Spatiotemporal Distribution and Applicability Evaluation of Remote Sensing Precipitation in River Basins Across Mainland China
Highlights
- Systematic Errors: GPM IMERG-F overestimates annual rainy-day frequency but un-derestimates intensity in most basins (e.g., 18–20% annual precipitation overestima-tion in Liao River Basins), with seasonal monthly errors (larger deviations in winter in northern/western regions).
- Basin-Scale Analysis and Application Insights: multi-temporal (daily–annual) and multi-metric analyses quantify terrain–climate impacts on basins (e.g., western YZRB (>2000 m) CSI < 0.5 vs. eastern 0.6–0.7), and basin-specific error ranges (e.g., monthly RMSD 25–50 mm) support rainy-season heavy rainfall detection in low-altitude basins (e.g., SEIRB) and sparse station supplementation in arid basins.
- This study complements existing research by conducting systematic basin-scale assessments to reveal error variations across ten basins (a topic less reported in national-scale studies).
- This study establishes terrain–climate-error links to provide basin-specific references for hydrological applications.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.2.1. Manned National-Level Ground-Station Data
2.2.2. The GPM IMERG-Final Precipitation Data
2.3. Evaluation Methodology
3. Results
3.1. Evaluation of Precipitation Detection Performance
3.2. Spatial Distribution of Annual Precipitation Frequency and Intensity
3.3. Accuracy Evaluation of IMERG-F Precipitation Estimates
3.4. Spatial Characteristics of Annual Areal and Monthly Areal Precipitation
4. Discussion
4.1. Discussion of Seasonal Deviation
4.2. Discussion on Different Characteristics
5. Conclusions
Hydrological Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Panziera, L.; Gabella, M.; Germann, U.; Martius, O. A 12-year radar-based climatology of daily and sub-daily extreme precipitation over the Swiss Alps. Int. J. Climatol. 2018, 38, 3749–3769. [Google Scholar] [CrossRef]
- Cai, Y.C.; Jin, C.J.; Wang, A.Z.; Guan, D.X.; Wu, J.B.; Yuan, F.H.; Xu, L.L. Comprehensive precipitation evaluation of TRMM 3B42 with dense rain gauge networks in a midlatitude basin, northeast China. Theor. Appl. Climatol. 2016, 126, 659–671. [Google Scholar] [CrossRef]
- Chen, H.Q.; Wen, D.B. Dependency of errors for four global reanalysis and satellite precipitation estimates on four crucial factors. Atmos. Res. 2023, 296, 107076. [Google Scholar] [CrossRef]
- Dogra, A.; Thakur, J.; Tandon, A. Do satellite-based products suffice for rainfall observations over data-sparse complex terrains? Evidence from the North-Western Himalayas. Remote Sens. Environ. 2023, 299, 113855. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, Q.; Xu, C.Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J. Hydrol. 2012, 426–427, 28–38. [Google Scholar] [CrossRef]
- Du, L.T.; Tian, Q.J.; Yu, T.; Meng, Q.Y.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Tang, G.Q.; Li, Z.; Xue, X.W.; Hu, Q.F.; Yong, B.; Hong, Y. A study of substitutability of TRMM remote sensing precipitation for gauge-based observation in Ganjiang River basin. Adv. Water Sci. 2015, 26, 340–346. [Google Scholar]
- Guo, R.F.; Liu, Y.B. Multi-satellite retrieval of high-resolution precipitation: An overview. Adv. Earth Sci. 2015, 30, 891–903. [Google Scholar]
- Mo, C.X.; Lei, X.B.; Mo, X.X.; Ruan, R.L.; Tang, G.; Li, L.G.; Sun, G.K.; Jiang, C.H. Comprehensive evaluation and comparison of ten precipitation products in terms of accuracy and stability over a typical mountain basin, Southwest China. Atmos. Res. 2024, 297, 107116. [Google Scholar] [CrossRef]
- Gilewski, P.; Nawalany, M. Inter-comparison of rain-gauge, radar, and satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland. Water 2018, 10, 1665. [Google Scholar] [CrossRef]
- Ahmed, E.; Al Janabi, F.; Zhang, J.; Yang, W.Y.; Saddique, N.; Krebs, P. Hydrologic assessment of TRMM and GPM-Based precipitation products in transboundary river catchment (Chenab River, Pakistan). Water 2020, 12, 1902. [Google Scholar] [CrossRef]
- Wang, X.N.; Ding, Y.J.; Zhao, C.C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.M.; Win, K.W.W.; Ren, L.L.; Zhao, C.X.; Zhu, Y.H.; Jiang, S.H.; Liu, Y. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Tang, G.Q.; Long, D.; Yong, B.; Zhong, L.Z.; Wan, W.; Hong, Y. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Muhammad, W.; Yang, H.B.; Lei, H.M.; Muhammad, A.; Yang, D.W. Improving the regional applicability of satellite precipitation products by ensemble algorithm. Remote Sens. 2018, 10, 577. [Google Scholar] [CrossRef]
- Satgé, F.; Hussain, Y.; Bonnet, M.-P.; Hussain, B.M.; Martinez-Carvajal, H.; Akhter, G.; Uagoda, R. Benefits of the successive GPM Based satellite precipitation estimates IMERG–V03, –V04, –V05 and GSMaP–V06, –V07 over diverse geomorphic and meteorological regions of Pakistan. Remote Sens. 2018, 10, 1373. [Google Scholar] [CrossRef]
- Geng, H.P.; Pan, B.T.; Huang, B.; Cao, B.; Gao, H.S. The spatial distribution of precipitation and topography in the Qilian Shan Mountains, northeastern Tibetan Plateau. Geomorphology 2017, 297, 43–54. [Google Scholar] [CrossRef]
- Chen, J.C.; Wang, Z.L.; Wu, X.S.; Chen, X.H.; Lai, C.G.; Zeng, Z.Y.; Li, J. Accuracy evaluation of GPM multi-satellite precipitation products in the hydrological application over alpine and gorge regions with sparse rain gauge network. Hydrol. Res. 2019, 50, 1710–1729. [Google Scholar] [CrossRef]
- Liu, J.Z.; Duan, Z.; Jiang, J.C.; Zhu, A.-X. Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Adv. Meteorol. 2015, 1, 151239. [Google Scholar] [CrossRef]
- Ali, A.F.; Xiao, C.D.; Anjum, M.N.; Adnan, M.; Nawaz, Z.; Ijaz, M.W.; Sajid, M.; Farid, H.U. Evaluation and comparison of TRMM multi-satellite precipitation products with reference to rain gauge observations in Hunza River Basin, Karakoram Range, Northern Pakistan. Sustainability 2017, 9, 1954. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.X.; Qin, G.H.; Huang, Y.Y.; Qi, Y.L. Evaluation of satellite-based precipitation products over complex topography in mountainous Southwestern China. Remote Sens. 2023, 15, 473. [Google Scholar] [CrossRef]
- Eini, M.R.; Olyaei, M.A.; Kamyab, T.; Teymoori, J.; Brocca, L.; Piniewski, M. Evaluating three non-gauge-corrected satellite precipitation estimates by a regional gauge interpolated dataset over Iran. J. Hydrol.-Reg. Stud. 2021, 38, 100942. [Google Scholar] [CrossRef]
- Nan, L.J.; Yang, M.X.; Wang, H.; Xiang, Z.L.; Hao, S.K. Comprehensive evaluation of Global Precipitation Measurement Mission (GPM) IMERG precipitation products over Mainland China. Water 2021, 13, 3381. [Google Scholar] [CrossRef]
- Tang, S.X.; Li, R.; He, J.X.; Wang, H.; Fan, X.G.; Yao, S.Y. Comparative evaluation of the GPM IMERG early, late, and final hourly precipitation products using the CMPA data over Sichuan Basin of China. Water 2020, 12, 554. [Google Scholar] [CrossRef]
- Liu, S.H.; Yan, D.H.; Wang, H.; Li, C.Z.; Qin, T.L.; Weng, B.S.; Xing, Z.Q. Evaluation of TRMM 3B42V7 at the basin scale over mainland China. Adv. Water Sci. 2016, 27, 639–651. [Google Scholar]
- Liao, R.W.; Zhang, D.B.; Shen, Y. Validation of six satellite-derived rainfall estimates over China. Meteorol. Mon. 2015, 41, 970–979. [Google Scholar]
- Liu, Y.J.; Chen, J.; Pan, T. Analysis of changes in reference evapotranspiration, pan evaporation, and actual evapotranspiration and their influencing factors in the North China plain during 1998–2005. Earth Space Sci. 2019, 6, 1366–1377. [Google Scholar] [CrossRef]
- Hirji, R.; Panella, T. Evolving policy reforms and experiences for addressing downstream impacts in World Bank water resources projects. River Res. Appl. 2003, 19, 667–681. [Google Scholar] [CrossRef]
- Zhai, J.Q.; Liu, B.; Hartmann, H.; Su, B.D.; Jiang, T.; Fraedrich, K. Dryness/wetness variations in China during the first 50 years of the 21st century. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 1385–1409. [Google Scholar]
- Li, Y.; Ding, J.; Zhang, L.Y.; Liu, X.S.; Wang, G.Y. Occurrence and ranking of pharmaceuticals in the major rivers of China. Sci. Total Environ. 2019, 696, 133991. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.B.; Hou, W.J. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in karst areas: Based on the geographical detector method. J. Geogr. Sci. 2019, 29, 271–286. [Google Scholar] [CrossRef]
- Yue, Y.; Ni, J.R.; Borthwick, A.G.L.; Miao, C.Y. Diagnosis of river basins as CO2 sources or sinks subject to sediment movement. Earth Surf. Proc. Land. 2012, 37, 1398–1406. [Google Scholar] [CrossRef]
- Yang, H.C.; Wang, G.Q.; Jiang, H.; Fang, H.Y.; Ishidaira, H. Integrated modeling approach to the response of soil erosion and sediment export to land-use change at the basin scale. J. Hydrol. Eng. 2014, 20, C4014003. [Google Scholar] [CrossRef]
- Zhao, Y.; Pei, Y.S. A study on distributed simulation of soil wind erosion and its application to the Tuhaimajia River Basin. Procedia Environ. Sci. 2010, 2, 1555–1568. [Google Scholar] [CrossRef]
- Ren, G.Y.; Zhan, Y.J.; Ren, Y.Y.; Chen, Y.; Wang, T.; Liu, Y.J.; Sun, X.B. Spatial and temporal patterns of precipitation variability over mainland China: I: Climatology. Adv. Water Sci. 2015, 26, 299–310. [Google Scholar]
- Chen, D.L.; Ou, T.H.; Gong, L.B.; Xu, C.-Y.; Li, W.J.; Ho, C.-H.; Qian, W.H. Spatial interpolation of daily precipitation in China: 1951–2005. Adv. Atmos. Sci. 2010, 27, 1221–1232. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosic. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Gebregiorgis, A.; Hossain, F. How much can a priori hydrologic model predictability help in optimal merging of satellite precipitation products? J. Hydrometeorol. 2011, 12, 1287–1298. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2018, 100, 473–500. [Google Scholar] [CrossRef]
- Salio, P.; Hobouchian, M.P.; Skabar, Y.G.; Vila, D. Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos. Res. 2015, 163, 146–161. [Google Scholar] [CrossRef]
- Chen, F.R.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef]
- Jin, X.L.; Shao, H.; Zhang, C.; Yan, Y. The applicability evaluation of three satellite products in Tianshan mountains. J. Nat. Resour. 2016, 31, 2074–2085. [Google Scholar]
- Pan, Y.; Gu, J.X.; Shi, C.X.; Wang, Z. Assessment and merged optimization of multi-source winter precipitation products over northern China. Acta Meteorol. Sin. 2022, 80, 953–966. [Google Scholar]






| River Basin Name | Approximate Drainage Area (km2) | Precipitation Characteristics |
|---|---|---|
| Songhua River Basin | 921,000 | Precipitation is relatively plentiful and water vapor conditions are good [31]. |
| Liao River Basin | 314,900 | Water resources are relatively scarce. |
| Hai River Basin | 318,300 | Severe water scarcity issues due to high population density/water demand combined with limited seasonal rainfall. Frequent historical flooding. |
| Yellow River Basin | 794,500 | Highly influenced by monsoons, but overall drier than southern basins. Precipitation concentrated in summer (Jul-Sep), causing most runoff. Soil erosion is serious on the Loess Plateau, which accounts for most of the basin area [32,33,34,35]. The river basin is susceptible to drought and flooding. |
| Huai River Basin | 328,700 | Historically prone to severe flooding due to flat terrain, monsoon intensity, and its position between the Yellow and Yangtze floodplains. |
| Yangtze River Basin | 1,780,500 | It has a vast water system, with numerous lakes connected to it, and extremely rich water resources. |
| Southeast Inland Rivers Basin | 201,400 | The basin has relatively abundant precipitation and is crisscrossed by several short rivers. |
| Pearl River Basin | 575,300 | The precipitation is abundant, and the rivers in the basin flow very well. |
| Southwest Inland Rivers Basin | 851,500 | Affected by both the monsoon climate and the plateau–mountain climate, there are significant differences in the seasonal variation in precipitation. |
| Northwest Inland Rivers Basin | 3,358,500 | There are mostly inland lakes in the basin; therefore, the ecological environment is extremely fragile, precipitation is scarce, and the rational utilization of water resources is crucial. |
| Precipitation Detection Results | Observed Results a | ||
|---|---|---|---|
| Precipitation | No Precipitation | ||
| IMERG-F | Precipitation | Hits | False alarms |
| No Precipitation | Misses | Correct negatives | |
| Metric | Formula | Ideal Value |
|---|---|---|
| Probability of Detection (POD) | 1 | |
| Accuracy (ACC) | 1 | |
| Critical Success Index (CSI) | 1 | |
| False Alarm Ratio (FAR) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Xu, M.; Wang, Z.; Li, J.; Zheng, J.; Yuan, M.; Tao, Y.; Shi, L. Spatiotemporal Distribution and Applicability Evaluation of Remote Sensing Precipitation in River Basins Across Mainland China. Remote Sens. 2025, 17, 3534. https://doi.org/10.3390/rs17213534
Zhao C, Xu M, Wang Z, Li J, Zheng J, Yuan M, Tao Y, Shi L. Spatiotemporal Distribution and Applicability Evaluation of Remote Sensing Precipitation in River Basins Across Mainland China. Remote Sensing. 2025; 17(21):3534. https://doi.org/10.3390/rs17213534
Chicago/Turabian StyleZhao, Chenxi, Mingyi Xu, Zhiming Wang, Ji Li, Jingyu Zheng, Mei Yuan, Yuyu Tao, and Lijuan Shi. 2025. "Spatiotemporal Distribution and Applicability Evaluation of Remote Sensing Precipitation in River Basins Across Mainland China" Remote Sensing 17, no. 21: 3534. https://doi.org/10.3390/rs17213534
APA StyleZhao, C., Xu, M., Wang, Z., Li, J., Zheng, J., Yuan, M., Tao, Y., & Shi, L. (2025). Spatiotemporal Distribution and Applicability Evaluation of Remote Sensing Precipitation in River Basins Across Mainland China. Remote Sensing, 17(21), 3534. https://doi.org/10.3390/rs17213534

