Coseismic and Postseismic Deformations of the 2023 Turkey Earthquake Doublet
Highlights
- The 2023 Turkey earthquake doublet exhibited a complementary spatial pattern of coseismic and postseismic fault slips, with the distribution of afterslips being influenced by the coseismic Coulomb stress changes.
- The postseismic afterslip not only compensated for the coseismic slip deficit on the deep part of the fault but also extended into previously unruptured segments during the earthquake doublet.
- These findings underscore the interplay between coseismic and postseismic processes in large strike-slip earthquakes, revealing a continuous phase of post-earthquake stress adjustment and redistribution.
- The extension of afterslip into segments adjacent to the coseismic rupture zones indicates that these fault segments are at increased risk of failure during the postseismic period and highlight the potential seismic hazard.
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Coseismic Deformation and Fault Rupture
3.2. Postseismic Deformation and Fault Rupture
3.3. Coseismic Coulomb Stress Change
4. Discussion
4.1. Comparison of Coseismic Slip Models
4.2. Coseismic and Postseismic Interactions
4.3. Fault Rupture Process and Potential Risk from Surrounding Faults
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, E.; Kalaycioglu, S.; Milliner, C.W.D.; Cakir, Z. Preconditioning the 2023 Kahramanmaras (Turkiye) earthquake disaster. Nat. Rev. Earth Environ. 2023, 4, 287–289. [Google Scholar] [CrossRef]
- Hatzfeld, D.; Molnar, P. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys. 2010, 48, 2. [Google Scholar] [CrossRef]
- Aktug, B.; Ozener, H.; Dogru, A.; Sabuncu, A.; Turgut, B.; Halicioglu, K.; Yilmaz, O.; Havazli, E. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J. Geodyn. 2016, 94–95, 1–12. [Google Scholar] [CrossRef]
- Zhan, H.; Bai, L.; Adi Wibowo, B.; Liu, C.; Oike, K.; Ishikawa, Y. The 2023 Turkey earthquake doublet: Earthquake relocation, seismic tomography, and stress field inversion. Earth Planet. Phys. 2024, 8, 535–548. [Google Scholar] [CrossRef]
- Barbot, S.; Luo, H.; Wang, T.; Hamiel, Y.; Piatibratova, O.; Javed, M.T.; Braitenberg, C.; Gurbuz, G. Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian fault zone. Seismica 2023, 2, 502. [Google Scholar] [CrossRef]
- Melgar, D.; Taymaz, T.; Ganas, A.; Crowell, B.; Öcalan, T.; Kahraman, M.; Tsironi, V.; Yolsal-Çevikbil, S.; Valkaniotis, S.; Irmak, T.S.; et al. Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica 2023, 2, 3. [Google Scholar] [CrossRef]
- Konca, A.Ö.; Karabulut, H.; Güvercin, S.E.; Eskiköy, F.; Özarpac, S.; Özdemir, A.; Floyd, M.; Ergintav, S.; Dogan, U. From Interseismic Deformation With Near-Repeating Earthquakes to Co-Seismic Rupture: A Unified View of the 2020 M6.8 Sivrice (Elazig) Eastern Turkey Earthquake. J. Geophys. Res. Solid Earth 2021, 126, 10. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Taymaz, T.; Hu, N.; Luo, H.; Zhao, Z.; Yue, H.; Song, X.; Shen, Z.; Xu, H.; et al. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaras, Turkiye, earthquake doublet. Science 2024, 383, 305–311. [Google Scholar] [CrossRef]
- Liu, C.; Lay, T.; Wang, R.; Taymaz, T.; Xie, Z.; Xiong, X.; Irmak, T.S.; Kahraman, M.; Erman, C. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Turkiye. Nat. Commun. 2023, 14, 5564. [Google Scholar] [CrossRef]
- Jia, Z.; Jin, Z.; Marchandon, M.; Ulrich, T.; Gabriel, A.A.; Fan, W.; Shearer, P.; Zou, X.; Rekoske, J.; Bulut, F.; et al. The complex dynamics of the 2023 Kahramanmaras, Turkey, Mw 7.8–7.7 earthquake doublet. Science 2023, 381, 985–990. [Google Scholar] [CrossRef]
- Xu, J.; Liu, C.L.; Xiong, X. Source Process of the 24 January 2020 6.7 East Anatolian Fault Zone, Turkey, Earthquake. Seismol. Res. Lett. 2020, 91, 3120–3128. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Chen, Q.; Yang, Y.-H.; Xu, Q. Coseismic Faulting Model and Post-Seismic Surface Motion of the 2023 Turkey–Syria Earthquake Doublet Revealed by InSAR and GPS Measurements. Remote Sens. 2023, 15, 3327. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Fan, X.; Ma, C.; Shan, X. Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Türkiye-Syria Earthquake Doublet Based on SAR Offset Tracking. Remote Sens. 2023, 15, 5443. [Google Scholar] [CrossRef]
- He, L.; Feng, G.; Xu, W.; Wang, Y.; Xiong, Z.; Gao, H.; Liu, X. Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence From InSAR and Optical Data. Geophys. Res. Lett. 2023, 50, 17. [Google Scholar] [CrossRef]
- Dai, X.; Liu, X.; Liu, R.; Song, M.; Zhu, G.; Chang, X.; Guo, J. Coseismic slip distribution and Coulomb stress change of the 2023 Mw 7.8 Pazarcik and Mw 7.5 Elbistan earthquakes in Turkey. Remote Sens. 2024, 16, 240. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Tao, T.; Zhu, Y.; Qu, X.; Li, Z.; Huang, J.; Song, S. Source model of the 2023 Turkey earthquake sequence imaged by sentinel-1 and GPS measurements: Implications for heterogeneous fault behavior along the East Anatolian Fault Zone. Remote Sens. 2023, 15, 2618. [Google Scholar] [CrossRef]
- Ding, H.; Zhou, Y.; Ge, Z.; Taymaz, T.; Ghosh, A.; Xu, H.; Irmak, T.S.; Song, X. High-resolution seismicity imaging and early aftershock migration of the 2023 Kahramanmaraş (SE Türkiye) Mw 7.9 & 7.8 earthquake doublet. Earthq. Sci. 2023, 36, 417–432. [Google Scholar] [CrossRef]
- Ma, Z.; Li, C.; Jiang, Y.; Chen, Y.; Yin, X.; Aoki, Y.; Yun, S.H.; Wei, S. Space Geodetic Insights to the Dramatic Stress Rotation Induced by the February 2023 Turkey—Syria Earthquake Doublet. Geophys. Res. Lett. 2024, 51, e2023GL107788. [Google Scholar] [CrossRef]
- Nergizci, M.; Lazecky, M.; Ou, Q.; Wright, T.; Hooper, A. Along-Track Displacement of Mw 7.8 and 7.6 Kahramanmaraş Earthquakes from Sentinel-1 Offset Tracking and Burst Overlap Interferometry. Procedia Comput. Sci. 2024, 239, 2135–2141. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733. Available online: https://ieeexplore.ieee.org/document/6217174 (accessed on 23 October 2025).
- Gao, Y.; Wang, K.; Liu, X. Exploitation of SRTM DEM in InSAR data processing and its application to phase unwrapping. J. Electromagn. Waves Appl. 2012, 26, 1788–1797. [Google Scholar] [CrossRef]
- Simons, M.; Fialko, Y.; Rivera, L. Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bull. Seismol. Soc. Am. 2002, 92, 1390–1402. [Google Scholar] [CrossRef]
- Pathier, E.; Fielding, E.J.; Wright, T.J.; Walker, R.; Parsons, B.E.; Hensley, S. Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophys. Res. Lett. 2006, 33, 20. [Google Scholar] [CrossRef]
- Liu, J.H.; Hu, J.; Li, Z.W.; Zhu, J.J.; Sun, Q.; Gan, J. A Method for Measuring 3-D Surface Deformations With InSAR Based on Strain Model and Variance Component Estimation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 239–250. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Xu, W.; Li, Z.; Zhu, J.; Ding, X.; Zhang, L. Complete three—Dimensional coseismic deformation field of the 2016 Central Tottori earthquake by integrating left—And right—Looking InSAR observations with the improved SM—VCE method. J. Geophys. Res. Solid Earth 2019, 124, 12099–12115. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Wu, L.; Jiang, W.; Feng, G.; Zhu, J. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Sci. China Earth Sci. 2022, 65, 687–697. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Shen, Z.-K.; Ge, W.; Wang, K.; Wang, F.; Sun, J. Inter-seismic deformation field of the Ganzi-Yushu fault before the 2010 Mw 6.9 Yushu earthquake. Tectonophysics 2013, 584, 138–143. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid. Earth 2007, 112, B7. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. A 2007, 24, 2737–2747. [Google Scholar] [CrossRef]
- Karabulut, H.G.; Güvercin, S.E.; Hollingsworth, J.; Konca, A.Ö. Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: Implications for the seismic potential in the Eastern Mediterranean region. Geol. Soc. Lond. 2023, 180, 3. [Google Scholar] [CrossRef]
- Karabacak, V.; Özkaymak, Ç.; Sözbilir, H.; Tatar, O.; Aktuğ, B.; Özdağ, Ö.C.; Çakir, R.; Aksoy, E.; Koçbulut, F.; Softa, M. The 2023 Pazarcık (Kahramanmaraş, Türkiye) earthquake (Mw 7.7): Implications for surface rupture dynamics along the East Anatolian fault zone. J. Geol. Soc. 2023, 180, 3. [Google Scholar] [CrossRef]
- Liu, J.; Huang, C.; Zhang, G.; Shan, X.; Korzhenkov, A.; Taymaz, T. Immature characteristics of the East Anatolian Fault Zone from SAR, GNSS and strong motion data of the 2023 Turkiye-Syria earthquake doublet. Sci. Rep. 2024, 14, 10625. [Google Scholar] [CrossRef]
- Wen, Y.; Li, Z.; Xu, C.; Ryder, I.; Bürgmann, R. Postseismic motion after the 2001 MW 7.8 Kokoxili earthquake in Tibet observed by InSAR time series. J. Geophys. Res. Solid Earth 2012, 117, B8. [Google Scholar] [CrossRef]
- Zhang, G.; Shan, X.; Feng, G. The 3-D surface deformation, coseismic fault slip and after-slip of the 2010 MW 6.9 Yushu earthquake, Tibet, China. J. Asian Earth Sci. 2016, 124, 260–268. [Google Scholar] [CrossRef]
- He, L.; Feng, G.; Wu, X.; Lu, H.; Xu, W.; Wang, Y.; Liu, J.; Hu, J.; Li, Z. Coseismic and Early Postseismic Slip Models of the 2021 Mw 7.4 Maduo Earthquake (Western China) Estimated by Space-Based Geodetic Data. Geophys. Res. Lett. 2021, 48, e2021GL095860. [Google Scholar] [CrossRef]
- Liu, S.; Shen, Z.-K.; Bürgmann, R.; Jónsson, S. Thin crème brûlée rheological structure for the Eastern California Shear Zone. Geology 2020, 49, 216–221. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W. Logarithmic Model Joint Inversion Method for Coseismic and Postseismic Slip: Application to the 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran. J. Geophys. Res. Solid Earth 2019, 124, 12034–12052. [Google Scholar] [CrossRef]
- Sreejith, K.M.; Sunil, P.S.; Agrawal, R.; Saji, A.P.; Ramesh, D.S.; Rajawat, A.S. Coseismic and early postseismic deformation due to the 25 April 2015, M 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophys. Res. Lett. 2016, 43, 3160–3168. [Google Scholar] [CrossRef]
- Johnson, K.M.; Burgmann, R.; Larson, K. Frictional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake. Bull. Seismol. Soc. Am. 2006, 96, S321–S338. [Google Scholar] [CrossRef]
- An, Q.; Feng, G.; He, L.; Xiong, Z.; Lu, H.; Wang, X.; Wei, J. Three-dimensional deformation of the 2023 Turkey Mw 7.8 and Mw 7.7 earthquake sequence obtained by fusing optical and SAR images. Remote Sens. 2023, 15, 2656. [Google Scholar] [CrossRef]
- Xu, L.; Aoki, Y.; Wang, J.; Cui, Y.; Chen, Q.; Yang, Y.; Yao, Z. The 2023 Mw 7.8 and 7.6 earthquake doublet in Southeast Türkiye: Coseismic and early postseismic deformation, faulting model, and potential seismic hazard. Seismol. Res. Lett. 2024, 95, 562–573. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Dal Zilio, L.; Cao, J.; Wang, H.; Yang, G.; Göğüş, O.H.; Zhang, H.; Shi, Y. Decoding stress patterns of the 2023 Türkiye—Syria earthquake doublet. J. Geophys. Res. Solid Earth 2024, 129, 10. [Google Scholar] [CrossRef]
- Bai, L.; Klemperer, S.L.; Mori, J.; Karplus, M.S.; Ding, L.; Liu, H.; Li, G.; Song, B.; Dhakal, S. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal. Sci. Adv. 2019, 5, eaav0723. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, H.; Zhan, H.; Wang, S.; Bai, L. Coseismic and Postseismic Deformations of the 2023 Turkey Earthquake Doublet. Remote Sens. 2025, 17, 3573. https://doi.org/10.3390/rs17213573
Liu C, Li H, Zhan H, Wang S, Bai L. Coseismic and Postseismic Deformations of the 2023 Turkey Earthquake Doublet. Remote Sensing. 2025; 17(21):3573. https://doi.org/10.3390/rs17213573
Chicago/Turabian StyleLiu, Chaoya, Hongru Li, Huili Zhan, Shaojun Wang, and Ling Bai. 2025. "Coseismic and Postseismic Deformations of the 2023 Turkey Earthquake Doublet" Remote Sensing 17, no. 21: 3573. https://doi.org/10.3390/rs17213573
APA StyleLiu, C., Li, H., Zhan, H., Wang, S., & Bai, L. (2025). Coseismic and Postseismic Deformations of the 2023 Turkey Earthquake Doublet. Remote Sensing, 17(21), 3573. https://doi.org/10.3390/rs17213573
