Low-Frequency Ground Penetrating Radar for Active Fault Characterization: Insights from the Southern Apennines (Italy)
Highlights
- The integration of GPR data with precise georeferencing is effective in providing new constraints on the geometry and kinematics of shallow active faults in sedimentary deposits.
- In the case study area, the Calore River Valley (Southern Apennines), low-frequency GPR imaging revealed steeply dipping E–W to ENE–WSW normal faults, consistent with an active system, named Postiglione Fault System.
- The results demonstrate the potential of low-frequency GPR to resolve near-surface fault architecture where surface evidence is scarce or ambiguous.
- These findings also contribute to refining the seismotectonic framework of the Southern Apennines, supporting improved seismic hazard assessment in one of the most seismically active regions of the Mediterranean.
Abstract
1. Introduction

1.1. Geological Setting
1.2. Stratigraphic Setting
- Terrace I (230–250 m a.s.l.): erosional surfaces carved into Mesozoic–Cenozoic bedrock, Middle Pleistocene in age (between ca. 680 and 240 ka).
- Terrace II (150–200 m a.s.l.): depositional gravels and lacustrine beds, capped by a pyroclastic layer dated between 158 ± 6 ka and 97 ± 25 ka.
- Terrace III (125–150 m a.s.l.): polygenic gravels overlain by the Campanian Ignimbrite (39 ka), dated between 48 ± 7 ka and 39 ka.
- Terrace IV (70–90 m a.s.l.): poorly cemented deposits, formed between 39 ka and <7 ka.
- Terrace V (50–70 m a.s.l.): Holocene terraces containing reworked pottery fragments, archeological evidence of Neolithic activity [61] and Pomici di Avellino eruption deposits that constrain them between ca. 14 ka and ca. 7 ka.
1.3. Seismotectonic Setting
2. Materials and Methods
- The first stage involved the removal of temporally incoherent signals using a background-removal filter, which eliminated static or environmental noise unrelated to genuine subsurface reflections. This was followed by the application of de-wow filters to correct low-frequency drift and bandpass filters to isolate the frequency range of interest [77,78,79]. In particular, a band-pass frequency filter with cutoff frequencies of 35 MHz (lower) and 130 MHz (upper) and a filter order of 40 was applied to enhance signal clarity and preserve the most relevant subsurface reflections.
- Then, a time-zero correction was performed to eliminate the initial portion of the radar trace that corresponds to internal system responses rather than subsurface reflections. This correction is essential, as failing to remove the system’s “dead time” would lead to erroneous depth calculations and incorrect positioning of reflectors [80,81].
- Subsequently, energy decay gain was applied to balance the progressive attenuation of the radar signal with depth. This method calculates the average amplitude decay curve for all traces in a radar profile and then applies a gain function that compensates for this attenuation. The result is a more uniform amplitude distribution across the depth axis, improving the visibility of deeper reflectors and facilitating the interpretation of the entire profile [82,83].
- The next step of the process addressed the removal of air-wave reflections, which are above-ground signals caused by electromagnetic waves reflecting off surrounding objects such as trees, buildings, vehicles, or personnel. These reflections, although not originating from the subsurface, can contaminate the data and were attenuated using specific filtering techniques especially effective against distant air-wave signals [84,85].
- The spatial positioning of the radar data was then achieved using high-precision GNSS receivers connected in RTK (Real-Time Kinematic) mode to the INGV-RING Network [68] (https://doi.org/10.13127/ring; accessed on 8 February 2024), using the VITU station as a reference (VITU00ITA—Vitulano (Bn), Campania, Italy). The integration of GNSS positioning ensured centimeter-level accuracy in planimetry. A vertical offset correction of 50 cm was also applied to account for the physical distance between the GNSS antenna’s phase center and the GPR dipole center, allowing the radar reflections to be projected onto the true ground surface with correct elevation [86,87].
- Finally, to further improve spatial accuracy, a topographic correction was implemented by integrating the GNSS-derived elevation data with the radar profiles. This correction repositions each radar trace based on the local topography, allowing the radargrams to reflect the true geometry of the terrain and ensuring that all subsurface features refer to the actual surface morphology [88,89].
- Migration was not applied, as the main goal was to preserve the true travel- time geometry and reflector continuity for correlation with field observations. Preliminary tests using Stolt migration did not significantly improve reflector focusing and slightly reduced the interpretability of deeper reflections.
GPR Data Acquisition: Survey Areas and Technical Details
- ➢
- Madonna del Roseto area:
- 120 MHz: Provided high-resolution imaging of the shallow subsurface, with an investigation depth of approximately 5 m (MDR1 profile).
- 80 MHz: Allowed for a deeper investigation down to approximately 15 m (MDR2 profile).
- 60 MHz: Extended the depth of investigation to about 25 m (MDR3 profile).
- 40 MHz: Achieved the maximum penetration depth of approximately 35 m, allowing for the detection of deeper geological features (MDR4 profile).
- ➢
- Postiglione area:
- Profile V1: a 155 m-long profile acquired with a 60 MHz antenna, enabling an investigation depth of approximately 25 m.
- Profile V2: an 85 m-long profile acquired with a low-frequency 30 MHz antenna, which allowed for a significantly greater penetration depth of up to 50 m.
3. Results
- ➢
- Madonna del Roseto area
- ➢
- Postiglione area
- -
- slickenside lineations clueing pure dip-slip kinematic, associated with geological evidence, involvement of slope deposits and embedded pyroclastics in faulting;
- -
- remarkable hooking of slope deposits pseudo-strata and pyroclastics, compatible with a strike-slip component along the Postiglione Fault.
4. Discussion
5. Conclusions
- ➢
- pull-apart-style basin and the palm-tree push-up range depicted by MDR survey (Figure 5);
- ➢
- unusual strata hooks reported at the Postiglione downhill outcrop.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knight, R. Ground Penetrating Radar for Environmental Applications. Annu. Rev. Earth Planet. Sci. 2001, 29, 229–255. [Google Scholar] [CrossRef]
- Hubbard, S.; Chen, J.; Williams, K.; Peterson, J.; Rubin, Y. Environmental and Agricultural Applications of GPR. In Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, Delft, The Netherlands, 2–3 May 2005. [Google Scholar]
- Wai-Lok Lai, W.; Dérobert, X.; Annan, P. A Review of Ground Penetrating Radar Application in Civil Engineering: A 30-Year Journey from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2018, 96, 58–78. [Google Scholar] [CrossRef]
- Lombardi, F.; Podd, F.; Solla, M. From Its Core to the Niche: Insights from GPR Applications. Remote Sens. 2022, 14, 3033. [Google Scholar] [CrossRef]
- Ercoli, M.; Cirillo, D.; Pauselli, C.; Jol, H.M.; Brozzetti, F. Ground-Penetrating Radar Signature of Quaternary Faulting: A Study from the Mt. Pollino Region, Southern Apennines, Italy. Solid Earth 2021, 12, 2573–2596. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-Penetrating Radar for High-Resolution Mapping of Soil and Rock Stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Famiglietti, N.A.; Miele, P.; Massa, B.; Memmolo, A.; Moschillo, R.; Zarrilli, L.; Vicari, A. Ground Penetrating Radar (GPR) Investigations in Urban Areas Affected by Gravity-Driven Deformations. Geosciences 2024, 14, 222. [Google Scholar] [CrossRef]
- Grasmueck, M.; Eberli, G.P. 3D Gpr Stratal Slicing of Sedimentary Structures. In Proceedings of the 2025 13th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Thessaloniki, Greece, 2–4 July 2025; pp. 1–5. [Google Scholar]
- Fountoulis, I.; Vassilakis, E.; Mavroulis, S.; Alexopoulos, J.; Dilalos, S.; Erkeki, A. Synergy of Tectonic Geomorphology, Applied Geophysics and Remote Sensing Techniques Reveals New Data for Active Extensional Tectonism in NW Peloponnese (Greece). Geomorphology 2015, 237, 52–64. [Google Scholar] [CrossRef]
- Jamšek Rupnik, P.; Atanackov, J.; Horn, B.; Mušič, B.; Zajc, M.; Grützner, C.; Ustaszewski, K.; Tsukamoto, S.; Novak, M.; Milanič, B.; et al. Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia). Remote Sens. 2024, 16, 1490. [Google Scholar] [CrossRef]
- Cheloni, D.; D’Agostino, N.; Scognamiglio, L.; Tinti, E.; Bignami, C.; Avallone, A.; Giuliani, R.; Calcaterra, S.; Gambino, P.; Mattone, M. Heterogeneous Behavior of the Campotosto Normal Fault (Central Italy) Imaged by InSAR GPS and Strong-Motion Data: Insights from the 18 January 2017 Events. Remote Sens. 2019, 11, 1482. [Google Scholar] [CrossRef]
- DISS Working Group. Database of Individual Seismogenic Sources (DISS). 2025. Available online: http://diss.ingv.it/data/ (accessed on 20 August 2025).
- Fracassi, U.; Milano, G. A Soft Linkage between Major Seismogenic Fault Systems in the Central-Southern Apennines (Italy): Evidence from Low-Magnitude Seismicity. Tectonophysics 2014, 636, 18–31. [Google Scholar] [CrossRef]
- Milano, G.; Di Giovambattista, R.; Ventura, G. Seismic Activity in the Transition Zone between Southern and Central Apennines (Italy): Evidences of Longitudinal Extension inside the Ortona–Roccamonfina Tectonic Line. Tectonophysics 2008, 457, 102–110. [Google Scholar] [CrossRef]
- Ferranti, L.; Milano, G.; Burrato, P.; Palano, M.; Cannavò, F. The Seismogenic Structure of the 2013–2014 Matese Seismic Sequence, Southern Italy: Implication for the Geometry of the Apennines Active Extensional Belt. Geophys. J. Int. 2015, 201, 823–837. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Italian Parametric Earthquake Catalogue CPTI15, Version 4.0. Bull. Earthq. Eng. 2021, 4, 2953–2984. [Google Scholar]
- CPTI15-DBMI15 2022. Available online: https://emidius.mi.ingv.it/CPTI15-DBMI15/query_place/ (accessed on 18 January 2025).
- Montone, P.; Amato, A.; Pondrelli, S. Active Stress Map of Italy. J. Geophys. Res. Solid Earth 1999, 104, 25595–25610. [Google Scholar] [CrossRef]
- Montone, P.; Mariucci, M.T.; Pondrelli, S.; Amato, A. An Improved Stress Map for Italy and Surrounding Regions (Central Mediterranean). J. Geophys. Res. (Solid Earth) 2004, 109, B10410. [Google Scholar] [CrossRef]
- Montone, P.; Mariucci, M.T.; Pierdominici, S. The Italian Present-Day Stress Map. Geophys. J. Int. 2012, 189, 705–716. [Google Scholar] [CrossRef]
- Pierdominici, S.; Mariucci, M.T.; Montone, P. A Study to Constrain the Geometry of an Active Fault in Southern Italy through Borehole Breakouts and Downhole Logs. J. Geodyn. 2011, 52, 279. [Google Scholar] [CrossRef]
- De Matteo, A.; Massa, B.; Milano, G.; D’Auria, L. A Transitional Volume beneath the Sannio-Irpinia Border Region (Southern Apennines): Different Tectonic Styles at Different Depths. Tectonophysics 2018, 723, 14–26. [Google Scholar] [CrossRef]
- Westaway, R. Seismic Moment Summation for Historical Earthquakes in Italy: Tectonic Implications. J. Geophys. Res. Solid Earth 1992, 97, 15437–15464. [Google Scholar] [CrossRef]
- D’Agostino, N. Complete Seismic Release of Tectonic Strain and Earthquake Recurrence in the Apennines (Italy). Geophys. Res. Lett. 2014, 41, 1155–1162. [Google Scholar] [CrossRef]
- Rovida, A.; Antonucci, A.; Locati, M. The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 Catalogue for the European Seismic Hazard Model 2020. Earth Syst. Sci. Data 2022, 14, 5213–5231. [Google Scholar] [CrossRef]
- Bernard, P.; Zollo, A. The Irpinia (Italy) 1980 Earthquake: Detailed Analysis of a Complex Normal Faulting. J. Geophys. Res. Solid Earth 1989, 94, 1631–1647. [Google Scholar] [CrossRef]
- Boschi, E. Special Issue on the Meeting “Irpinia Dieci Anni Dopo”: Sorrento, November 19–24, 1990; Istituto Nazionale di Geofisica: Roma, Italy, 1993. [Google Scholar]
- Borraccini, F.; Donatis, M.D.; Bucci, D.D.; Mazzoli, S. 3D Model of the Active Extensional Fault System of the High Agri River Valley, Southern Apennines, Italy. J. Virtual Explor. 2002, 6, 1–6. [Google Scholar] [CrossRef]
- Burrato, P.; Valensise, G. Rise and Fall of a Hypothesized Seismic Gap: Source Complexity in the Mw 7.0 16 December 1857 Southern Italy Earthquake. Bull. Seismol. Soc. Am. 2008, 98, 139–148. [Google Scholar] [CrossRef][Green Version]
- Di Bucci, D.; Corrado, S.; Naso, G. Active Faults at the Boundary between Central and Southern Apennines (Isernia, Italy). Tectonophysics 2002, 359, 47–63. [Google Scholar] [CrossRef]
- Pantosti, D.; Valensise, G.; Pantosti, D.; Valensise, G. La Faglia Sud-Appenninica: Identificazione Oggettiva Di Un Lineamento Sismogenetico Nell’Appennino Meridionale. In Proceedings of the 7th Meeting Gruppo Nazionale di Geofisica della Terra Solida, Rome, Italy, 28–30 November 1988. [Google Scholar]
- Gasperini, P.; Bernardini, F.; Valensise, G.; Boschi, E. Defining Seismogenic Sources from Historical Earthquake Felt Reports. Bull. Seismol. Soc. Am. 1999, 89, 94–110. [Google Scholar] [CrossRef]
- Valensise, G.; Pantosti, D. Seismogenic Faulting, Moment Release Patterns and Seismic Hazard along the Central and Southern Apennines and the Calabrian Arc. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2001; pp. 495–512. ISBN 978-94-015-9829-3. [Google Scholar]
- Di Bucci, D.; Massa, B.; Zuppetta, A. Relay Ramps in Active Normal Fault Zones: A Clue to the Identification of Seismogenic Sources (1688 Sannio Earthquake, Italy). GSA Bull. 2006, 118, 430–448. [Google Scholar] [CrossRef]
- Amato, V.; Ciarcia, S.; Galli, P.; Cicchella, D.; Galderisi, A.; Monaco, L.; Fernandez, G.; Isaia, R.; Nomade, S.; Pereira, A.; et al. Unveiling the Hidden Source of Major Historical Earthquakes: A Multi-Scale, Trans-Disciplinary Approach to the 1456 and 1688 Sannio Earthquakes (Mw 7.0, Southern Italian Apennines). Quat. Sci. Rev. 2025, 356, 109282. [Google Scholar] [CrossRef]
- Calabrò, R.A.; Corrado, S.; Di Bucci, D.; Robustini, P.; Tornaghi, M. Thin-Skinned vs. Thick-Skinned Tectonics in the Matese Massif, Central–Southern Apennines (Italy). Tectonophysics 2003, 377, 269–297. [Google Scholar] [CrossRef]
- Galadini, F. Pleistocene Changes in the Central Apennine Fault Kinematics: A Key to Decipher Active Tectonics in Central Italy. Tectonics 1999, 18, 877–894. [Google Scholar] [CrossRef]
- Galandini, F.; Galli, P. Paleoseismology Related to Deformed Archaeological Remains in the Fucino Plain. Implications for Subrecent Seismicity in Central Italy. Ann. Geophys. 1996, 39, 925–940. [Google Scholar] [CrossRef]
- Pantosti, D.; D’Addezio, G.; Cinti, F.R. Paleoseismicity of the Ovindoli-Pezza Fault, Central Apennines, Italy: A History Including a Large, Previously Unrecorded Earthquake in the Middle Ages (860-1300 A.D.). J. Geophys. Res. 1996, 101, 5937–5959. [Google Scholar] [CrossRef]
- Cinti, F.R.; Cucci, L.; Pantosti, D.; D’Addezio, G.; Meghraoui, M. A Major Seismogenic Fault in a ‘Silent Area’: The Castrovillari Fault (Southern Apennines, Italy). Geophys. J. Int. 1997, 130, 595–605. [Google Scholar] [CrossRef]
- Michetti, A.M.; Ferreli, L.; Serva, L.; Vittori, E. Geological Evidence for Strong Historical Earthquakes in an “Aseismic” Region: The Pollino Case (Southern Italy). J. Geodyn. 1997, 24, 67–86. [Google Scholar] [CrossRef]
- Mazzoli, S.; Helman, M. Neogene Patterns of Relative Plate Motion for Africa-Europe: Some Implications for Recent Central Mediterranean Tectonics. Geol. Rundsch. 1994, 83, 464–468. [Google Scholar] [CrossRef]
- D’Argenio, B. Carta Geologica Del Gruppo Del Taburno Camposauro, Scala 1:50.000. Atti Accad. Delle Sci. Fis. Mat. Napoli S. 3a 1965, 5. [Google Scholar]
- Pescatore, T.S.; Sgrosso, I.; Torre, M. Lineamenti Di Tettonica e Sedimentazione Nel Miocene Dell’Appennino Campano-Lucano: Memorie Della Società Naturalisti in Napoli. Mem. Soc. Nat. 1970, 78, 337–408. [Google Scholar]
- Mostardini, F.; Merlini, S. Appennino Centro Meridionale: Sezioni Geologiche e Proposta di Modello Strutturale, Agip. 1986. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8170990 (accessed on 18 January 2025).
- Patacca, E.; Scandone, P. The Geological Map of Sannio and Surrounding Areas by Raimondo Selli (Scale 1:100,000). A Precious Collection of Still Current Data. Boll. Soc. Geol. Ital. 2005, 4, 17–30. [Google Scholar]
- Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Soc. Geol. Ital. 2007, 7, 75–112. [Google Scholar]
- Vitale, S.; Ciarcia, S. Tectono-Stratigraphic and Kinematic Evolution of the Southern Apennines/Calabria–Peloritani Terrane System (Italy). Tectonophysics 2013, 583, 164–182. [Google Scholar] [CrossRef]
- Vitale, S.; Ciarcia, S. Tectono-Stratigraphic Setting of the Campania Region (Southern Italy). J. Maps 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Vitale, S.; Ciarcia, S. The Dismembering of the Adria Platforms Following the Late Cretaceous-Eocene Abortive Rift: A Review of the Tectono-Stratigraphic Record in the Southern Apennines. Int. Geol. Rev. 2022, 64, 2866–2889. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Post-Tortonian Mountain Building in the Apennines. The Role of the Passive Sinking of a Relic Lithospheric Slab. Atti Dei Convegni Lincei 1989, 80, 157–176. [Google Scholar]
- Doglioni, C.; Harabaglia, P.; Martinelli, G.; Mongelli, F.; Zito, G. A Geodynamic Model of the Southern Apennines Accretionary Prism. Terra Nova 1996, 8, 540–547. [Google Scholar] [CrossRef]
- Improta, L.; Iannaccone, G.; Capuano, P.; Zollo, A.; Scandone, P. Inferences on the Upper Crustal Structure of Southern Apennines (Italy) from Seismic Refraction Investigations and Subsurface Data. Tectonophysics 2000, 317, 273–298. [Google Scholar] [CrossRef]
- Ciarcia, S.; Vitale, S. Orogenic Evolution of the Northern Calabria–Southern Apennines System in the Framework of the Alpine Chains in the Central-Western Mediterranean Area. GSA Bull. 2024, 137, 1143–1176. [Google Scholar] [CrossRef]
- Hippolyte, J.-C.; Angelier, J.; Barrier, E. Compressional and Extensional Tectonics in an Arc System: Example of the Southern Apennines. J. Struct. Geol. 1995, 17, 1725–1740. [Google Scholar] [CrossRef]
- D’Agostino, N.; Jackson, J.A.; Dramis, F.; Funiciello, R. Interactions between Mantle Upwelling, Drainage Evolution and Active Normal Faulting: An Example from the Central Apennines (Italy). Geophys. J. Int. 2001, 147, 475–497. [Google Scholar] [CrossRef]
- Massa, B.; Zuppetta, A. Integrated Approach to Investigation of Active Tectonics: An Example from the Calore River Fault System, Southern Italy. Ital. J. Geosci. 2009, 128, 505–513. [Google Scholar] [CrossRef]
- Scrocca, D.; Carminati, E.; Doglioni, C. Deep Structure of the Southern Apennines, Italy: Thin-Skinned or Thick-Skinned? Tectonics 2005, 24, TC3005. [Google Scholar] [CrossRef]
- Italiano, F.; Martelli, M.; Martinelli, G.; Nuccio, P.M. Geochemical Evidence of Melt Intrusions along Lithospheric Faults of the Southern Apennines, Italy: Geodynamic and Seismogenic Implications. J. Geophys. Res. Solid Earth 2000, 105, 13569–13578. [Google Scholar] [CrossRef]
- De Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E. New Constraints on the Pyroclastic Eruptive History of the Campanian Volcanic Plain (Italy). Mineral. Petrol. 2001, 73, 47–65. [Google Scholar] [CrossRef]
- Barker, G.; Moscoloni, M. Ambiente e Società Nella Preistoria Dell’Italia Centrale. NIS La Nuova Ital. Sci. 1984. [Google Scholar]
- Di Bucci, D.; Massa, B.; Tornaghi, M.; Zuppetta, A. Structural Setting of the 1688 Sannio Earthquake Epicentral Area (Southern Italy) from Surface and Subsurface Data. J. Geodyn. 2005, 40, 294–315. [Google Scholar] [CrossRef]
- Meletti, C.; Patacca, E.; Scandone, P. Construction of a Seismotectonic Model: The Case of Italy. Pure Appl. Geophys. 2000, 157, 11–35. [Google Scholar] [CrossRef]
- CFTI5Med. Available online: https://storing.ingv.it/cfti/cfti5/ (accessed on 26 August 2025).
- Guidoboni, E.; Ferrari, G.; Tarabusi, G.; Sgattoni, G.; Comastri, A.; Mariotti, D.; Ciuccarelli, C.; Bianchi, M.G.; Valensise, G. CFTI5Med, the New Release of the Catalogue of Strong Earthquakes in Italy and in the Mediterranean Area. Sci. Data 2019, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Galli, P.; Galadini, F.; Pantosti, D. Twenty Years of Paleoseismology in Italy. Earth-Sci. Rev. 2008, 88, 89–117. [Google Scholar] [CrossRef]
- Adinolfi, G.M.; De Matteis, R.; Orefice, A.; Festa, G.; Zollo, A.; de Nardis, R.; Lavecchia, G. The September 27, 2012, ML 4.1, Benevento Earthquake: A Case of Strike-Slip Faulting in Southern Apennines (Italy). Tectonophysics 2015, 660, 35–46. [Google Scholar] [CrossRef]
- Avallone, A.; Selvaggi, G.; D’Anastasio, E.; D’Agostino, N.; Pietrantonio, G.; Riguzzi, F.; Serpelloni, E.; Anzidei, M.; Casula, G.; Cecere, G.; et al. The RING Network: Improvements to a GPS Velocity Field in the Central Mediterranean. Ann. Geophys. 2010, 53, 39–54. [Google Scholar] [CrossRef]
- Milano, G.; Di Giovambattista, R.; Ventura, G. The 2001 Seismic Activity near Isernia (Italy): Implications for the Seismotectonics of the Central–Southern Apennines. Tectonophysics 2005, 401, 167–178. [Google Scholar] [CrossRef]
- Mariucci, M.T.; Montone, P. Database of Italian Present-Day Stress Indicators, IPSI 1.4. Sci. Data 2020, 7, 298. [Google Scholar] [CrossRef]
- Massa, B.; Di Bucci, D.; Tornaghi, M.E.; Zuppetta, A. Geological Survey of Quaternary Deposits in the 1688 Sannio Earthquake Epicentral Area (Benevento, Italy). Boll. Della Soc. Geol. Ital. 2005, 4, 105–117. [Google Scholar]
- Reppert, P.M.; Morgan, F.D.; Toksöz, M.N. Dielectric Constant Determination Using Ground-Penetrating Radar Reflection Coefficients. J. Appl. Geophys. 2000, 43, 189–197. [Google Scholar] [CrossRef]
- Hagrey, A.; Müller. GPR Study of Pore Water Content and Salinity in Sand. Geophys. Prospect. 2000, 48, 63–85. [Google Scholar] [CrossRef]
- Goodman, D.; Piro, S.; Nishimura, Y.; Schneider, K.; Hongo, H.; Higashi, N.; Steinberg, J.; Damiata, B. Chapter 15—GPR Archaeometry. In Ground Penetrating Radar Theory and Applications; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 479–508. ISBN 978-0-444-53348-7. [Google Scholar]
- Annan, A.P. Chapter 1—Electromagnetic Principles of Ground Penetrating Radar. In Ground Penetrating Radar Theory and Applications; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–40. ISBN 978-0-444-53348-7. [Google Scholar]
- Slob, E.; Sato, M.; Olhoeft, G. Surface and Borehole Ground-Penetrating-Radar Developments. Geophysics 2010, 75, 75A103–75A120. [Google Scholar] [CrossRef]
- Cassidy, N.J. A Review of Practical Numerical Modelling Methods for the Advanced Interpretation of Ground-Penetrating Radar in near-Surface Environments. Near Surf. Geophys. 2007, 5, 5–21. [Google Scholar] [CrossRef]
- Koçak, B.; Sezgin, M.; Yeşildirek, A. Evaluation of Background Subtraction and Pattern Recognition Methods for Classification of GPR B-Scan Data. In Proceedings of the 2024 15th National Conference on Electrical and Electronics Engineering (ELECO), Bursa, Türkiye, 28–30 November 2024; pp. 1–5. [Google Scholar]
- Shlykov, V.; Spitsyn, D.; Guzhov, S.; Tutubalin, V.; Vityazev, S.; Andreev, S.; Fan, R.; Dvorkovich, A. Signal Processing in GPR Applications for Cave-in Prediction in Road Assessment: A Review. In Proceedings of the 2025 27th International Conference on Digital Signal Processing and Its Applications (DSPA), Moscow, Russia, 26–28 March 2025; pp. 1–10. [Google Scholar]
- Solla, M.; Lorenzo, H.; Rial, F.I.; Novo, A. Ground-Penetrating Radar for the Structural Evaluation of Masonry Bridges: Results and Interpretational Tools. Constr. Build. Mater. 2012, 29, 458–465. [Google Scholar] [CrossRef]
- Mohapatra, S.; McMechan, G.A. Prediction and Subtraction of Coherent Noise Using a Data Driven Time Shift: A Case Study Using Field 2D and 3D GPR Data. J. Appl. Geophys. 2014, 111, 312–319. [Google Scholar] [CrossRef]
- Crocco, L.; Ferrara, V. A Review on Ground Penetrating Radar Technology for the Detection of Buried or Trapped Victims. In Proceedings of the 2014 International Conference on Collaboration Technologies and Systems (CTS), Minneapolis, MN, USA, 19–23 May 2014; pp. 535–540. [Google Scholar]
- Panda, S.L.; Maiti, S.; Sahoo, U.K. Subsurface Propagation Velocity Estimation Methods in Ground-Penetrating Radar: A Review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 70–89. [Google Scholar] [CrossRef]
- Smogavec, P.; Gleich, D. Surface Reflection Suppression Method for Air-Coupled SFCW GPR Systems. Remote Sens. 2025, 17, 1668. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Y.-Q.; Yu, Z.-Y. A CNN-RNN Based Filter Model Used for Raw Tunnel Lining GPR Data. Earthq. Res. Adv. 2025, 1, 100374. [Google Scholar] [CrossRef]
- Famiglietti, N.A.; Cecere, G.; Grasso, C.; Memmolo, A.; Vicari, A. A Test on the Potential of a Low Cost Unmanned Aerial Vehicle RTK/PPK Solution for Precision Positioning. Sensors 2021, 21, 3882. [Google Scholar] [CrossRef] [PubMed]
- Famiglietti, N.A.; Miele, P.; Memmolo, A.; Falco, L.; Castagnozzi, A.; Moschillo, R.; Grasso, C.; Migliazza, R.; Selvaggi, G.; Vicari, A. New Concept of Smart UAS-GCP: A Tool for Precise Positioning in Remote-Sensing Applications. Drones 2024, 8, 123. [Google Scholar] [CrossRef]
- Francke, J. A Review of Selected Ground Penetrating Radar Applications to Mineral Resource Evaluations. J. Appl. Geophys. 2012, 81, 29–37. [Google Scholar] [CrossRef]
- Zhang, D.; Gong, H.; Li, J.; Wu, Z.; Liu, S. Integrated Ground Penetrating Radar and DGPS Method for the Continuous and Long-Distance GPR Survey in the Rugged Terrain. Acta Geophys. 2022, 70, 537–546. [Google Scholar] [CrossRef]
- Lunina, O.V.; Gladkov, A.S.; Afonkin, A.M.; Serebryakov, E.V. Deformation Style in the Damage Zone of the Mondy Fault: GPR Evidence (Tunka Basin, Southern East Siberia). Russ. Geol. Geophys. 2016, 57, 1269–1282. [Google Scholar] [CrossRef]
- Aliyannezhadi, A.; Mehrnia, S.R.; Kimiagar, S.; Rahimi, H.; Sadrmohammadi, N. Evaluation of GPR Method in Identification Hidden Faults of Alluvial Deposits in North of Persian Gulf Artificial Lake, Twenty-Two District of Tehran. J. Appl. Geophys. 2020, 179, 104108. [Google Scholar] [CrossRef]






| Profile Name | Investigated Depth (m) | Frequency (MHz) | Profile Length (m) |
|---|---|---|---|
| MDR1 | 5 | 120 | 259 |
| MDR2 | 15 | 80 | 236 |
| MDR3 | 25 | 60 | 232 |
| MDR4 | 35 | 40 | 234 |
| N1 | 15 | 80 | 188 |
| N2 | 25 | 60 | 187 |
| N3 | 25 | 60 | 165 |
| N4 | 15 | 80 | 158 |
| V1 | 25 | 60 | 155 |
| V2 | 50 | 30 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Famiglietti, N.A.; Memmolo, G.; Memmolo, A.; Migliazza, R.; Gagliarde, N.; Di Bucci, D.; Cheloni, D.; Vicari, A.; Massa, B. Low-Frequency Ground Penetrating Radar for Active Fault Characterization: Insights from the Southern Apennines (Italy). Remote Sens. 2025, 17, 3631. https://doi.org/10.3390/rs17213631
Famiglietti NA, Memmolo G, Memmolo A, Migliazza R, Gagliarde N, Di Bucci D, Cheloni D, Vicari A, Massa B. Low-Frequency Ground Penetrating Radar for Active Fault Characterization: Insights from the Southern Apennines (Italy). Remote Sensing. 2025; 17(21):3631. https://doi.org/10.3390/rs17213631
Chicago/Turabian StyleFamiglietti, Nicola Angelo, Gaetano Memmolo, Antonino Memmolo, Robert Migliazza, Nicola Gagliarde, Daniela Di Bucci, Daniele Cheloni, Annamaria Vicari, and Bruno Massa. 2025. "Low-Frequency Ground Penetrating Radar for Active Fault Characterization: Insights from the Southern Apennines (Italy)" Remote Sensing 17, no. 21: 3631. https://doi.org/10.3390/rs17213631
APA StyleFamiglietti, N. A., Memmolo, G., Memmolo, A., Migliazza, R., Gagliarde, N., Di Bucci, D., Cheloni, D., Vicari, A., & Massa, B. (2025). Low-Frequency Ground Penetrating Radar for Active Fault Characterization: Insights from the Southern Apennines (Italy). Remote Sensing, 17(21), 3631. https://doi.org/10.3390/rs17213631

