M.; Lin, C.; Duan, X.; Jin, Z.; Zhang, L. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing metropolitan area, China. Sustain. Cities Soc. 2019, 50, 101637. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Q.; Wang, H.; Lin, Y.; Song, J.; Cui, T.; Fan, M. Does landscape pattern influence the intensity of drought and flood? Ecol. Indic. 2019, 103, 173–181. [Google Scholar] [CrossRef]
- Oliveira, I.F.; Lion, M.B.; Cardoso, M.Z. A plaza too far: High contrast in butterfly biodiversity patterns between plazas and an urban reserve in Brazil. Landsc. Urban Plan. 2018, 180, 207–216. [Google Scholar] [CrossRef]
- Ren, W.; Hu, L.; Zhang, J.; Sun, C.; Tang, J.; Yuan, Y.; Chen, X. Can positive interactions between cultivated species help to sustain modern agriculture? Front. Ecol. Environ. 2014, 12, 507–514. [Google Scholar] [CrossRef]
- Hao, W.; Hu, X.; Wang, J.; Zhang, Z.; Shi, Z.; Zhou, H. The impact of farmland fragmentation in China on agricultural productivity. J. Clean. Prod. 2023, 425, 138962. [Google Scholar] [CrossRef]
- Xu, Y.; Chou, J.; Yang, F.; Sun, M.; Zhao, W.; Li, J. Assessing the Sensitivity of Main Crop Yields to Climate Change Impacts in China. Atmosphere 2021, 12, 172. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Rybar, J.; Bosela, M. Trade-offs or complementarity between biomass production and biodiversity in European forests: A review. Cent. Eur. For. J. 2023, 69, 201–213. [Google Scholar] [CrossRef]
- Betts, M.G.; Wolf, C.; Ripple, W.J.; Phalan, B.; Phalan, B.; Millers, K.A.; Duarte, A.; Butchart, S.H.M.; Butchart, S.H.M.; Levi, T. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 2017, 547, 441–444. [Google Scholar] [CrossRef]
- De Jager, M. Critical transitions and evolutionary hysteresis in movement: Habitat fragmentation can cause abrupt shifts in dispersal that are difficult to revert. Ecol. Evol. 2023, 13, e10147. [Google Scholar] [CrossRef]








| Landscape Metrics | Index | Expression | Description |
|---|---|---|---|
| Landscape composition | Proportion of Landscape (PLAND) | Pi = proportion of the landscape occupied by patch type (class) i. aij = area (m2) of patch ij. A = total landscape area (m2). | |
| Landscape configuration | Edge density (ED) | eik = total length (m) of edge in landscape involving patch type (class) i; includes landscape boundary and background segments involving patch type i. A = total landscape area (m2). | |
| Largest patch index (LPI) | aij = area (m2) of patch ij. A = total landscape area (m2). | ||
| Landscape shape index (LSI) | E* = total length (m) of edge in landscape; includes the entire landscape boundary and some or all background edge segments. A = total landscape area (m2). | ||
| Number of patches (NP) | ni = number of patches in the landscape of patch type (class) i. | ||
| Patch density (PD) | ni = number of patches in the landscape of patch type (class) i. A = total landscape area (m2). | ||
| Connectivity (CONNECT) | cijk = joining between patch j and k (0 = unjoined, 1 = joined) of the corresponding patch type (i), based on a user-specified threshold distance. ni = number of patches in the landscape of the corresponding patch type (class). | ||
| Patch Cohesion Index (COHESION) | COHESION = | pij* = perimeter of patch ij in terms of number of cell surfaces. aij* = area of patch ij in terms of number of cells. Z = total number of cells in the landscape. | |
| Landscape diversity | Shannon’s Diversity Index (SHDI) | Pi = proportion of the landscape occupied by patch type (class) i. | |
| Simpson’s Diversity Index (SIDI) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Ren, Z.; Zhang, P.; Wang, C.; Hong, S.; Geng, R.; Hong, W.; Wang, X.; Huang, B.; Zhang, B.; et al. Estimation of the Relationship Between Urban Landscape Pattern and Crop Yield by Remote Sensing Data and Field Measurement. Remote Sens. 2025, 17, 3667. https://doi.org/10.3390/rs17223667
Meng F, Ren Z, Zhang P, Wang C, Hong S, Geng R, Hong W, Wang X, Huang B, Zhang B, et al. Estimation of the Relationship Between Urban Landscape Pattern and Crop Yield by Remote Sensing Data and Field Measurement. Remote Sensing. 2025; 17(22):3667. https://doi.org/10.3390/rs17223667
Chicago/Turabian StyleMeng, Fanyue, Zhibin Ren, Peng Zhang, Chengcong Wang, Shengyang Hong, Ruoxuan Geng, Wenhai Hong, Xinyu Wang, Baosen Huang, Boyang Zhang, and et al. 2025. "Estimation of the Relationship Between Urban Landscape Pattern and Crop Yield by Remote Sensing Data and Field Measurement" Remote Sensing 17, no. 22: 3667. https://doi.org/10.3390/rs17223667
APA StyleMeng, F., Ren, Z., Zhang, P., Wang, C., Hong, S., Geng, R., Hong, W., Wang, X., Huang, B., Zhang, B., & Bai, Y. (2025). Estimation of the Relationship Between Urban Landscape Pattern and Crop Yield by Remote Sensing Data and Field Measurement. Remote Sensing, 17(22), 3667. https://doi.org/10.3390/rs17223667
