Detailed Hierarchical Classification of Coastal Wetlands Using Multi-Source Time-Series Remote Sensing Data Based on Google Earth Engine
Highlights
- A strategy integrating the strengths of pixel- and object-based classification was developed, achieving high classification performance and fine differentiation of coastal wetlands.
- A set of composite feature variables was constructed and optimized that effectively captures the differential dynamic characteristics of coastal wetland types.
- The proposed classification strategy effectively addresses key challenges in coastal wetland mapping, establishing a reliable framework for large-scale, high-precision applications.
- Fine-grained wetland classification characterizes ecological functional distinctions among wetland types, facilitating targeted management of coastal wetlands.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Sentinel Data and Pre-Processing
2.2.2. Training and Validation Samples

2.2.3. Ancillary Data
2.3. Technical Framework for Wetland Classification and Analysis
2.3.1. Feature Extraction of Coastal Wetlands
2.3.2. Random Forest Classifier
2.3.3. Pixel-Based Classification
2.3.4. Object-Based Classification
2.3.5. Post Classification Processing
2.4. Jeffries–Matusita Distance
2.5. Accuracy Assessment and Comparison Analysis
3. Results
3.1. Feature Selection Analysis
3.2. Detailed Classification Results of Coastal Wetland Types
3.3. Accuracy Assessment of Coastal Wetland Classification Results
4. Discussion
4.1. Separability Analysis of Coastal Wetland Types
4.2. Comparison with Other Dataset Products
4.3. Limitations and Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RFE | recursive feature elimination |
| GEE | Google Earth Engine |
| VV | vertical–vertical |
| VH | vertical–horizontal |
| NIR | near-infrared |
| SWIR | short-wave infrared |
| EVI | Enhanced Vegetation Index |
| NDVI | Normalized Difference Vegetation index |
| LSWI | Land Surface Water Index |
| NDWI | Normalized Difference Water Index |
| DEM | digital elevation model |
| CV | coefficient of variation |
| SNIC | simple non-iterative clustering |
| JM | Jeffries–Matusita |
| O.A. | overall accuracy |
| U.A. | user’s accuracy |
| P.A. | producer’s accuracy |
| PW | permanent water |
| AW | artificial wetland |
| SA | Spartina alterniflora |
| PA | Phragmites australis |
| SS | Suaeda salsa |
| IF | intertidal flat |
| SF | supratidal flat |
| WB | water bodies |
| BL | built-up land |
| FL | forest land |
| CL | cropland |
References
- Sun, Z.; Sun, W.; Tong, C.; Zeng, C.; Yu, X.; Mou, X. China’s Coastal Wetlands: Conservation History, Implementation Efforts, Existing Issues and Strategies for Future Improvement. Environ. Int. 2015, 79, 25–41. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping Coastal Wetlands of China Using Time Series Landsat Images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Xu, X.; Zou, Z.; Chen, B.; Qin, Y.; Zhang, X.; Dong, J.; Liu, D.; Pan, L.; et al. Rebound in China’s Coastal Wetlands Following Conservation and Restoration. Nat. Sustain. 2021, 4, 1076–1083. [Google Scholar] [CrossRef]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef]
- Wu, W.; Zhi, C.; Gao, Y.; Chen, C.; Chen, Z.; Su, H.; Lu, W.; Tian, B. Increasing Fragmentation and Squeezing of Coastal Wetlands: Status, Drivers, and Sustainable Protection from the Perspective of Remote Sensing. Sci. Total Environ. 2022, 811, 152339. [Google Scholar] [CrossRef]
- Wei, L.; Mao, M.; Zhao, Y.; Wu, G.; Wang, H.; Li, M.; Liu, T.; Wei, Y.; Huang, S.; Huang, L.; et al. Spatio-Temporal Characteristics and Multi-Scenario Simulation Analysis of Ecosystem Service Value in Coastal Wetland: A Case Study of the Coastal Zone of Hainan Island, China. J. Environ. Manage. 2024, 368, 122199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.; Zhao, T.; Chen, X.; Lin, S.; Wang, J.; Mi, J.; Liu, W. GWL_FCS30: A Global 30 m Wetland Map with a Fine Classification System Using Multi-Sourced and Time-Series Remote Sensing Imagery in 2020. Earth Syst. Sci. Data 2023, 15, 265–293. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National Wetland Mapping in China: A New Product Resulting from Object-Based and Hierarchical Classification of Landsat 8 OLI Images. ISPRS J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M.; et al. High-Resolution Mapping of Losses and Gains of Earth’s Tidal Wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Song, K.; Zhao, C.; Wang, C.; Xiao, X.; Wang, Y. Mapping Global Distribution of Mangrove Forests at 10-m Resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef]
- Ahmad, H.; Abdallah, M.; Jose, F.; Elzain, H.E.; Bhuyan, M.S.; Shoemaker, D.J.; Selvam, S. Evaluation and Mapping of Predicted Future Land Use Changes Using Hybrid Models in a Coastal Area. Ecol. Inform. 2023, 78, 102324. [Google Scholar] [CrossRef]
- Zheng, Z.; Jia, R. Distribution and Structure of China–ASEAN’s Intertidal Ecosystems: Insights from High-Precision, Satellite-Based Mapping. Remote Sens. 2025, 17, 155. [Google Scholar] [CrossRef]
- Li, M.; Chen, B.; Webster, C.; Gong, P.; Xu, B. The Land-Sea Interface Mapping: China’s Coastal Land Covers at 10 m for 2020. Sci. Bull. 2022, 67, 1750–1754. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, Z.; Qiu, S.; Kroeger, K.D.; Zhu, Z.; Covington, S. Detection and Characterization of Coastal Tidal Wetland Change in the Northeastern US Using Landsat Time Series. Remote Sens. Environ. 2022, 276, 113047. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking Annual Changes of Coastal Tidal Flats in China during 1986-2016 through Analyses of Landsat Images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Wu, J.; Wang, C.; Zhang, R.; Xiong, X.; Xu, C. Human Activities Dominate a Staged Degradation Pattern of Coastal Tidal Wetlands in Jiangsu Province, China. Ecol. Indic. 2023, 154, 110579. [Google Scholar] [CrossRef]
- Sun, Z.; Jiang, W.; Ling, Z.; Zhong, S.; Zhang, Z.; Song, J.; Xiao, Z. Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat-Tide-Semantic Segmentation Approach for Mangrove Mapping. Remote Sens. 2023, 15, 5271. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Zhao, S.; Zhou, M.; Yang, Y.; Li, F. Classification Mapping and Species Identification of Salt Marshes Based on a Short-Time Interval NDVI Time-Series from HJ-1 Optical Imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 27–41. [Google Scholar] [CrossRef]
- Wu, N.; Shi, R.; Zhuo, W.; Zhang, C.; Zhou, B.; Xia, Z.; Tao, Z.; Gao, W.; Tian, B. A Classification of Tidal Flat Wetland Vegetation Combining Phenological Features with Google Earth Engine. Remote Sens. 2021, 13, 443. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, N.; Li, Y.; Li, Y. Sub-Continental-Scale Mapping of Tidal Wetland Composition for East Asia: A Novel Algorithm Integrating Satellite Tide-Level and Phenological Features. Remote Sens. Environ. 2022, 269, 112799. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of Spectral-Phenological Features for Deep Learning to Understand Spartina Alterniflora Invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Gu, J.; Jin, R.; Chen, G.; Ye, Z.; Li, Q.; Wang, H.; Li, D.; Christakos, G.; Agusti, S.; Duarte, C.M.; et al. Areal Extent, Species Composition, and Spatial Distribution of Coastal Saltmarshes in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7085–7094. [Google Scholar] [CrossRef]
- Qian, H.; Bao, N.; Meng, D.; Zhou, B.; Lei, H.; Li, H. Mapping and Classification of Liao River Delta Coastal Wetland Based on Time Series and Multi-Source GaoFen Images Using Stacking Ensemble Model. Ecol. Inform. 2024, 80, 102488. [Google Scholar] [CrossRef]
- Bian, S.; Xie, C.; Tian, B.; Guo, Y.; Zhu, Y.; Yang, Y.; Zhang, M.; Yang, Y.; Ruan, Y. Classification of Plants Based on Time-Series SAR Coherence and Intensity Data in Yancheng Coastal Wetland. Int. J. Remote Sens. 2025, 46, 859–881. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Shen, Z.; Liao, J.; Chen, J.; Sun, S. Long Time-Series Mapping and Change Detection of Coastal Zone Land Use Based on Google Earth Engine and Multi-Source Data Fusion. Remote Sens. 2022, 14, 1. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H. Wetland Classification Using Parcel-Level Ensemble Algorithm Based on Gaofen-6 Multispectral Imagery and Sentinel-1 Dataset. J. Hydrol. 2022, 606, 127462. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; He, Y.; Liu, Q.; Li, H.; Su, F.; Liu, G.; Bridhikitti, A. Land Cover Mapping in Cloud-Prone Tropical Areas Using Sentinel-2 Data: Integrating Spectral Features with Ndvi Temporal Dynamics. Remote Sens. 2020, 12, 1163. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, S.; Ke, Y. A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 190–201. [Google Scholar] [CrossRef]
- Chang, M.; Li, P.; Li, Z.; Wang, H. Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine. Remote Sens. 2022, 14, 1789. [Google Scholar] [CrossRef]
- Abdali, E.; Valadan Zoej, M.J.; Taheri Dehkordi, A.; Ghaderpour, E. A Parallel-Cascaded Ensemble of Machine Learning Models for Crop Type Classification in Google Earth Engine Using Multi-Temporal Sentinel-1/2 and Landsat-8/9 Remote Sensing Data. Remote Sens. 2024, 16, 127. [Google Scholar] [CrossRef]
- Palanisamy, P.A.; Jain, K.; Bonafoni, S. Machine Learning Classifier Evaluation for Different Input Combinations: A Case Study with Landsat 9 and Sentinel-2 Data. Remote Sens. 2023, 15, 3241. [Google Scholar] [CrossRef]
- Li, X.; Zhao, P.; Liang, M.; Ji, X.; Zhang, D.; Xie, Z. Dynamics Changes of Coastal Aquaculture Ponds Based on the Google Earth Engine in Jiangsu Province, China. Mar. Pollut. Bull. 2024, 203, 116502. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Jia, A.; Song, X.; Bai, Y. Extraction and Spatiotemporal Evolution Analysis of Tidal Flats in the Bohai Rim during 1984–2019 Based on Remote Sensing. J. Geogr. Sci. 2023, 33, 76–98. [Google Scholar] [CrossRef]
- Zhou, X.; Zuo, Y.; Zheng, K.; Shao, C.; Shao, S.; Sun, W.; Yang, S.; Ge, W.; Wang, Y.; Yang, G. Monitoring the Invasion of S. Alterniflora on the Yangtze River Delta, China, Using Time Series Landsat Images during 1990-2022. Remote Sens. 2024, 16, 1377. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, Z.; Qiu, H.; Zhang, Y.; Zhou, D. Mapping Typical Salt-Marsh Species in the Yellow River Delta Wetland Supported by Temporal-Spatial-Spectral Multidimensional Features. Sci. Total Environ. 2021, 783, 147061. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.; Loveson, V.J.; Kotha, M. Probabilistic Coastal Wetland Mapping with Integration of Optical, SAR and Hydro-Geomorphic Data through Stacking Ensemble Machine Learning Model. Ecol. Inform. 2023, 77, 102273. [Google Scholar] [CrossRef]
- Wu, R.; Wang, J. Identifying Coastal Wetlands Changes Using a High-Resolution Optical Images Feature Hierarchical Selection Method. Appl. Sci. 2022, 12, 8297. [Google Scholar] [CrossRef]
- Fu, B.; Xie, S.; He, H.; Zuo, P.; Sun, J.; Liu, L.; Huang, L.; Fan, D.; Gao, E. Synergy of Multi-Temporal Polarimetric SAR and Optical Image Satellite for Mapping of Marsh Vegetation Using Object-Based Random Forest Algorithm. Ecol. Indic. 2021, 131, 108173. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Zhang, Q.; Niu, Y.; Lu, Z.; Zhao, Z. A Novel Feature Selection Criterion for Wetland Mapping Using GF-3 and Sentinel-2 Data. Ecol. Indic. 2025, 171, 113146. [Google Scholar] [CrossRef]
- Xia, F.; Lv, G. Evaluation of Machine Learning Algorithm Capability for Bosten Lake Wetland Classification Based on Multi-Temporal Sentinel-2 Data. Ecol. Inform. 2024, 84, 102839. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M. Swin Transformer and Deep Convolutional Neural Networks for Coastal Wetland Classification Using Sentinel-1, Sentinel-2, and LiDAR Data. Remote Sens. 2022, 14, 359. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Hou, P.; Wu, Z.; Ling, Z.; Wang, X.; Niu, Z.; Mao, D. Continental-Scale Wetland Mapping: A Novel Algorithm for Detailed Wetland Types Classification Based on Time Series Sentinel-1/2 Images. Ecol. Indic. 2023, 148, 110113. [Google Scholar] [CrossRef]
- Norris, G.S.; LaRocque, A.; Leblon, B.; Barbeau, M.A.; Hanson, A.R. Comparing Pixel- and Object-Based Approaches for Classifying Multispectral Drone Imagery of a Salt Marsh Restoration and Reference Site. Remote Sens. 2024, 16, 1049. [Google Scholar] [CrossRef]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Anenkhonov, O.A.; Chepinoga, V.V.; Autrey, B.C.; Liu, H. Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes. Remote Sens. 2018, 10, 46. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Hou, P.; Wu, Z.; Cui, T. Detailed Wetland-Type Classification Using Landsat-8 Time-Series Images: A Pixel- and Object-Based Algorithm with Knowledge (POK). GIScience Remote Sens. 2024, 61, 2293525. [Google Scholar] [CrossRef]
- Sun, W.; Hou, T.; Chen, C.; Yang, G.; Chen, B.; Meng, X.; Ren, K. Mapping China’s Coastal Aquaculture Ponds Expansion with Sentinel-2 Images during 2017-2021. Int. J. Digit. Earth 2024, 17, 2297943. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Zhao, M.; Zhang, Z. Quantifying the Cumulative Effects of Large-Scale Reclamation on Coastal Wetland Degradation. Land 2024, 13, 1404. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Ouyang, N.; Mu, F.; Yan, F.; Zhang, Y.; Huang, X. Analyzing Coastal Wetland Degradation and Its Key Restoration Technologies in the Coastal Area of Jiangsu, China. Wetlands 2018, 38, 525–537. [Google Scholar] [CrossRef]
- Sun, W.; Yang, G.; Huang, Y.; Mao, D.; Huang, K.; Zhu, L.; Meng, X.; Feng, T.; Chen, C.; Ge, Y. First Wetland Mapping at 10-m Spatial Resolution in South America Using Multi-Source and Multi-Feature Remote Sensing Data. Sci. China Earth Sci. 2024, 67, 3252–3269. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, X.; Li, J.; Wang, X.; Chen, B.; Sun, C.; Wang, J.; Tian, P.; Zhang, H. Tracking Changes in Coastal Land Cover in the Yellow Sea, East Asia, Using Sentinel-1 and Sentinel-2 Time-Series Images and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2023, 196, 429–444. [Google Scholar] [CrossRef]
- Liu, H.; Liao, T.; Wang, Y.; Qian, X.; Liu, X.; Li, C.; Li, S.; Guan, Z.; Zhu, L.; Zhou, X.; et al. Fine-Grained Wetland Classification for National Wetland Reserves Using Multi-Source Remote Sensing Data and Pixel Information Expert Engine (PIE-Engine). GIScience Remote Sens. 2023, 60, 2286746. [Google Scholar] [CrossRef]
- Yan, X.; Niu, Z. Classification Feature Optimization for Global Wetlands Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8058–8072. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, Robust, and Automated Mapping of Tidal Flats in China Using Time Series Sentinel-2 Images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 V100 2021. Available online: https://zenodo.org/records/5571936 (accessed on 1 November 2025).
- Wang, M.; Mao, D.H.; Wang, Y.Q.; Xiao, X.M.; Xiang, H.X.; Feng, K.D.; Luo, L.; Jia, M.M.; Song, K.S.; Wang, Z.M. Wetland Mapping in East Asia by Two-Stage Object-Based Random Forest and Hierarchical Decision Tree Algorithms on Sentinel-1/2 Images. Remote Sens. Environ. 2023, 297, 113793. [Google Scholar] [CrossRef]
- Li, X.; Tian, J.; Li, X.; Yu, Y.; Ou, Y.; Zhu, L.; Zhu, X.; Zhou, B.; Gong, H. Annual Mapping of Spartina Alterniflora with Deep Learning and Spectral-Phenological Features from 2017 to 2021 in the Mainland of China. Int. J. Remote Sens. 2024, 45, 3172–3199. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.-Z.; Teng, J. Mapping Large-Area Tidal Flats without the Dependence on Tidal Elevations: A Case Study of Southern China. ISPRS J. Photogramm. Remote Sens. 2020, 159, 256–270. [Google Scholar] [CrossRef]
- Chaoyong, W.; Aslam, R.W.; Quddoos, A.; Naz, I.; Tariq, A.; Ullah, S.; Sajjad, A.; Soufan, W.; Almutairi, K.F. SAR Image Integration for Multi-Temporal Analysis of Lake Manchar Wetland Dynamics Using Machine Learning. Sci. Rep. 2024, 14, 26669. [Google Scholar] [CrossRef]
- Azzari, G.; Lobell, D.B. Landsat-Based Classification in the Cloud: An Opportunity for a Paradigm Shift in Land Cover Monitoring. Remote Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Turubanova, S.A.; Roy, D.P.; Goetz, S.J.; Loveland, T.R.; Ju, J.; et al. Monitoring Conterminous United States (CONUS) Land Cover Change with Web-Enabled Landsat Data (WELD). Remote Sens. Environ. 2014, 140, 466–484. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, W.; Zhao, C.; Jiao, C.; Zhu, J. The Spatiotemporal Evolution of the Mudflat Wetland in the Yellow Sea Using Landsat Time Series. Remote Sens. 2024, 16, 4190. [Google Scholar] [CrossRef]
- Ke, L.; Tan, Q.; Lu, Y.; Wang, Q.; Zhang, G.; Zhao, Y.; Wang, L. Classification and Spatio-Temporal Evolution Analysis of Coastal Wetlands in the Liaohe Estuary from 1985 to 2023: Based on Feature Selection and Sample Migration Methods. Front. For. Glob. Change 2024, 7, 1406473. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wang, M.; Mao, D.; Wang, Y.; Song, K.; Yan, H.; Jia, M.; Wang, Z. Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine. Remote Sens. 2022, 14, 3191. [Google Scholar] [CrossRef]
- Tang, T.; Chen, T.; Gui, G. A Novel mRMR-RFE-RF Method for Enhancing Medium- and Long-Term Hydrological Forecasting: A Case Study of the Danjiangkou Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14919–14934. [Google Scholar] [CrossRef]
- Fu, B.; He, X.; Yao, H.; Liang, Y.; Deng, T.; He, H.; Fan, D.; Lan, G.; He, W. Comparison of RFE-DL and Stacking Ensemble Learning Algorithms for Classifying Mangrove Species on UAV Multispectral Images. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102890. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, B.; Zhang, T.; Xu, B. Regional Mapping of Essential Urban Land Use Categories in China: A Segmentation-Based Approach. Remote Sens. 2020, 12, 1058. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, X.; Fu, D.; Wang, Y.; Sun, S.; Wang, F.; Wang, C.; Xiao, Z.; Shi, Y. Comparison of the Applicability of J-M Distance Feature Selection Methods for Coastal Wetland Classification. Water 2023, 15, 2212. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key Issues in Rigorous Accuracy Assessment of Land Cover Products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Huang, W.; Fei, X.; Yang, W.; Wang, Z.; Gao, Y.; Yan, H. A Study on the Classification of Coastal Wetland Vegetation Based on the Suaeda Salsa Index and Its Phenological Characteristics. Ecol. Indic. 2025, 170, 113021. [Google Scholar] [CrossRef]
- Dai, J.; Luo, F.; Chen, Z.; Zhou, G.; Zeng, J. Pixel-Based Unique Phenological Feature Composite Method: Tackle the Challenges of Spartina Alterniflora Identification and Salt Marsh Classification in Mixed Vegetations Area. J. Appl. Remote Sens. 2023, 17, 024510. [Google Scholar] [CrossRef]
- Guo, D.; Shi, W.; Qian, F.; Wang, S.; Cai, C. Monitoring the Spatiotemporal Change of Dongting Lake Wetland by Integrating Landsat and MODIS Images, from 2001 to 2020. Ecol. Inform. 2022, 72, 101848. [Google Scholar] [CrossRef]
- Guan, H.; Su, Y.; Hu, T.; Chen, J.; Guo, Q. An Object-Based Strategy for Improving the Accuracy of Spatiotemporal Satellite Imagery Fusion for Vegetation-Mapping Applications. Remote Sens. 2019, 11, 2927. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Cao, X.; Wang, Y.; Zhang, W.; Cheng, X.; Wang, R.; Zong, J. Automatic Training Sample Collection Utilizing Multi-Source Land Cover Products and Time-Series Sentinel-2 Images. GIScience Remote Sens. 2024, 61, 2352957. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.; Ren, Y. Automatic Multi-Temporal Land Cover Mapping with Medium Spatial Resolution Using the Model Migration Method. Remote Sens. 2025, 17, 37. [Google Scholar] [CrossRef]
- Yan, X.; Niu, Z. Reliability Evaluation and Migration of Wetland Samples. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8089–8099. [Google Scholar] [CrossRef]
- Qian, S.; Xue, Z.; Jia, M.; Chen, Y.; Su, H. Temporal-Spectral-Semantic-Aware Convolutional Transformer Network for Multi-Class Tidal Wetland Change Detection in Greater Bay Area. ISPRS J. Photogramm. Remote Sens. 2024, 216, 126–141. [Google Scholar] [CrossRef]
- Ke, L.; Lu, Y.; Tan, Q.; Zhao, Y.; Wang, Q. Precise Mapping of Coastal Wetlands Using Time-Series Remote Sensing Images and Deep Learning Model. Front. For. Glob. Change 2024, 7, 1409985. [Google Scholar] [CrossRef]










| Data Name | GEE Image Collection ID | Data Acquisition Time | Resolution (m) | Revisit Period (d) | Number of Images Used |
|---|---|---|---|---|---|
| Sentinel-1 | COPERNICUS/S1_GRD | 1 January 2020 to 31 December 2020 | 10 | 6 | 215 |
| Sentinel-2 | COPERNICUS/S2_SR_HARMONIZED | 10–60 | 5 | 238 |
| Spectral Indices | Equation | |
|---|---|---|
| Enhanced Vegetation Index (EVI) | (1) | |
| Normalized Difference Vegetation Index (NDVI) | (2) | |
| Land Surface Water Index (LSWI) | (3) | |
| Normalized Difference Water Index (NDWI) | (4) | |
| Modified Normalized Difference Water Index (MNDWI) | (5) | |
| Wetland Type | Land Cover Type | Description | Samples | |
|---|---|---|---|---|
| Natural wetland | Salt marshes | Spartina alterniflora | A perennial deciduous grass which is mainly found in the intertidal zone. | 523 |
| Phragmites australis | An emergent plant which is widely distributed in the marshes or along riversides. | 527 | ||
| Suaeda salsa | A seepweed which is normally spread on the saline alkali wasteland. | 503 | ||
| Mudflats | Intertidal flat | A soaking mudflat which is distributed between average high and average low tide levels. | 507 | |
| Supratidal flat | A mudflat which is distributed between the average high tide level and the hard coastline. | 478 | ||
| Permanent water | Permanently stable natural water bodies like lakes, rivers, oceans. | 310 | ||
| Artificial wetland | — | Built areas permanently or seasonally covered by water, such as salt pan, aquaculture ponds, reservoirs, and so on. | 300 | |
| Non-wetland | Other land | Built-up land (513), forest land (357) and cropland (500). | 1370 | |
| Total | — | 4518 | ||
| Imagery Type | Number of Edge Points | Consistent Edge Points | Consistency Rate |
|---|---|---|---|
| Optical | 50 | 47 | 0.94 |
| SAR | 50 | 44 | 0.88 |
| Data Name | Year | Resolution | Data Source | Application |
|---|---|---|---|---|
| SRTM | 2000 | 30 m | GEE Collection: “USGS/SRTMGL1_003” | Feature Extraction |
| GSHHG | 2017 | full resolution | http://www.soest.hawaii.edu/wessel/gshhg/ (accessed on 1 November 2025) | Study Area Delineation |
| ETOPO 2022 | 2022 | 15 Arc-Second | https://www.ncei.noaa.gov/products/etopo-global-relief-model (accessed on 1 November 2025) | |
| ESA_WorldCover [54] | 2020 | 10 m | https://zenodo.org/records/5571936 (accessed on 1 November 2025) | Sample Collection & Result Comparison |
| EA_Wetlands [55] | 2021 | 10 m | http://northeast.geodata.cn/data/datadetails.html?dataguid=58876863818267&docid=0 (accessed on 1 November 2025) | |
| MTWM [20] | 2020 | 10 m | https://figshare.com/articles/dataset/Fujian_zip/14331785 (accessed on 1 November 2025) | |
| CMSA [56] | 2020 | 10 m | https://code.earthengine.google.com/3ed9e4ad2ae55c91570bc3b16cb6de4c (accessed on 1 November 2025) |
| Data Source | Type | Features Variables |
|---|---|---|
| Sentinel-2 MSI time series | Water level features (Optical) | Optical features of the lowest/highest water level images synthesized by the maximum NDVI/MNDWI values, including B2, B3, B4, B8, B8A, B11, EVI, NDVI, LSWI, NDWI, and MNDWI bands. |
| Phenological features | 10th, 25th, 50th, 75th, 90th percentiles with B2, B3, B4, B8, B8A, B11, EVI, NDVI, LSWI, NDWI, and MNDWI bands. | |
| Variation features | Coefficients of variation in B2, B3, B4, B8, B8A, B11, EVI, NDVI, LSWI, NDWI, and MNDWI bands. | |
| Sentinel-1 SAR time series | Water level features (SAR) | Composite images of highest and lowest water levels using 5th and 95th percentiles for VV and VH bands. |
| SRTM | Topographic features | Elevation, slope, aspect. |
| GSHHG | Geographic features | Offshore distance. |
| Data Source | Type | Features Variables | |
|---|---|---|---|
| Sentinel-2 MSI median composites | Spectral features | Mean values of NDVI and MNDWI bands of an object. | |
| SNIC segmentation results | Geometric features | Area | Area of an object. |
| Border length | The length of the outer boundary of all pixels surrounding an object. | ||
| Length/Width | Ratio of length to width of the minimum bounding rectangle of an object. | ||
| Rectangular fit | The ratio of the area of an object to the area of its minimum bounding rectangle. | ||
| Shape index | Perimeter of an object divided by four times the square root of area. | ||
| Wetland Type | Land Cover Type | Area (Unit: km2) | |
|---|---|---|---|
| Natural wetland | Salt marshes | Spartina alterniflora | 231.875 |
| Phragmites australis | 319.94 | ||
| Suaeda salsa | 44.50 | ||
| Mudflats | Intertidal flat | 2656.18 | |
| Supratidal flat | 120.87 | ||
| Permanent water | 4973.35 | ||
| Artificial wetland | Artificial wetland | 547.43 | |
| Non-wetland | Built-up land | 550.00 | |
| Forest land | 5.42 | ||
| Cropland | 3007.39 | ||
| Total | 12,456.94 | ||
| PW | AW | U.A. | F1 Score | |
|---|---|---|---|---|
| PW | 118 | 5 | 0.959 | 0.944 |
| AW | 9 | 114 | 0.927 | 0.928 |
| P.A. | 0.929 | 0.958 |
| PA | SS | IF | SF | WB | BL | FL | CL | |
|---|---|---|---|---|---|---|---|---|
| SA | 1.9694 | 1.9859 | 2 | 1.9986 | 1.9999 | 1.9996 | 1.9999 | 1.9981 |
| PA | — | 1.9795 | 2 | 1.9993 | 1.9997 | 1.9997 | 1.9999 | 1.9865 |
| SS | — | — | 2 | 1.9689 | 1.9999 | 1.9919 | 2 | 1.9969 |
| IF | — | — | — | 1.9997 | 1.9868 | 1.9998 | 2 | 2 |
| SF | — | — | — | — | 1.9998 | 1.9833 | 2 | 1.9996 |
| WB | — | — | — | — | — | 1.9999 | 2 | 2 |
| BL | — | — | — | — | — | — | 2 | 1.9979 |
| FL | — | — | — | — | — | — | — | 1.9995 |
| Wetland Type | Dataset | Year | Resolution | Area (Unit: km2) |
|---|---|---|---|---|
| Tidal flat | EA_Wetlands—Tidal flat | 2021 | 10 m | 99.309 |
| MTWM—Tidal flat | 2020 | 10 m | 2709.950 | |
| This study—Intertidal and Supratidal flat | 2020 | 10 m | 2656.176 and 120.869 | |
| Salt marshes | ESA_WorldCover—Herbaceous wetland | 2020 | 10 m | 247.504 |
| EA_Wetlands—Herbaceous wetland | 2021 | 10 m | 201.533 | |
| MTWM—Salt marshes | 2020 | 10 m | 248.825 | |
| This study—Salt marshes | 2020 | 10 m | 596.314 | |
| Spartina alterniflora | CMSA—Spartina alterniflora | 2020 | 10 m | 183.222 |
| This study—Spartina alterniflora | 2020 | 10 m | 231.875 | |
| Artificial wetland | EA_Wetlands—Artificial wetland | 2021 | 10 m | 502.987 |
| This study—Artificial wetland | 2020 | 10 m | 547.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Zhang, S.; Hou, H.; Hu, H.; Xiong, J.; Wan, J. Detailed Hierarchical Classification of Coastal Wetlands Using Multi-Source Time-Series Remote Sensing Data Based on Google Earth Engine. Remote Sens. 2025, 17, 3640. https://doi.org/10.3390/rs17213640
Xu H, Zhang S, Hou H, Hu H, Xiong J, Wan J. Detailed Hierarchical Classification of Coastal Wetlands Using Multi-Source Time-Series Remote Sensing Data Based on Google Earth Engine. Remote Sensing. 2025; 17(21):3640. https://doi.org/10.3390/rs17213640
Chicago/Turabian StyleXu, Haonan, Shaoliang Zhang, Huping Hou, Haoran Hu, Jinting Xiong, and Jichen Wan. 2025. "Detailed Hierarchical Classification of Coastal Wetlands Using Multi-Source Time-Series Remote Sensing Data Based on Google Earth Engine" Remote Sensing 17, no. 21: 3640. https://doi.org/10.3390/rs17213640
APA StyleXu, H., Zhang, S., Hou, H., Hu, H., Xiong, J., & Wan, J. (2025). Detailed Hierarchical Classification of Coastal Wetlands Using Multi-Source Time-Series Remote Sensing Data Based on Google Earth Engine. Remote Sensing, 17(21), 3640. https://doi.org/10.3390/rs17213640

