Satellite-Derived Approaches for Coal Mine Methane Estimation: A Review
Highlights
- Satellite observations have advanced from coarse (~10 km) to fine (25 m) resolution, greatly improving plume detection and narrowing gaps between bottom-up and top-down methane estimates.
- Significant uncertainties persist due to wind variability, terrain heterogeneity, retrieval-algorithm limitations, and limited temporal sampling, leading to inconsistent quantification, especially for diffuse surface coal-mine emissions.
- Reliable site-level methane estimates require integrating satellites with ground and aerial validation, improved atmospheric modelling, and machine-learning methods that address diffuse and variable coal mine emissions.
- Reducing these uncertainties is essential for accurate reporting and effective mitigation in coal mining regions, thereby strengthening global climate action.
Abstract
1. Introduction
2. Materials and Methods
3. Satellite Platforms Used for CMM Observations
3.1. TROPOMI
3.2. GaoFen-5
3.3. PRISMA
3.4. GHGSat-C/D
3.5. GOSAT
3.6. IASI (METOP)
3.7. Other Point Observations Satellites
4. Methods Used for CMM Quantifications
4.1. Inversion Methods
4.2. Wind Observations
4.3. Plume Detection
4.4. Flux Observation and Estimation Techniques
4.5. Emerging Technologies
5. Methane Monitoring Across Different Coal Basins and Related Uncertainties
5.1. China
5.2. Australia
5.3. Poland
5.4. Russia
5.5. South Africa
5.6. USA
5.7. Comparative Analysis of Remote Sensing Data
6. Technical Challenges
7. Future Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef]
- Touma, D.; Stevenson, S.; Lehner, F.; Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 2021, 12, 212. [Google Scholar] [CrossRef]
- Mostefaoui, M.; Ciais, P.; McGrath, M.J.; Peylin, P.; Patra, P.K.; Ernst, Y. Greenhouse gas emissions and their trends over the last 3 decades across Africa. Earth Syst. Sci. Data 2024, 16, 245–275. [Google Scholar] [CrossRef]
- Saunois, M.; Martinez, A.; Poulter, B.; Zhang, Z.; Raymond, P.A.; Regnier, P.; Canadell, J.G.; Jackson, R.B.; Patra, P.K.; Bousquet, P.; et al. Global methane budget 2000–2020. Earth Syst. Sci. Data 2025, 17, 1873–1958. [Google Scholar] [CrossRef]
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget: 2000–2012. Earth Syst. Sci. Data Discuss. 2016, 8, 697–751. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. 2019, 12, 1561–1623. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Hayhoe, K. Atmospheric methane and global change. Earth-Sci. Rev. 2002, 57, 177–210. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. IPCC Sixth Assessment Report—Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of Working Group II; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- International Energy Agency (IEA). Global Methane Tracker 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/global-methane-tracker-2022 (accessed on 8 January 2025).
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane mitigation: Methods to reduce emissions, on the path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- The Global Carbon Project. Available online: https://www.globalcarbonproject.org/ (accessed on 17 October 2025).
- Price, J.; Warren, R.; Forstenhäusler, N. Biodiversity losses associated with global warming of 1.5 to 4 °C above pre-industrial levels in six countries. Clim. Chang. 2024, 177, 47. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 8 January 2025).
- Global Methane Pledge. Available online: https://globalmethanepledge.ccacoalition.org/ (accessed on 17 October 2025).
- Global Greenhouse Gas Watch. Available online: https://wmo.int/activities/global-greenhouse-gas-watch-g3w (accessed on 17 October 2025).
- United Nations Environment Programme (UNEP). Emissions Gap Report 2022; UNEP: Nairobi, Kenya, 2022; Available online: http://www.unep.org/resources/emissions-gap-report-2022 (accessed on 8 January 2025).
- European Environment Agency (EEA). Trends and Projections in Europe 2024; EEA: Copenhagen, Denmark, 2024; Available online: https://www.eea.europa.eu/en/analysis/publications/trends-and-projections-in-europe-2024 (accessed on 8 January 2025).
- Karakurt, I.; Aydin, G.; Aydiner, K. Sources and mitigation of methane emissions by sectors: A critical review. Renew. Energy 2012, 39, 40–48. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global Methane Tracker 2024; IEA: Paris, France, 2024; Available online: https://www.iea.org/data-and-statistics/charts/sources-of-methane-emissions-2023-2 (accessed on 14 April 2025).
- US EPA Coalbed Methane Outreach Program (CMOP). About Coal Mine Methane. 2025. Available online: https://www.epa.gov/cmop/about-coal-mine-methane (accessed on 14 April 2025).
- Zhao, W.; Zhao, D.; Wang, K.; Fan, L.; Zhao, Z.; Dong, H.; Shu, L. Will greenhouse gas emissions increase with mining depth in coal mines? An analysis of gas occurrence under varying in-situ stress conditions. Sci. Total Environ. 2024, 945, 173957. [Google Scholar] [CrossRef]
- Borowski, M.; Zwolińska-Glądys, K.; Cheng, J. Methane Emissions from Coal Mines: Quantification, Capture, and Utilization Strategies for Atmospheric Impact Mitigation—A Case Study from Poland. Atmosphere 2025, 16, 174. [Google Scholar] [CrossRef]
- Clean Development Mechanism (CDM). Available online: http://cdm.unfccc.int (accessed on 17 October 2025).
- China Methane Emissions Control Action Plan. Available online: https://www.igsd.org/wp-content/uploads/2023/11/2023-CHINA-METHANE-EMISSIONS-CONTROL-ACTION-PLAN.pdf (accessed on 17 October 2025).
- National Greenhouse and Energy Reporting (NGER). Estimating Emissions and Energy from Coal Mining: Guideline; Clean Energy Regulator: Canberra, Australia, 2024. Available online: https://cer.gov.au/document/estimating-emissions-and-energy-coal-mining-guideline (accessed on 16 March 2025).
- Wang, J.; Tchapmi, L.P.; Ravikumar, A.P.; McGuire, M.; Bell, C.S.; Zimmerle, D.; Savarese, S.; Brandt, A.R. Machine vision for natural gas methane emissions detection using an infrared camera. Appl. Energy 2020, 257, 113998. [Google Scholar] [CrossRef]
- Lu, H.; Zheng, C.; Zhang, L.; Liu, Z.; Song, F.; Li, X.; Zhang, Y.; Wang, Y. A remote sensor system based on TDLAS technique for ammonia leakage monitoring. Sensors 2021, 21, 2448. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.P.; Miller, D.J.; Sun, K.; Tao, L.; Stanton, L.; Zondlo, M.A. Long-path quantum cascade laser–based sensor for methane measurements. J. Atmos. Ocean. Technol. 2016, 33, 2373–2384. [Google Scholar] [CrossRef]
- He, V. Development of qube: A low-cost internet of things device for on-site and regional earthquake warning. Seismol. Soc. Am. 2022, 93, 975–985. [Google Scholar] [CrossRef]
- Qin, K.; Hu, W.; He, Q.; Lu, F.; Cohen, J.B. Individual coal mine methane emissions constrained by eddy covariance measurements: Low bias and missing sources. Atmos. Chem. Phys. 2024, 24, 3009–3028. [Google Scholar] [CrossRef]
- Wu, Y.; Li, D.; Cheng, W.; Li, R. Non-Dispersive Infra-Red methane absorption model. In Proceedings of the 2010 International Conference on Intelligent Control and Information Processing, Xi’an, China, 12–15 August 2010; pp. 658–661. [Google Scholar]
- Guanter, L.; Warren, J.; Omara, M.; Chulakadabba, A.; Roger, J.; Sargent, M.; Franklin, J.E.; Wofsy, S.C.; Gautam, R. Remote sensing of methane point sources with the MethaneAIR airborne spectrometer. EGUsphere 2025. preprint. [Google Scholar] [CrossRef]
- Lu, F.; Qin, K.; Cohen, J.B.; He, Q.; Tiwari, P.; Hu, W.; Ye, C.; Shan, Y.; Xu, Q.; Wang, S.; et al. Surface-observation-constrained high-frequency coal mine methane emissions in Shanxi, China, reveal more emissions than inventories, consistent with satellite inversion. Atmos. Chem. Phys. 2025, 25, 5837–5856. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Zhang, X.; Guo, C. Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities. Sci. Total Environ. 2023, 893, 164701. [Google Scholar] [CrossRef]
- Washenfelder, R.A.; Wennberg, P.O.; Toon, G.C. Tropospheric methane retrieved from ground-based near-IR solar absorption spectra. Geophys. Res. Lett. 2003, 30, 23. [Google Scholar] [CrossRef]
- Varon, D.J.; McKeever, J.; Jervis, D.; Maasakkers, J.D.; Pandey, S.; Houweling, S.; Aben, I.; Scarpelli, T.; Jacob, D.J. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophys. Res. Lett. 2019, 46, 13507–13516. [Google Scholar] [CrossRef]
- Jervis, D.; McKeever, J.; Durak, B.O.; Sloan, J.J.; Gains, D.; Varon, D.J.; Ramier, A.; Strupler, M.; Tarrant, E. The GHGSat-D imaging spectrometer. Atmos. Meas. Tech. 2021, 14, 2127–2140. [Google Scholar] [CrossRef]
- Buchwitz, M.D.; De Beek, R.; Burrows, J.P.; Bovensmann, H.; Warneke, T.; Notholt, J.; Meirink, J.F.; Goede, A.P.H.; Bergamaschi, P.; Körner, S.; et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmos. Chem. Phys. 2005, 5, 941–962. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Hu, H.; Hasekamp, O.; Butz, A.; Galli, A.; Landgraf, J.; Aan de Brugh, J.; Borsdorff, T.; Scheepmaker, R.; Aben, I. The operational methane retrieval algorithm for TROPOMI. Atmos. Meas. Tech. 2016, 9, 5423–5440. [Google Scholar] [CrossRef]
- Roger, J.; Guanter, L.; Gorroño, J.; Irakulis-Loitxate, I. Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers. Atmos. Meas. Tech. Discuss. 2024, 17, 1333–1346. [Google Scholar] [CrossRef]
- Varon, D.J.; Jacob, D.J.; McKeever, J.; Jervis, D.; Durak, B.O.; Xia, Y.; Huang, Y. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmos. Meas. Tech. 2018, 11, 5673–5686. [Google Scholar] [CrossRef]
- MethaneSAT. Available online: https://www.methanesat.org/satellite (accessed on 17 October 2025).
- Duren, R.; Cusworth, D.; Ayasse, A.; Howell, K.; Diamond, A.; Scarpelli, T.; Kim, J.; O’neill, K.; Lai-Norling, J.; Thorpe, A.; et al. The Carbon Mapper emissions monitoring system. EGUsphere 2025. preprint. [Google Scholar] [CrossRef]
- Liu, G.; Peng, S.; Lin, X.; Ciais, P.; Li, X.; Xi, Y.; Lu, Z.; Chang, J.; Saunois, M.; Wu, Y.; et al. Recent slowdown of anthropogenic methane emissions in China driven by stabilized coal production. Environ. Sci. Technol. Lett. 2021, 8, 739–746. [Google Scholar] [CrossRef]
- He, J.; Naik, V.; Horowitz, L.W.; Dlugokencky, E.; Thoning, K. Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1. Atmos. Chem. Phys. 2020, 20, 805–827. [Google Scholar] [CrossRef]
- Ganesan, A.L.; Schwietzke, S.; Poulter, B.; Arnold, T.; Lan, X.; Rigby, M.; Vogel, F.R.; van der Werf, G.R.; Janssens-Maenhout, G.; Boesch, H.; et al. Advancing scientific understanding of the global methane budget in support of the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 1475–1512. [Google Scholar] [CrossRef]
- Karacan, C.Ö.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Zhou, F.; Xia, T.; Wang, X.; Zhang, Y.; Sun, Y.; Liu, J. Recent developments in coal mine methane extraction and utilization in China: A review. J. Nat. Gas Sci. Eng. 2016, 31, 437–458. [Google Scholar] [CrossRef]
- Gao, J.; Guan, C.; Zhang, B. China’s CH4 emissions from coal mining: A review of current bottom-up inventories. Sci. Total Environ. 2020, 725, 138295. [Google Scholar] [CrossRef]
- Kholod, N.; Evans, M.; Pilcher, R.C.; Roshchanka, V.; Ruiz, F.; Coté, M.; Collings, R. Global methane emissions from coal mining to continue growing even with declining coal production. J. Clean. Prod. 2020, 256, 120489. [Google Scholar] [CrossRef]
- Karacan, C.Ö.; Field, R.A.; Olczak, M.; Kasprzak, M.; Ruiz, F.A.; Schwietzke, S. Mitigating climate change by abating coal mine methane: A critical review of status and opportunities. Int. J. Coal Geol. 2024, 295, 104623. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global atmospheric methane: Budget, changes and dangers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2058–2072. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Khanna, N.; Liu, X.; Wang, W.; Gordon, J.; Dai, F. Opportunities to tackle short-lived climate pollutants and other greenhouse gases for China. Sci. Total Environ. 2022, 842, 156842. [Google Scholar] [CrossRef] [PubMed]
- Dreger, M.; Kędzior, S. Methane emissions and demethanation of coal mines in the Upper Silesian Coal Basin between 1997 and 2016. Environ. Socio-Econ. Stud. 2019, 7, 12–23. [Google Scholar] [CrossRef]
- Kai, Q.; Qin, H.; Kang, H.S.; Wei, H.; Fan, L.; Jason, C. Progress and prospect of satellite remote sensing research applied to methane emissions from the coal industry. Acta Opt. Sin. 2023, 43, 13. [Google Scholar]
- Kim, M.; Park, J.; Hyun, C.U. Current Status of Satellite Remote Sensing-Based Methane Emission Monitoring Technologies. Econ. Environ. Geol. 2024, 57, 513–527. [Google Scholar] [CrossRef]
- Zięba, M.; Smoliński, A. Methane Emissions from Mining in the European Union. Energies 2025, 18, 791. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Mahdianpari, M.; Radman, A.; Varon, D.; Hemati, M.; Marjani, M. Advancements in satellite-based methane point source monitoring: A systematic review. ISPRS J. Photogramm. Remote Sens. 2025, 224, 94–112. [Google Scholar] [CrossRef]
- Ke, J.; Xie, X.; Qiu, L.; Liu, F.; Huang, S.; Zhang, Z.; Chen, X. Advances in chemiresistive methane gas sensors based on nanostructured metal oxide semiconductor. Mater. Sci. Eng. B 2026, 323, 118755. [Google Scholar] [CrossRef]
- Varon, D.J.; Jacob, D.J.; Jervis, D.; McKeever, J. Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations. Environ. Sci. Technol. 2020, 54, 10246–10253. [Google Scholar] [CrossRef] [PubMed]
- Alicandro, M.; Candigliota, E.; Dominici, D.; Immordino, F.; Masin, F.; Pascucci, N.; Quaresima, R.; Zollini, S. Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy). Land 2022, 11, 2070. [Google Scholar] [CrossRef]
- Popescu, M.; de León, J.; Goldberg, H.; Kovács, G.; Ruggiu, L.K.; Nagy, B.; Prodan, G.P.; Grieger, B.; Kohout, T.; Licandro, J.; et al. Hyperspectral imaging of meteorites using the HyperScout-H instrument. In Proceedings of the Uroplanet Science Congress 2024, Berlin, Germany, 8–13 September 2024. No. EPSC2024-586. [Google Scholar]
- De Luca, G.; Carotenuto, F.; Genesio, L.; Pepe, M.; Toscano, P.; Boschetti, M.; Miglietta, F.; Gioli, B. Improving PRISMA hyperspectral spatial resolution and geolocation by using Sentinel-2: Development and test of an operational procedure in urban and rural areas. ISPRS J. Photogramm. Remote Sens. 2024, 215, 112–135. [Google Scholar] [CrossRef]
- Miller, C.C.; Roche, S.; Wilzewski, J.S.; Liu, X.; Chance, K.; Souri, A.H.; Conway, E.; Luo, B.; Samra, J.; Hawthorne, J.; et al. Methane retrieval from MethaneAIR using the CO2 proxy approach: A demonstration for the upcoming MethaneSAT mission. Atmos. Meas. Tech. 2024, 17, 5429–5454. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, Y.; Li, F.; Yan, Y.; Chen, H.; Feng, S.; Jiang, F.; Sun, S.; Wang, Z.; Zhou, C.; et al. High-resolution satellite estimates of coal mine methane emissions from local to regional scales in Shanxi, China. Sci. Total Environ. 2024, 950, 175446. [Google Scholar] [CrossRef] [PubMed]
- Joyce, P.; Ruiz Villena, C.; Huang, Y.; Webb, A.; Gloor, M.; Wagner, F.H.; Chipperfield, M.P.; Barrio Guilló, R.; Wilson, C.; Boesch, H. Using a deep neural network to detect methane point sources and quantify emissions from PRISMA hyperspectral satellite images. Atmos. Meas. Tech. 2023, 16, 2627–2640. [Google Scholar] [CrossRef]
- Schuit, B.J.; Maasakkers, J.D.; Bijl, P.; Mahapatra, G.; Van den Berg, A.W.; Pandey, S.; Lorente, A.; Borsdorff, T.; Houweling, S.; Varon, D.J.; et al. Automated detection and monitoring of methane super-emitters using satellite data. Atmos. Chem. Phys. Discuss. 2023, 23, 9071–9098. [Google Scholar] [CrossRef]
- Hu, H.; Landgraf, J.; Detmers, R.; Borsdorff, T.; Aan de Brugh, J.; Aben, I.; Butz, A.; Hasekamp, O. Toward global mapping of methane with TROPOMI: First results and intersatellite comparison to GOSAT. Geophys. Res. Lett. 2018, 45, 3682–3689. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; Aan de Brugh, J.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–688. [Google Scholar] [CrossRef]
- Hu, W.; Qin, K.; Lu, F.; Li, D.; Cohen, J.B. Merging TROPOMI and eddy covariance observations to quantify 5-years of daily CH4 emissions over coal-mine dominated region. Int. J. Coal Sci. Technol. 2024, 11, 56. [Google Scholar] [CrossRef]
- Tu, Q.; Hase, F.; Qin, K.; Alberti, C.; Lu, F.; Bian, Z.; Cao, L.; Fang, J.; Gu, J.; Guan, L.; et al. COCCON Measurements of XCO2, XCH4 and XCO over Coal Mine Aggregation Areas in Shanxi, China, and Comparison to TROPOMI and CAMS Datasets. Remote Sens. 2024, 16, 4022. [Google Scholar] [CrossRef]
- Palmer, P.I.; Feng, L.; Lunt, M.F.; Parker, R.J.; Bösch, H.; Lan, X.; Lorente, A.; Borsdorff, T. The added value of satellite observations of methane for understanding the contemporary methane budget. Philos. Trans. R. Soc. A 2021, 379, 20210106. [Google Scholar] [CrossRef]
- Sibiya, S.S.; Mhangara, P.; Shikwambana, L. Seasonal and trend variation of methane concentration over two provinces of South Africa using Sentinel-5p data. Environ. Monit. Assess. 2024, 196, 713. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Hase, F.; Qin, K.; Cohen, J.B.; Khosrawi, F.; Zou, X.; Schneider, M.; Lu, F. Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method. Atmos. Chem. Phys. 2024, 24, 4875–4894. [Google Scholar] [CrossRef]
- Peng, S.; Giron, C.; Liu, G.; D’Aspremont, A.; Benoit, A.; Lauvaux, T.; Lin, X.; de Almeida Rodrigues, H.; Saunois, M.; Ciais, P. High-resolution assessment of coal mining methane emissions by satellite in Shanxi, China. iScience 2023, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- Trenchev, P.; Dimitrova, M.; Avetisyan, D. Huge CH4, NO2 and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P. Remote Sens. 2023, 15, 1590. [Google Scholar] [CrossRef]
- Tu, Q.; Schneider, M.; Hase, F.; Khosrawi, F.; Ertl, B.; Necki, J.; Dubravica, D.; Diekmann, C.J.; Blumenstock, T.; Fang, D. Quantifying CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method. Atmos. Chem. Phys. 2022, 22, 9747–9765. [Google Scholar] [CrossRef]
- Sadavarte, P.; Pandey, S.; Maasakkers, J.D.; Lorente, A.; Borsdorff, T.; Denier van der Gon, H.; Houweling, S.; Aben, I. Methane emissions from superemitting coal mines in Australia quantified using TROPOMI satellite observations. Environ. Sci. Technol. 2021, 55, 16573–16580. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Sun, D.X.; Hu, X.N.; Ye, X.; Li, Y.D.; Liu, S.F.; Cao, K.Q.; Chai, M.Y.; Zhang, J.; Zhang, Y.; et al. The advanced hyperspectral imager: Aboard China’s GaoFen-5 satellite. IEEE Geosci. Remote Sens. Mag. 2019, 7, 23–32. [Google Scholar] [CrossRef]
- Irakulis-Loitxate, I.; Guanter, L.; Liu, Y.N.; Varon, D.J.; Maasakkers, J.D.; Zhang, Y.; Chulakadabba, A.; Wofsy, S.C.; Thorpe, A.K.; Duren, R.M.; et al. Satellite-based survey of extreme methane emissions in the Permian basin. Sci. Adv. 2021, 7, eabf4507. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Gao, L.; Liang, M.; Zeng, Z.C. A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board GaoFen-5B. Atmos. Meas. Tech. 2024, 17, 2937–2956. [Google Scholar] [CrossRef]
- Han, G.; Pei, Z.; Shi, T.; Mao, H.; Li, S.; Mao, F.; Ma, X.; Zhang, X.; Gong, W. Unveiling unprecedented methane hotspots in China’s leading coal production hub: A satellite mapping revelation. Geophys. Res. Lett. 2024, 51, e2024GL109065. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Guanter, L.; Irakulis-Loitxate, I.; Gorroño, J.; Sánchez-García, E.; Cusworth, D.H.; Varon, D.J.; Cogliati, S.; Colombo, R. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sens. Environ. 2021, 265, 112671. [Google Scholar] [CrossRef]
- Gauthier, J.F.; Germain, S. From Data to Actionable Insight: Monitoring Fugitive Methane Emissions at Oil and Gas Facilities Using Satellites. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 11–14 November 2019. [Google Scholar]
- GHGSat. GHGSat Successfully Launches Two New Satellites, Unlocking Unprecedented Daily Global Methane Monitoring Abilities. Available online: https://www.ghgsat.com/en/newsroom/ghgsat-successfully-launches-two-new-satellites-unlocking-unprecedented-daily-global-methane-monitoring-abilities/ (accessed on 17 October 2025).
- Kuze, A.; Suto, H.; Shiomi, K.; Kawakami, S.; Tanaka, M.; Ueda, Y.; Deguchi, A.; Yoshida, J.; Yamamoto, Y.; Kataoka, F.; et al. Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech. 2016, 9, 2445–2461. [Google Scholar] [CrossRef]
- Miller, S.M.; Michalak, A.M.; Detmers, R.G.; Hasekamp, O.P.; Bruhwiler, L.M.; Schwietzke, S. China’s coal mine methane regulations have not curbed growing emissions. Nat. Commun. 2019, 10, 303. [Google Scholar] [CrossRef]
- Sheng, J.; Tunnicliffe, R.; Ganesan, A.L.; Maasakkers, J.D.; Shen, L.; Prinn, R.G.; Song, S.; Zhang, Y.; Scarpelli, T.; Bloom, A.A.; et al. Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environ. Res. Lett. 2021, 16, 104018. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, S.; Chen, J.; Lin, Y.; Chen, Y.; Liang, R.; Jiang, K.; Parker, R.J.; Boesch, H.; Steinbacher, M.; et al. Observed changes in China’s methane emissions linked to policy drivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2202742119. [Google Scholar] [CrossRef] [PubMed]
- García, O.E.; Schneider, M.; Ertl, B.; Sepúlveda, E.; Borger, C.; Diekmann, C.; Wiegele, A.; Hase, F.; Barthlott, S.; Blumenstock, T.; et al. The MUSICA IASI CH4 and N2O products and their comparison to HIPPO, GAW and NDACC FTIR references. Atmos. Meas. Tech. 2018, 11, 4171–4215. [Google Scholar] [CrossRef]
- Diekmann, C.J.; Schneider, M.; Ertl, B.; Hase, F.; García, O.; Khosrawi, F.; Sepúlveda, E.; Knippertz, P.; Braesicke, P. The global and multi-annual MUSICA IASI {H2O, δD} pair dataset. Earth Syst. Sci. Data 2021, 13, 5273–5292. [Google Scholar] [CrossRef]
- Schneider, M.; Ertl, B.; Diekmann, C.J.; Khosrawi, F.; Weber, A.; Hase, F.; Höpfner, M.; García, O.E.; Sepúlveda, E.; Kinnison, D. Design and description of the MUSICA IASI full retrieval product. Earth Syst. Sci. Data Discuss. 2021, 14, 709–742. [Google Scholar] [CrossRef]
- Schneider, M.; Ertl, B.; Tu, Q.; Diekmann, C.J.; Khosrawi, F.; Röhling, A.N.; Hase, F.; Dubravica, D.; García, O.E.; Sepúlveda, E.; et al. Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products. Atmos. Meas. Tech. 2022, 15, 4339–4371. [Google Scholar] [CrossRef]
- Butz, A.; Hasekamp, O.P.; Frankenberg, C.; Aben, I. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl. Opt. 2009, 48, 3322–3336. [Google Scholar] [CrossRef]
- Hasekamp, O.P.; Butz, A. Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres. J. Geophys. Res. Atmos. 2008, 113, D20309. [Google Scholar] [CrossRef]
- Schepers, D.; Guerlet, S.; Butz, A.; Landgraf, J.; Frankenberg, C.; Hasekamp, O.; Blavier, J.F.; Deutscher, N.M.; Griffith, D.W.T.; Hase, F.; et al. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms. J. Geophys. Res. Atmos. 2012, 117, D10307. [Google Scholar] [CrossRef]
- Thompson, D.R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R.O.; Kratwurst, S.; Krings, T.; et al. Real-time remote detection and measurement for airborne imaging spectroscopy: A case study with methane. Atmos. Meas. Tech. 2015, 8, 4383–4397. [Google Scholar] [CrossRef]
- Thompson, R.L.; Stohl, A.; Zhou, L.X.; Dlugokencky, E.; Fukuyama, Y.; Tohjima, Y.; Kim, S.Y.; Lee, H.; Nisbet, E.G.; Fisher, R.E.; et al. Methane emissions in East Asia for 2000–2011 estimated using an atmospheric Bayesian inversion. J. Geophys. Res. Atmos. 2015, 120, 4352–4369. [Google Scholar] [CrossRef]
- Roger, J.; Irakulis-Loitxate, I.; Gorroño, J.; Valverde, A.; Guanter, L. The Improvement of Methane Plume Detection with High-Resolution Satellite-Based Imaging Spectrometers. Environ. Sci. Proc. 2024, 28, 20. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Ayasse, A.K.; Thorpe, A.K.; Roberts, D.A.; Funk, C.C.; Dennison, P.E.; Frankenberg, C.; Steffke, A.; Aubrey, A.D. Evaluating the Effects of Surface Properties on Methane Retrievals Using a Synthetic Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) Image. Remote Sens. Environ. 2018, 215, 386–397. [Google Scholar] [CrossRef]
- Huang, S. Current Situations of CBM/CMM Recovery and Utilization & Methane Emission Reduction in China. In Proceedings of the Global Methane Initiative Expo, Vancouver, BC, Canada, 12–15 March 2013; pp. 12–15. [Google Scholar]
- Manning, A.J.; O’Doherty, S.; Jones, A.R.; Simmonds, P.G.; Derwent, R.G. Estimating UK Methane and Nitrous Oxide Emissions from 1990 to 2007 Using an Inversion Modeling Approach. J. Geophys. Res. Atmos. 2011, 116, D02305. [Google Scholar] [CrossRef]
- Sheng, J.; Song, S.; Zhang, Y.; Prinn, R.G.; Janssens-Maenhout, G. Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends. Environ. Sci. Technol. Lett. 2019, 6, 473–478. [Google Scholar] [CrossRef]
- China State Administration of Coal Mine Safety (CSACMS). Compilation of National Coal Mine Gas Level Identification for 2011; National Coal Mine Safety Supervision Bureau: Beijing, China, 2019.
- Lu, T.; Li, Z.; Fan, C.; He, Z.; Jiang, X.; Zhang, Y.; Gao, Y.; Xuan, Y.; de Leeuw, G. Global Methane Retrieval, Monitoring, and Quantification in Hotspot Regions Based on AHSI/ZY-1 Satellite. Atmosphere 2025, 16, 510. [Google Scholar] [CrossRef]
- Li, X.; Cheng, T.; Zhu, H.; Ye, X.; Fan, D.; Tang, T.; Tong, H.; Yin, S.; Xiong, J. High-Resolution Satellite Reveals the Methane Emissions from China’s Coal Mines. Remote Sens. 2025, 17, 220. [Google Scholar] [CrossRef]
- Cardno. Environmental Assessment Appin Colliery Area 7 Goaf Gas Drainage Project. 2009. Available online: https://gm3.au/wp-content/uploads/2024/06/appin-surface-gas-management-project-environmental-assessment.pdf (accessed on 20 May 2025).
- Ong, C.; Day, S.; Halliburton, B.; Marvig, P.; White, S. Regional Methane Emissions in NSW CSG Basins; Unpublished Report; Federal Scientific and Industrial Research Organization (CSIRO): Canberra, Australia, 2017. [Google Scholar]
- Krautwurst, S.; Gerilowski, K.; Borchardt, J.; Wildmann, N.; Galkowski, M.; Swolkien, J.; Marshall, J.; Fiehn, A.; Roiger, A.; Ruhtz, T.; et al. Quantification of CH4 Coal Mining Emissions in Upper Silesia by Passive Airborne Remote Sensing Observations with the MAMAP Instrument During CoMet. Atmos. Chem. Phys. Discuss. 2021, 21, 17345–17371. [Google Scholar] [CrossRef]
- Fiehn, A.; Kostinek, J.; Eckl, M.; Klausner, T.; Gałkowski, M.; Chen, J.; Gerbig, C.; Röckmann, T.; Maazallahi, H.; Schmidt, M.; et al. Estimating CH4, CO2, and CO Emissions from Coal Mining and Industrial Activities in the Upper Silesian Coal Basin Using an Aircraft-Based Mass Balance Approach. Atmos. Chem. Phys. Discuss. 2020, 20, 12675–12695. [Google Scholar] [CrossRef]
- Frankenberg, C.; Thorpe, A.K.; Thompson, D.R.; Hulley, G.; Kort, E.A.; Vance, N.; Borchardt, J.; Krings, T.; Gerilowski, K.; Sweeney, C.; et al. Airborne Methane Remote Measurements Reveal Heavy-Tail Flux Distribution in Four Corners Region. Proc. Natl. Acad. Sci. USA 2016, 113, 9734–9739. [Google Scholar] [CrossRef]
- Smith, M.L.; Gvakharia, A.; Kort, E.A.; Sweeney, C.; Conley, S.A.; Faloona, I.; Newberger, T.; Schnell, R.; Schwietzke, S.; Wolter, S. Airborne Quantification of Methane Emissions Over the Four Corners Region. Environ. Sci. Technol. 2017, 51, 5832–5837. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (EPA). Facility Level Information on Greenhouse Gases Tool (FLIGHT). 2017. Available online: https://ghgdata.epa.gov/ghgp/service/html/2017?id=1009342&et=undefined (accessed on 20 May 2025).
- Karacan, C.Ö.; Irakulis-Loitxate, I.; Field, R.A.; Warwick, P.D. Temporal and spatial comparison of coal mine ventilation methane emissions and mitigation quantified using PRISMA satellite data and on-site measurements. Sci. Total Environ. 2025, 975, 179268. [Google Scholar] [CrossRef] [PubMed]
- MacKay, K.; Benmergui, J.; Williams, J.P.; Omara, M.; Himmelberger, A.; Sargent, M.; Warren, J.D.; Miller, C.C.; Roche, S.; Zhang, Z.; et al. Assessment of methane emissions from US onshore oil and gas production using MethaneAIR measurements. EGUsphere 2025. preprint. [Google Scholar] [CrossRef]
- Guido, J.; Keremedjiev, M.; Mason, J.; Duren, R.; Lai-Norling, J.; Seaman, K.; Green, R. Advanced Hyperspectral Imaging From Orbit: Achievements and Challenges From the First Year of Tanager-1. In Proceedings of the Small Satellite Conference 2025, Salt Lake City, UT, USA, 10–13 August 2025. [Google Scholar]
- Zhao, R.; Dai, K.; Cao, Y.; Zhu, Y.; Wang, Y.; Wang, Q.; Xu, Y. Improved Short-Term Surface Wind Speed Forecasts Using Random Forest Approach with Sliding Time Window and Region Regression. Weather Forecast. 2025, 40, 1917–1934. [Google Scholar] [CrossRef]
- Pérez-Carrasco, M.; Nasr, M.; Roche, S.; Miller, C.C.; Zhang, Z.; Park, C.F.; Walker, E.; Garraffo, C.; Finkbeiner, D.; Gautam, R.; et al. Deep Learning for Clouds and Cloud Shadow Segmentation in Methane Satellite and Airborne Imaging Spectroscopy. arXiv 2025, arXiv:2509.19665. [Google Scholar] [CrossRef]
- UNEP, Australia Announce Landmark Study to Improve Understanding of Coal and Steel Sector Methane Emissions. Available online: https://www.unep.org/news-and-stories/press-release/unep-australia-announce-landmark-study-improve-understanding-coal (accessed on 8 January 2025).
- Climate Change Authority. 2023 Review of the National Greenhouse and Energy Reporting (NGER) Legislation; Climate Change Authority: Canberra, Australia, 2023. Available online: https://www.climatechangeauthority.gov.au/sites/default/files/documents/2023-12/2023%20NGER%20Review%20-%20for%20publication.pdf (accessed on 15 October 2025).
- Worldometers. Coal Production by Country. Worldometers 2025. 2025. Available online: https://www.worldometers.info/coal/coal-production-by-country/ (accessed on 15 September 2025).





| Item | Source |
|---|---|
| Database | Scopus |
| Seach Title | coal AND mine AND emission |
| Focus group | Satellite Observations |
| Time range | 2015 to 2026 |
| Document Type | Article, Conference Paper, Review, Book Chapter, Letter, Editorial, Data paper |
| Language | English |
| S. No. | Sensor Name | Revisit Rate | Type of Sensor | Methane Band | Resolution | Min Emission Rate | Swath Width |
|---|---|---|---|---|---|---|---|
| 1 | TROPOMI | 1 Day | Hyperspectral Imaging | 2.2–2.4 µm | 5.5 × 7 km | ~10 t/h | 2600 km |
| 2 | GaoFen-5 | 4–5 Days | Hyperspectral Imaging | 2.11–2.45 μm | 30 × 30 m | ~1 t/h | 60 km |
| 3 | PRISMA | 2–3 Days | Hyperspectral Imaging | 2.10–2.45 μm | 30 × 30 m | ~0.5 t/h | 30 km |
| 4 | GHGSat-D | 1 Day | Remote Sensing (Optical) | 1.63–1.675 μm | 25 × 25 m | ~0.1 t/h | 12 km |
| 5 | GOSAT | 3 Days | Atmospheric Monitoring | 1.65 μm | 10 × 10 km2 | ~50 t/h | 100 km |
| 6 | IASI (METOP) | 12 h | Infrared Atmospheric Sounding | 3.7–15 μm | 5.5 × 7 km2 | ~0.1 Tg CH4/year | 2200 km |
| 7 | EnMAP | 27 Days | Hyperspectral Imaging | 2.10–2.45 µm | 30 × 30 m | ~1 t/h | 30 km |
| 8 | Ziyuan (ZY-01, 02) | 3 Days | Hyperspectral Imaging | 2.10–2.45 µm | 30 × 30 m | ~1 t/h | 115 km |
| 9 | EMIT | Variable | Hyperspectral Imaging | 2.10–2.45 µm | 60 × 60 m | ~1 t/h | 75 km |
| S. No. | Title | Region | Satellite | Quantification Methods | Identified Emission Rates and Available Uncertainties |
|---|---|---|---|---|---|
| 1 | Merging TROPOMI and eddy-covariance observations to quantify 5 years of daily CH4 emissions over a coal-mine dominated region | China | TROPOMI | Model-free mass balance | Estimated CH4 emissions over Shanxi, China, at 126 ± 58.8 µg m−2 s−1 using TROPOMI data integrated with high-frequency eddy-covariance fluxes, revealing strong daily variability and reduced bias through high-frequency observations. |
| 2 | High-resolution satellite estimates of coal mine methane emissions from local to regional scales in Shanxi, China | China | EMIT, EnMAP, GaoFen-5B, ZY1-02D | Integrated mass enhancement method | Estimated CH4 emissions over Shanxi, China, during 2019 to 2023 at 8.9 ± 0.5 Tg yr−1 using High-resolution satellites. Reported a decline of 20 to 30 ppb in mean ΔXCH4 using TROPOMI in Shanxi, China. |
| 3 | COCCON Measurements of XCO2, XCH4 and XCO over Coal Mine Aggregation Areas in Shanxi, China, and Comparison to TROPOMI and CAMS Datasets | China | TROPOMI | No quantification, only concentration analysis | First ground-based XCH4 estimates with EM27/SUNs in Shanxi, China, showed good agreement with TROPOMI observations, with a mean bias of 7.15 ± 9.49 ppb. No emission rate estimation. |
| 4 | Seasonal and trend variation of methane concentration over two provinces of South Africa using Sentinel-5p data | South Africa | TROPOMI | No quantification, only concentration analysis | Used satellite observations for seasonal analysis of methane in coal mine provinces of South Africa and observed an increasing trend of XCH4 from 2019 to 2023. |
| 5 | Unveiling Unprecedented Methane Hotspots in China’s Leading Coal Production Hub: A Satellite Mapping Revelation | China | GaoFen 5B | Integrated mass enhancement method | Using GaoFen-5B observations, detected 138 plumes over 82 facilities in Shanxi, China, and estimated an emission of 1.2 (+0.24/−0.20) Mt CH4/y. Reported the intermittent characteristics of methane on the activity level. |
| 6 | A survey of methane point-source emissions from coal mines in Shanxi province of China using AHSI on board GaoFen-5B | China | GaoFen 5B | Integrated mass enhancement method | Using GaoFen-5B observations, detected 93 plumes over 32 facilities in Shanxi, China. Discussed the necessity of careful plume detections under variable surface conditions. |
| 7 | Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method | China | TROPOMI | Wind-assign anomaly method coupled with the cone-plume model | Estimated the CMM emission in three regions of Shanxi, China, with emission rates of 0.706 Tg yr−1 ± 25%, 1.176 Tg yr−1 ± 20% and 0.412 Tg yr−1 ± 21% and reported a discrepancy of 64 to 176% with EDGARv7.0. |
| 8 | Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers | Poland, China | PRISMA | Integrated mass enhancement method | The study checked the match-filter method of plume detection for PRISMA over Chinese coal mines. |
| 9 | High-resolution assessment of coal mining methane emissions by satellite in Shanxi, China | China | TROPOMI | HYSPLIT Model | Using the HYSPLIT model with TROPOMI observations, CMM emissions in Shanxi were estimated to be 8.5 ± 0.6 Tg CH4 yr−1 (2019) and 8.6 ± 0.6 Tg CH4 yr−1 (2020). |
| 10 | Automated detection and monitoring of methane super-emitters using satellite data | Global | GHGSat-C, PRISMA, Sentinel-2, EMIT TROPOMI, | Integrated mass enhancement method | The study focused on a CNN-based plume-detection approach using multi-satellite data across the globe. |
| 11 | Huge CH4, NO2, and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P | Russia | TROPOMI | No quantification, only concentration analysis | The study found a total of 339 events using TOPOMI observations. However, no flux estimation was conducted. |
| 12 | Observed changes in China’s methane emissions linked to policy drivers | China | GOSAT | GOES-Chem-based Inverse modelling | Estimated the long-term trends of Chinese coal mines using satellite-based model emissions in China. |
| 13 | Quantifying CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method | Poland | TROPOMI + IASI (METOP) | Wind-assign anomaly method coupled with the cone-plume model | The USCB annual CH4 emissions were estimated to be 496 kt/y from TROPOMI and 437 kt/y from TROPOMI–IASI observations. These estimates closely match the E-PRTR (448 kt yr−1) and CoMet (555 kt yr−1) inventories. |
| 14 | Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations | Australia | TROPOMI | Cross-sectional Flux method | Estimated the TROPOMI-based flux for the Australian coal mines and compared it with IPCC-based emission estimates. |
| 15 | Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer | China | PRISMA | Integrated mass enhancement method | Tested the PRISMA capabilities in the flux observation for various point sources in coal mines and other sources. |
| 16 | Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area | China | GOSAT | NAME model emission estimations | Estimated the long-term trends of Chinese coal mines using satellite-based model emissions in China. |
| 17 | China’s coal mine methane regulations have not curbed growing emissions | China | GOSAT | GOES-Chem and Bayesian emission estimations | Estimated the long-term trends of Chinese coal mines using satellite-based model emissions in China. |
| 18 | From data to actionable insight: Monitoring fugitive methane emissions at oil and gas facilities using satellites | Global | GHGSat-D | No quantification, only technological discussions | Discussed the technological aspect of the GHGSat in various methane emission detection and quantification. |
| 19 | Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents with GHGSat-D Satellite Observations | China, USA, Australia | GHGSat-D | Integrated mass enhancement and the Cross-sectional flux method | Estimated the coal mine emission in the USA, China, and Australia using high-resolution GHGSat-D observation and tested both IME and CSF methods. |
| 20 | The added value of satellite observations of methane for understanding the contemporary methane budget | Australia | TROPOMI | Model-free mass balance | Estimated the global CH4 budget using satellite observations along with satellite observation-based flux estimation of Australian mines. |
| 21 | Temporal and spatial comparison of coal mine ventilation methane emissions and mitigation quantified using PRISMA satellite data and on-site measurements | USA | PRISMA | Integrated mass enhancement | Ventilation air methane (VAM) emissions in Virginia, USA (2020–2023), were estimated using PRISMA satellite observations combined with ground-based measurements. ERA-5–based top-down estimates were higher than those using GOES-FP inputs, with in situ measurements indicating median emission rates of ~3800 kg h−1 (VS12) and ~2000 kg h−1 (VS16). |
| 22 | High-Resolution Satellite Reveals the Methane Emissions from China’s Coal Mines | China | EMIT | Integrated mass enhancement | Estimated emission intensities of 0.48 kg GJ−1 from CMM, derived from 88 plumes observed by EMIT and available through the Carbon Mapper portal between January 2023 and July 2024, were higher than those reported by EDGAR v8.0 (0.24 kg GJ−1) and GFEI v2 (0.18 kg GJ−1). |
| 23 | Global Methane Retrieval, Monitoring, and Quantification in Hotspot Regions Based on AHSI/ZY-1 Satellite | China | ZY1-02D | Integrated mass enhancement | High-resolution ZY-02D satellite observations were used to estimate CMM emission rates in China between July and December 2023. Three distinct plumes detected over coal mining sites exhibited emission rates of 6029 ± 1033 kg h−1, 4298 ± 762 kg h−1, and 6146 ± 1126 kg h−1, respectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, A.; Raval, S. Satellite-Derived Approaches for Coal Mine Methane Estimation: A Review. Remote Sens. 2025, 17, 3652. https://doi.org/10.3390/rs17213652
Chauhan A, Raval S. Satellite-Derived Approaches for Coal Mine Methane Estimation: A Review. Remote Sensing. 2025; 17(21):3652. https://doi.org/10.3390/rs17213652
Chicago/Turabian StyleChauhan, Akshansha, and Simit Raval. 2025. "Satellite-Derived Approaches for Coal Mine Methane Estimation: A Review" Remote Sensing 17, no. 21: 3652. https://doi.org/10.3390/rs17213652
APA StyleChauhan, A., & Raval, S. (2025). Satellite-Derived Approaches for Coal Mine Methane Estimation: A Review. Remote Sensing, 17(21), 3652. https://doi.org/10.3390/rs17213652

