Mapping Coral Reef Habitats with ICESat-2 and Satellite Imagery: A Novel Spectral Unmixing Approach Compared to Machine Learning
Highlights
- This study introduces a nonlinear spectral unmixing, which captures sub-pixel benthic habitat composition.
- Unmixing provides more ecologically realistic reef mapping than higher-accuracy ML models.
- This study enables scalable reef mapping using multispectral data without site-specific inputs.
- Sub-pixel outputs enhance reef monitoring by revealing fine-scale habitat composition.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PlanetScope Satellite Imagery
2.3. Roelfsema Photoquadrats
2.4. ICESat-2 Data
2.5. Methodology Workflow
2.6. Ground Truth Processing
2.6.1. Constructing the Library of Pure Pixels
- The pure pixel library, which contained only the dominant class label for each identified pure pixel. This dataset served as the ground truth for training and evaluating classification models.
- The summary table was organized by unique pixels, with each pixel represented by multiple entries, one for each endmember with non-zero coverage. This format retained the full composition of each pixel, including the majority class as well as all contributing benthic components and their respective percentages.
2.6.2. Ground Truth Analysis
2.7. Feature Engineering
2.7.1. Derived Spectral Features
2.7.2. ICESat-2 Interpolated Surface
2.8. Classification Methods
2.8.1. Unsupervised and Semi-Supervised: K-Means Clustering
2.8.2. Supervised: Adaboost Decision Tree
2.8.3. Spectral Unmixing Methods
Traditional Unmixing Method
- is the abundance (fractional contribution) of endmember m;
- is the spectral signature of endmember m;
- e is an error term for all possible sources of error (i.e., sensor sensitivity, location accuracy, etc.);
- M is the number of endmembers (typically number of spectral bands);
- N is the number of pixels.
- Additivity:
- Non-negativity: for
- Bounds: for
- is the raster image (with N pixels and B spectral bands);
- is the spectral library (with M endmembers);
- is the abundance matrix;
- E is the residual error.
Preliminary Feature Analysis on the Simple Method
Novel Unmixing Method
- Estimating Spectral Signatures (S):
- is the spectral library (with M endmembers and B features);
- contains the abundance values for each ground truth pixel (with N pixels);
- is the matrix of corresponding satellite spectra for the ground truth pixels.
- Estimating Pixel Abundances (A):
- is the abundance vector for a given pixel;
- contains the input features for that pixel;
- is the estimated spectral library;
- B is the number of input features;
- M is the number of endmembers.
2.8.4. Benthic Coverage Estimation Method
3. Results
3.1. Class Separability in Spectral Bands
3.2. Classification Results
3.2.1. K-Means Clustering
3.2.2. AdaBoost Decision Tree
3.2.3. Spectral Unmixing
3.3. Benthic Cover Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Interpolated Surfaces of ICESat-2 Derived Variable

References
- Day, J. Protecting Australia’s Great Barrier Reef. Solutions 2011, 2, 56–66. [Google Scholar]
- O’Mahony, J.; Simes, R.; Redhill, D.; Heaton, K.; Atkinson, C.; Hayward, E.; Nguyen, M. At What Price? The Economic, Social and Icon Value of the Great Barrier Reef. Technical Report, Deloitte Access Economics, Australia. 2017. Available online: https://hdl.handle.net/11017/3205 (accessed on 20 October 2025).
- De’ath, G.; Fabricius, K.E.; Sweatman, H.; Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef]
- Van An, N.; Quang, N.H.; Son, T.P.; An, T.T. High-resolution benthic habitat mapping from machine learning on PlanetScope imagery and ICESat-2 data. Geocarto Int. 2023, 38, 2184875. [Google Scholar] [CrossRef]
- Gapper, J.J.; Maharjan, S.; Li, W.; Linstead, E.; Tiwari, S.P.; Qurban, M.A.; El-Askary, H. A generalized machine learning model for long-term coral reef monitoring in the Red Sea. Heliyon 2024, 10, e38249. [Google Scholar] [CrossRef]
- He, M.; He, J.; Zhou, Y.; Sun, L.; He, S.; Liu, C.; Gu, Y.; Li, P. Coral reef applications of Landsat-8: Geomorphic zonation and benthic habitat mapping of Xisha Islands, China. Giscience Remote Sens. 2023, 60, 2261213. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S.; Mumby, P.J.; Barrilero, O.; Laporte, J.; Koetz, B. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Wang, F.; Chen, Y.; Lee, Z. Detection of Coral Reef Bleaching Based on Sentinel-2 Multi-Temporal Imagery: Simulation and Case Study. Front. Mar. Sci. 2021, 8, 584263. [Google Scholar] [CrossRef]
- Dung, T.; Anh, L.; Nga, D. Coral Reefs Detecting with Artificial Neural Network Classification and PlanetScope Imagery in Cu Lao Xanh Island, Binh Dinh province. IOP Conf. Ser. Earth Environ. Sci. 2023, 1170, 012024. [Google Scholar] [CrossRef]
- Burns, C.; Bollard, B.; Narayanan, A. Machine-Learning for Mapping and Monitoring Shallow Coral Reef Habitats. Remote Sens. 2022, 14, 2666. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, W.; Lei, D.; Zhu, Y.; Chen, Y.; Yue, Z.; Wu, Z. Water Depth Correction-Based Classification Combination Method for Extracting Shallow Sea Reef Geomorphological Information: A Case Study of Xisha Chau and Zhaoshu Island. J. Mar. Sci. Eng. 2025, 13, 300. [Google Scholar] [CrossRef]
- White, E.; Mohseni, F.; Amani, M. Coral Reef mapping using remote sensing techniques and a supervised classification algorithm. Adv. Environ. Eng. Res. 2021, 2, 28. [Google Scholar] [CrossRef]
- Panjaitan, J.P.; Mahendratama, G.; Siregar, V. Benthic habitats mapping in Pari Island, Kepulauan Seribu, Indonesia using drone and sentinel-2B imagery with object based image analysis method. BIO Web Conf. 2025, 168, 05004. [Google Scholar] [CrossRef]
- Radford, B.; Puotinen, M.; Sahin, D.; Boutros, N.; Wyatt, M.; Gilmour, J. A remote sensing model for coral recruitment habitat. Remote Sens. Environ. 2024, 311, 114231. [Google Scholar] [CrossRef]
- da Silveira, C.B.L.; Strenzel, G.M.R.; Maida, M.; Gaspar, A.L.B.; Ferreira, B.P. Coral Reef Mapping with Remote Sensing and Machine Learning: A Nurture and Nature Analysis in Marine Protected Areas. Remote Sens. 2021, 13, 2907. [Google Scholar] [CrossRef]
- Nimalan, K.; Thanikachalam, M.; Usha, T. Estimating the fractional abundance of coral reef benthic compositions using linear spectral unmixing. Int. J. Fish. Aquat. Stud. 2020, 8, 181–186. [Google Scholar] [CrossRef]
- Hedley, J.D.; Mumby, P.J. A remote sensing method for resolving depth and subpixel composition of aquatic benthos. Limnol. Oceanogr. 2003, 48, 480–488. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef]
- Torres-Madronero, M.; Velez-Reyes, M.; Goodman, J. Subsurface unmixing for benthic habitat mapping using hyperspectral imagery and lidar-derived bathymetry. Proc. SPIE- Int. Soc. Opt. Eng. 2014, 9088, 90880M. [Google Scholar] [CrossRef]
- Goodman, J.; Ustin, S. Classification of benthic composition in a coral reef environment using spectral unmixing. J. Appl. Remote Sens. 2007, 1, 011501. [Google Scholar] [CrossRef]
- Cai, J.; Chatoux, H.; Boust, C.; Mansouri, A. Extending the Unmixing methods to Multispectral Images. Color Imaging Conf. 2021, 2021, 311–316. [Google Scholar] [CrossRef]
- Trudeau, G.A.; Lowell, K.; Dijkstra, J.A. Coral reef detection using ICESat-2 and machine learning. Ecol. Inform. 2025, 87, 103099. [Google Scholar] [CrossRef]
- Planet Team. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA, USA, 2025. Available online: https://api.planet.com (accessed on 5 November 2024).
- Planet Team. PlanetScope Imagery Product Specification. Technical report, Planet Labs PBC. 2023. Available online: https://docs.planet.com/data/imagery/planetscope/techspec/ (accessed on 16 October 2024).
- Roelfsema, C.M.; Kovacs, E.M.; Markey, K.; Phinn, S.R. Benthic and Substrate Cover Data Derived from Field Photo-Transect Surveys for the Heron Reef Flat and Slope Areas (2018-11); PANGAEA, 2019. Available online: https://doi.org/10.1594/PANGAEA.903767 (accessed on 27 September 2024).
- Roelfsema, C.M.; Phinn, S.R. Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps. J. Appl. Remote Sens. 2010, 4, 043527. [Google Scholar] [CrossRef]
- National Snow and Ice Data Center. ICESat-2. 2024. Available online: https://nsidc.org/data/icesat-2 (accessed on 20 February 2025).
- Neumann, T.A.; Brenner, A.; Hancock, D.; Robbins, J.; Gibbons, A.; Lee, J.; Harbeck, K.; Saba, J.; Luthcke, S.; Rebold, T. Ice, Cloud, and Land Elevation Satellite (ICESat-2) Project Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons (ATL03); Technical Report; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2022. [Google Scholar] [CrossRef]
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2012, 33, 3768–3797. [Google Scholar] [CrossRef]
- United States Federal Geographic Data Committee. Coastal and Marine Ecological Classification Standard. 2012. Available online: https://repository.library.noaa.gov/view/noaa/27552 (accessed on 1 November 2024).
- Holden, H.; LeDrew, E. Spectral Discrimination of Healthy and Non-Healthy Corals Based on Cluster Analysis, Principal Components Analysis, and Derivative Spectroscopy. Remote Sens. Environ. 1998, 65, 217–224. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Atkinson, M.J.; Andréfouët, S. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sens. Environ. 2003, 85, 159–173. [Google Scholar] [CrossRef]
- Nurdin, N.; Komatsu, T.; Yamano, H.; Arafat, G.; Rani, C.; AS, M.A. Spectral response of the coral rubble, living corals, and dead corals: Study case on the Spermonde Archipelago, Indonesia. In Proceedings of the Remote Sensing of the Marine Environment II, Kyoto, Japan, 29 October–1 November 2012; Frouin, R.J., Ebuchi, N., Pan, D., Saino, T., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8525, p. 85251A. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project, [Software]. 2024. Available online: https://www.qgis.org/ (accessed on 19 October 2024).
- JMP Statistical Discovery LLC. JMP® Pro 18; JMP Statistical Discovery LLC: Cary, NC, USA, 2025. [Google Scholar]
- Landsat Missions. Landsat Normalized Difference Vegetation Index. Available online: https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index (accessed on 9 June 2025).
- Landsat Missions. Landsat Normalized Difference Moisture Index. Available online: https://www.usgs.gov/landsat-missions/normalized-difference-moisture-index (accessed on 9 June 2025).
- Prajisha, C.; Achu, A.; Joseph, S. Chapter 9—Landslide susceptibility modeling using a generalized linear model in a tropical river basin of the Southern Western Ghats, India. In Water, Land, and Forest Susceptibility and Sustainability; Chatterjee, U., Pradhan, B., Kumar, S., Saha, S., Zakwan, M., Fath, B.D., Fiscus, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, Science of Sustainable Systems; pp. 237–266. [Google Scholar] [CrossRef]
- Lyons, M.; Larsen, K.; Skone, M. CoralMapping/AllenCoralAtlas: v1.3. 2022. Available online: https://doi.org/10.5281/zenodo.6622015 (accessed on 13 April 2025).
- Sinaga, K.P.; Yang, M.S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Schapire, R.E. Explaining AdaBoost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Schölkopf, B., Luo, Z., Vovk, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Nembrini, S.; König, I.R.; Wright, M.N. The revival of the Gini importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef]
- Pour, A.B.; Ranjbar, H.; Sekandari, M.; Abd El-Wahed, M.; Hossain, M.S.; Hashim, M.; Yousefi, M.; Zoheir, B.; Wambo, J.D.T.; Muslim, A.M. Remote sensing for mineral exploration. In Geospatial Analysis Applied to Mineral Exploration; Pour, A.B., Parsa, M., Eldosouky, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 17–149. [Google Scholar] [CrossRef]
- Sánchez, A.; Marro, M.; Marsal, M.; Zacchetti, S.; de Oliveira, R.; Loza-Alvarez, P.; De Juan, A. Linear unmixing protocol for hyperspectral image fusion analysis applied to a case study of vegetal tissues. Sci. Rep. 2021, 11, 18665. [Google Scholar] [CrossRef]
- Eugenio, F.; Marcello, J.; Martin, J.; Rodríguez-Esparragón, D. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques. Sensors 2017, 17, 2639. [Google Scholar] [CrossRef]
- Ghrefat, H.; Awawdeh, M.; Howari, F.; Al-Rawabdeh, A. Chapter 12—Mineral exploration using multispectral and hyperspectral remote sensing data. In Geoinformatics for Geosciences; Stathopoulos, N., Tsatsaris, A., Kalogeropoulos, K., Eds.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 197–222. [Google Scholar] [CrossRef]
- Grammerly. F1 Score in Machine Learning: How to Calculate, Apply, and Use It Effectively. 2025. Available online: https://www.grammarly.com/blog/ai/what-is-f1-score/ (accessed on 13 April 2025).
- Xu, Y.; Vaughn, N.R.; Knapp, D.E.; Martin, R.E.; Balzotti, C.; Li, J.; Foo, S.A.; Asner, G.P. Coral Bleaching Detection in the Hawaiian Islands Using Spatio-Temporal Standardized Bottom Reflectance and Planet Dove Satellites. Remote Sens. 2020, 12, 3219. [Google Scholar] [CrossRef]
- Brown, K.; Bender-Champ, D.; Hoegh-Guldberg, O.; Dove, S. Seasonal shifts in the competitive ability of macroalgae influence the outcomes of coral–algal competition. R. Soc. Open Sci. 2020, 7, 201797. [Google Scholar] [CrossRef] [PubMed]
- Roelfsema, C.; Kovacs, E.; Markey, K.; Vercelloni, J.; Rodriguez-Ramirez, A.; Lopez-Marcano, S.; Gonzalez-Rivero, M.; Hoegh-Guldberg, O.; Phinn, S. Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002–2018. Sci. Data 2021, 8, 84. [Google Scholar] [CrossRef]
- Foo, S.A.; Asner, G.P. Scaling Up Coral Reef Restoration Using Remote Sensing Technology. Front. Mar. Sci. 2019, 6, 79. [Google Scholar] [CrossRef]
- Kou, L.; Labrie, D.; Chylek, P. Refractive indices of water and ice in the 0.65–2.5 µm spectral range. Appl. Opt. 1993, 32, 3531–3540. [Google Scholar] [CrossRef]






















| Endmember Class | Definition |
|---|---|
| Live Coral | Areas dominated by living, reef-building or non-reef-building coral, including but not limited to branching, massive, encrusting, and foliose corals. |
| Dead Coral | Areas dominated by dead coral skeletons, often fragmented (rubble) or intact but no longer living. |
| Macroalgae | Areas dominated by benthic macroalgae including fleshy, calcifying, or crustose coralline algae, and turf algal mats (e.g., Sargassum, Halimeda, etc.). |
| Sand | Areas of loose, unconsolidated fine to coarse sediment, primarily carbonate sand (biogenic origin from broken coral, shells). |
| Land | Tidal Island/Emergent landmass composed of sand and rubble (cay), vegetated or unvegetated. |
| Deep Water | Areas where water depth and/or turbidity prevent satellite or airborne sensors from fully penetrating to the seafloor. These regions typically appear dark or featureless in optical imagery because the benthic substrate is not visible. |
| Benthic Class | Number of Pure Pixels | Source |
|---|---|---|
| Live Coral | 8 | Roelfsema et al. [26] |
| Dead Coral | 256 | Roelfsema et al. [26] |
| Macroalgae | 0 | Roelfsema et al. [26] |
| Sand | 189 | Roelfsema et al. [26] |
| Land | 300 | See text. |
| Deep Water | 311 | See text. |
| Input Category | Features | Count |
|---|---|---|
| Original spectral bands | red, green, blue, NIR | 4 |
| Derived spectral features | band differences and ratios | 12 |
| ICESat-2 Features | rugosity, slope, median depth (Z), SDB, and a binary ‘reef’/‘no reef’ prediction | 5 |
| Variable | KW | p-Value | Steel-Dwass Post Hoc Grouping (Letters) |
|---|---|---|---|
| Blue Band | 775.5 | <0.001 | Dead Coral (A), Land (B), Live Coral (C), Deep Water (C), Sand (D) |
| Green Band | 779.2 | <0.001 | Dead Coral (A), Land (B), Live Coral (C), Deep Water (C), Sand (D) |
| Red Band | 815.1 | <0.001 | Dead Coral (A), Land (B), Live Coral (C), Deep Water (C), Sand (D) |
| NIR Band | 655.1 | <0.001 | Dead Coral (A), Land (B), Live Coral (A,C), Deep Water (C,D), Sand (D) |
| Model | Input Config. | Overall Accuracy (%) | Live Coral (F1) | Dead Coral (F1) | Sand (F1) | Deep Water (F1) | Land (F1) |
|---|---|---|---|---|---|---|---|
| K-Means | 1 | 85.9% | 0.00 | 0.73 | 0.83 | 0.89 | 0.94 |
| K-Means | 2 | 77.4% | 0.00 | 0.18 | 0.90 | 0.91 | 0.99 |
| AdaBoost | 1 | 93.3% | 1.00 | 0.86 | 0.82 | 0.99 | 1.00 |
| AdaBoost | 2 | 93.0% | 0.09 | 0.88 | 0.91 | 0.94 | 1.00 |
| Unmixing | 1 | 64.8% | 0.31 | 0.65 | 0.69 | 0.77 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trudeau, G.A.; Lyon, M.; Lowell, K.; Dijkstra, J.A. Mapping Coral Reef Habitats with ICESat-2 and Satellite Imagery: A Novel Spectral Unmixing Approach Compared to Machine Learning. Remote Sens. 2025, 17, 3623. https://doi.org/10.3390/rs17213623
Trudeau GA, Lyon M, Lowell K, Dijkstra JA. Mapping Coral Reef Habitats with ICESat-2 and Satellite Imagery: A Novel Spectral Unmixing Approach Compared to Machine Learning. Remote Sensing. 2025; 17(21):3623. https://doi.org/10.3390/rs17213623
Chicago/Turabian StyleTrudeau, Gabrielle A., Mark Lyon, Kim Lowell, and Jennifer A. Dijkstra. 2025. "Mapping Coral Reef Habitats with ICESat-2 and Satellite Imagery: A Novel Spectral Unmixing Approach Compared to Machine Learning" Remote Sensing 17, no. 21: 3623. https://doi.org/10.3390/rs17213623
APA StyleTrudeau, G. A., Lyon, M., Lowell, K., & Dijkstra, J. A. (2025). Mapping Coral Reef Habitats with ICESat-2 and Satellite Imagery: A Novel Spectral Unmixing Approach Compared to Machine Learning. Remote Sensing, 17(21), 3623. https://doi.org/10.3390/rs17213623

