Deep Learning-Based Spectral Reconstruction Technology for Water Color Remote Sensing and Error Analysis
Abstract
1. Introduction
2. Data
2.1. Remote Sensing Data
2.2. In Situ Data
3. Methods
3.1. Preprocess
3.2. Spatiotemporal–Spectral Data Matching
3.3. Construction and Refinement of the Training Dataset
3.4. DSR-Net Model
3.5. Uncertainty Quantification
3.5.1. Sensor Noise Quantification
3.5.2. Atmospheric Correction Error Simulation
3.6. Accuracy Assessment
4. Results
4.1. Accuracy Assessment of the ACOLITE Products
4.2. Accuracy Assessment of the Reconstruction
- Clear water: Chl < 2 μg/L, SPM < 5 mg/L and ag(443) < 1 m−1;
- Phytoplankton-dominated water: Chl ≥ 10 μg/L, SPM < 25 mg/L and ag(443) < 1.2 m−1;
- Turbid water: Chl < 10 μg/L, SPM ≥ 25 mg/L and ag(443) < 1.2 m−1;
- Mixed Case-2 waters: 2 μg/L ≤ Chl < 10 μg/L, 5 mg/L ≤ SPM < 25 mg/L and 0.6 m−1 ≤ ag(443) < 1.2 m−1.
4.3. Error Sources and Control
4.3.1. Error Sources
- 1.
- Sensor noise
- 2.
- Atmospheric correction errors
4.3.2. Error Propagation and Controls
4.4. Application: Observation of CDOM and Cyanobacteria Blooms
5. Discussion
5.1. Reconstruction of Orange Band
5.2. Limitations and Improvements
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ρw Simulation Using the Bio-Optical Model
References
- Luo, W.; Shen, F.; He, Q.; Cao, F.; Zhao, H.; Li, M. Changes in suspended sediments in the Yangtze River Estuary from 1984 to 2020: Responses to basin and estuarine engineering constructions. Sci. Total Environ. 2022, 805, 150381. [Google Scholar] [CrossRef]
- Tang, R.; Shen, F.; Pan, Y.; Ruddick, K.; Shang, P. Multi-source high-resolution satellite products in Yangtze Estuary: Cross-comparisons and impacts of signal-to-noise ratio and spatial resolution. Opt. Express 2019, 27, 6426. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef]
- Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; et al. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538. [Google Scholar] [CrossRef]
- Cao, Z.; Shen, M.; Kutser, T.; Liu, M.; Qi, T.; Ma, J.; Ma, R.; Duan, H. What water color parameters could be mapped using MODIS land reflectance products: A global evaluation over coastal and inland waters. Earth Sci. Rev. 2022, 232, 104154. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Schluchter, W.M. A Novel Algorithm for Predicting Phycocyanin Concentrations in Cyanobacteria: A Proximal Hyperspectral Remote Sensing Approach. Remote Sens. 2009, 1, 758–775. [Google Scholar] [CrossRef]
- Banerjee, S.; Shanmugam, P. Novel method for reconstruction of hyperspectral resolution images from multispectral data for complex coastal and inland waters. Adv. Space Res. 2021, 67, 266–289. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F. Deep-Learning-Based Retrieval of an Orange Band Sensitive to Cyanobacteria for Landsat-8/9 and Sentinel-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3929–3937. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Song, R.; Zhao, X.; Zhao, K. MCT-Net: Multi-hierarchical cross transformer for hyperspectral and multispectral image fusion. Knowl. Based Syst. 2023, 264, 110362. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Hu, C.; Zibordi, G. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors. Appl. Opt. 2014, 53, 3301–3310. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Prieur, L.; Morel, A. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. Int. J. Remote Sens. 1989, 10, 1373–1394. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Hoge, F.E.; Platt, T.; Swift, R.N. Detection of phytoplankton pigments from ocean color: Improved algorithms. Appl. Opt. 1994, 33, 1081–1089. [Google Scholar] [CrossRef]
- Sun, D.; Hu, C.; Qiu, Z.; Wang, S. Reconstruction of hyperspectral reflectance for optically complex turbid inland lakes: Test of a new scheme and implications for inversion algorithms. Opt. Express 2015, 23, A718–A740. [Google Scholar] [CrossRef] [PubMed]
- Wernand, M.R.; Shimwell, S.J.; De Munck, J.C. A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications. Int. J. Remote Sens. 1997, 18, 1977–1986. [Google Scholar] [CrossRef]
- Castagna, A.; Simis, S.; Dierssen, H.; Vanhellemont, Q.; Sabbe, K.; Vyverman, W. Extending Landsat 8: Retrieval of an Orange contra-Band for Inland Water Quality Applications. Remote Sens. 2020, 12, 637. [Google Scholar] [CrossRef]
- Paulino, R.S.; Martins, V.S.; Novo, E.M.L.M.; Barbosa, C.C.F.; Maciel, D.A.; Wanderley, R.L.D.N.; Portela, C.I.; Caballero, C.B.; Lima, T.M.A. Generation of robust 10-m Sentinel-2/3 synthetic aquatic reflectance bands over inland waters. Remote Sens. Environ. 2025, 318, 114593. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, Z.; Wei, J.; Shang, S.; Wang, M.; Lai, W. Extending satellite ocean color remote sensing to the near-blue ultraviolet bands. Remote Sens. Environ. 2021, 253, 112228. [Google Scholar] [CrossRef]
- Zibordi, G.; Schuster, G.; Fabbri, B.E.; Kaitala, S.; Seppaelae, J.; Melin, F.; Berthon, J.; Holben, B.; Slutsker, I.; Giles, D.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Ocean. Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Lee, Z.P.; Du, K.; Voss, K.J.; Zibordi, G.; Lubac, B.; Arnone, R.; Weidemann, A. An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance. Appl. Opt. 2011, 50, 3155–3167. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Xu, Y.; Feng, L.; Zhao, D.; Lu, J. Assessment of Landsat atmospheric correction methods for water color applications using global AERONET-OC data. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102192. [Google Scholar] [CrossRef]
- Xu, Y.; He, X.; Bai, Y.; Wang, D.; Zhu, Q.; Ding, X. Evaluation of Remote-Sensing Reflectance Products from Multiple Ocean Color Missions in Highly Turbid Water (Hangzhou Bay). Remote Sens. 2021, 13, 4267. [Google Scholar] [CrossRef]
- Cao, F.; Tzortziou, M. Capturing dissolved organic carbon dynamics with Landsat-8 and Sentinel-2 in tidally influenced wetland–estuarine systems. Sci. Total Environ. 2021, 777, 145910. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q. Monitoring dissolved organic carbon by combining Landsat-8 and Sentinel-2 satellites: Case study in Saginaw River estuary, Lake Huron. Sci. Total Environ. 2020, 718, 137374. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- IOCCG Ocean Color Algorithm Working Group. Models, Parameters, and Approaches that Used to Generate Wide Range of Absorption and Backscattering Spectra. 2003. Available online: http://www.ioccg.org/groups/lee_data.pdf (accessed on 1 January 2025).
- Guanlin, H.; Fang, S.; Hong, S. Modeling of seawater reflectance in the Yangtze Estuary and the adjacent sea. J. East China Norm. Univ. 2012, 1, 37–46. [Google Scholar]
- Chen, W.; Zheng, X.; Lu, X. Hyperspectral Image Super-Resolution with Self-Supervised Spectral-Spatial Residual Network. Remote Sens. 2021, 13, 1260. [Google Scholar] [CrossRef]
- Zhang, P.; Weng, J.; Kang, Q.; Li, J. Reconstruction of High-Resolution Solar Spectral Irradiance Based on Residual Channel Attention Networks. Remote Sens. 2024, 16, 4698. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Song, R.; Li, Y.; Xie, W. Residual Augmented Attentional U-Shaped Network for Spectral Reconstruction from RGB Images. Remote Sens. 2020, 13, 115. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Opt. 2008, 47, 2215–2226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration With Neural Networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Dall’Olmo, G.; Pardo, S.; van Dongen-Vogels, V.; Boss, E.S. Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals. Remote Sens. Environ. 2016, 183, 82–97. [Google Scholar] [CrossRef]
- Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in Changjiang (Yangtze) Estuary Using MERIS Data. Estuaries Coasts. 2010, 33, 1420–1429. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.; Li, J.; He, Q.; Verhoef, W. Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast. Cont. Shelf Res. 2013, 69, 52–61. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.; Peng, X.; Chen, Y. Satellite multi-sensor mapping of suspended particulate matter in turbid estuarine and coastal ocean, China. Int. J. Remote Sens. 2014, 35, 4173–4192. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Lee, Z.; Lubac, B.; Werdell, J.; Arnone, R. Update of the Quasi-Analytical Algorithm (QAA_v6) [R/OL]. 2014. Available online: https://www.ioccg.org/groups/software.html (accessed on 1 January 2025).
- Keith, D.; Milstead, B.; Walker, H.; Snook, H.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Mellanson, C.; Drueke, C. Trophic status, ecological condition, and cyanobacteria risk of New England lakes and ponds based on aircraft remote sensing. J. Appl. Remote Sens. 2012, 6, 063577. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.; Kaushal, S.; Yuen-Murphy, M.; Duan, S. Evolution of Sediment Plumes in the Chesapeake Bay and Implications of Climate Variability. Environ. Sci. Technol. 2015, 49, 6494–6503. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Duan, H.; Cannizzaro, J.; Ma, R. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations. Remote Sens. Environ. 2014, 154, 298–317. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. Atmos. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Pitarch, J.; Vanhellemont, Q. The QAA-RGB: A universal three-band absorption and backscattering retrieval algorithm for high resolution satellite sensors. Dev. Implement. ACOLITE Remote Sens. Environ. 2021, 265, 112667. [Google Scholar] [CrossRef]
- Castagna, A.; Vanhellemont, Q. A generalized physics-based correction for adjacency effects. Appl. Opt. 2025, 64, 2719–2743. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Knudby, A.; Pahlevan, N.; Lapen, D.; Zeng, C. Sensor-generic adjacency-effect correction for remote sensing of coastal and inland waters. Remote Sens. Environ. 2024, 315, 114433. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Du, K. Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance. Appl. Opt. 2004, 43, 4957–4964. [Google Scholar] [CrossRef]
Stations | Measuring Periods | Matchups | |||
---|---|---|---|---|---|
Landsat-8&9 | Sentinel-2 | Sentinel-3 | Total | ||
ARIAKE_TOWER | 2018–2023 | 17 | 42 | 76 | 135 |
MVCO | 2004–2018, 2020, 2022–2025 | 14 | 1 | 5 | 20 |
WaveCIS_site_CSI_6 | 2010–2024 | 14 | 64 | 105 | 183 |
Helsinki_Lighthouse | 2006–2017, 2019 | 6 | 16 | 68 | 90 |
Pålgrunden | 2008–2025 | 17 | 57 | 204 | 278 |
Ieodo | 2013–2014, 2016–2019 | 1 | - | - | 1 |
Zeebrugge-MOW1 | 2014–2017, 2019, 2021, 2022 | 6 | 9 | 17 | 32 |
Thornton_C-power | 2015–2018, 2023, 2025 | 13 | 16 | 59 | 88 |
Wavelength (nm) | Lref (W m−2 sr−1 μm−1)/SNR/F0 (W m−2 μm−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Landsat-8&9 | Sentinel-2 | Sentinel-3 | |||||||
400 | 63 | 2188 | 1485 | ||||||
412 | 74 | 2061 | 1711 | ||||||
443 | 40 | 130 | 1896 | 129 | 129 | 1874 | 66 | 1811 | 1865 |
490 | 40 | 130 | 2004 | 128 | 154 | 1960 | 51 | 1541 | 1934 |
510 | 44 | 1488 | 1923 | ||||||
560 | 30 | 100 | 1821 | 128 | 168 | 1825 | 31 | 1280 | 1799 |
620 | 21 | 997 | 1650 | ||||||
667 | 22 | 90 | 1549 | 108 | 142 | 1513 | 16 | 883 | 1531 |
779 | 67 | 105 | 1291 | 9 | 812 | 1176 | |||
865 | 14 | 90 | 952 | 52 | 72 | 1041 | 6 | 666 | 959 |
Wavelength (nm) | R2/RMSE (×10−3)/PD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Landsat-8&9 (N = 88) | Sentinel-2 (N = 205) | Sentinel-3 (N = 534) | Sentinel-3 * (N = 396) | |||||||||
400 | 0.47 | 12.64 | 8.69 | 0.49 | 7.00 | 8.01 | ||||||
412 | 0.38 | 8.41 | 2.10 | 0.46 | 4.94 | 1.12 | ||||||
443 | 0.66 | 13.31 | 1.50 | 0.53 | 7.89 | 0.89 | 0.59 | 8.06 | 1.25 | 0.70 | 5.15 | 0.88 |
490 | 0.83 | 10.19 | 0.65 | 0.84 | 5.20 | 0.20 | 0.84 | 5.40 | 0.36 | 0.89 | 3.66 | 0.21 |
510 | 0.88 | 5.07 | 0.27 | 0.91 | 2.92 | 0.15 | ||||||
560 | 0.94 | 6.31 | 0.18 | 0.94 | 4.11 | −0.01 | 0.93 | 4.25 | 0.09 | 0.94 | 3.51 | 0.04 |
620 | 0.88 | 3.53 | 0.11 | 0.88 | 2.45 | 0.02 | ||||||
667 | 0.89 | 6.29 | 0.64 | 0.86 | 3.41 | 0.10 | 0.87 | 2.49 | 0.15 | 0.89 | 1.92 | 0.04 |
779 | 0.56 | 1.51 | 0.71 | 0.38 | 1.93 | 1.77 | 0.22 | 1.25 | 1.44 | |||
865 | 0.25 | 3.05 | 3.67 | 0.00 | 1.63 | −2.23 | 0.18 | 1.07 | 3.65 | 0.17 | 0.82 | 2.53 |
Total | 0.86 | 8.60 | 1.33 | 0.88 | 4.75 | −0.15 | 0.79 | 6.03 | 1.62 | 0.87 | 3.75 | 1.15 |
Wavelength (nm) | R2/RMSE (×10−3)/PD | |||||
---|---|---|---|---|---|---|
Landsat-8&9 (N = 88) | Sentinel-2 (N = 205) | |||||
400 | 0.60 | 6.94 | −1.93 | 0.73 | 7.07 | 4.13 |
412 | 0.72 | 6.44 | 1.86 | 0.68 | 5.04 | 1.01 |
443 | 0.86 | 6.69 | 1.02 | 0.79 | 5.29 | 0.67 |
490 | 0.92 | 5.23 | 0.30 | 0.89 | 4.17 | 0.13 |
510 | 0.91 | 5.03 | 0.08 | 0.91 | 4.22 | 0.02 |
560 | 0.95 | 5.22 | 0.11 | 0.96 | 3.61 | 0.05 |
620 | 0.84 | 5.52 | −0.06 | 0.90 | 4.16 | −0.01 |
667 | 0.92 | 4.13 | 0.33 | 0.91 | 2.84 | 0.09 |
779 | 0.48 | 2.15 | 1.08 | 0.69 | 1.64 | 0.85 |
865 | 0.36 | 1.72 | 2.26 | 0.52 | 0.90 | −0.89 |
Total | 0.91 | 4.09 | 0.39 | 0.91 | 5.18 | 0.78 |
Wavelength (nm) | R2/RMSE (×10−3)/PD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clear Water (N = 5 *) | Phytoplankton- Dominated (N = 42) | Turbid Water (N = 69) | Mixed Water (N = 151) | |||||||||
400 | 0.59 | 7.63 | 5.15 | 0.11 | 6.52 | 0.39 | 0.46 | 7.05 | 4.16 | |||
412 | 0.96 | 9.16 | 1.46 | 0.47 | 4.52 | 1.38 | 0.58 | 4.73 | 0.07 | 0.44 | 5.58 | 1.19 |
443 | 0.94 | 9.48 | 1.47 | 0.56 | 4.96 | 0.96 | 0.76 | 5.22 | 0.10 | 0.55 | 5.78 | 0.78 |
490 | 0.79 | 6.20 | 0.68 | 0.60 | 3.51 | 0.25 | 0.85 | 5.77 | −0.04 | 0.68 | 3.92 | 0.19 |
510 | 0.84 | 2.57 | 0.10 | 0.47 | 5.70 | −0.06 | 0.82 | 3.04 | 0.07 | |||
560 | 0.19 | 5.46 | 0.60 | 0.92 | 1.89 | 0.02 | 0.88 | 6.25 | −0.01 | 0.80 | 3.36 | 0.09 |
620 | 0.94 | 1.30 | −0.02 | 0.52 | 6.25 | −0.01 | 0.76 | 2.69 | −0.07 | |||
667 | 0.21 | 3.59 | 2.90 | 0.78 | 1.65 | 0.07 | 0.81 | 5.90 | 0.02 | 0.51 | 1.83 | 0.16 |
779 | 0.46 | 1.04 | 1.09 | 0.40 | 2.41 | 0.64 | 0.38 | 0.82 | 1.06 | |||
865 | 0.00 | 2.25 | 22.99 | 0.05 | 1.16 | 2.82 | 0.47 | 1.55 | 1.22 | 0.00 | 1.05 | −2.35 |
Total | 0.78 | 6.58 | 5.02 | 0.78 | 3.52 | 1.09 | 0.92 | 5.25 | 0.23 | 0.78 | 4.00 | 0.13 |
Wavelength (nm) | Landsat-8&9 | Sentinel-2 | Sentinel-3 |
---|---|---|---|
400 | 6.09 × 10−5 | ||
412 | 6.60 × 10−5 | ||
443 | 5.10 × 10−4 | 1.68 × 10−3 | 6.10 × 10−5 |
490 | 4.82 × 10−4 | 1.33 × 10−3 | 5.40 × 10−5 |
510 | 4.87 × 10−5 | ||
560 | 5.18 × 10−4 | 1.31 × 10−3 | 4.30 × 10−5 |
620 | 4.04 × 10−5 | ||
667 | 4.96 × 10−4 | 1.58 × 10−3 | 3.81 × 10−5 |
779 | 1.55 × 10−3 | 3.02 × 10−5 | |
865 | 5.13 × 10−4 | 2.20 × 10−3 | 3.04 × 10−5 |
Total | 5.04 × 10−4 | 1.61 × 10−3 | 4.73 × 10−5 |
Wavelength (nm) | R2/RMSE (×10−3)/PD | |||||
---|---|---|---|---|---|---|
ρw | Reconstructed ρw | |||||
443 | 0.56 | 32.82 | 1.14 | 0.79 | 15.94 | 0.64 |
490 | 0.71 | 33.66 | 0.57 | 0.89 | 12.92 | 0.11 |
560 | 0.94 | 14.73 | 0.02 | 0.96 | 10.91 | 0.04 |
667 | 0.67 | 29.21 | 0.91 | 0.93 | 7.97 | 0.08 |
779 | 0.57 | 4.64 | 0.70 | 0.72 | 4.73 | 0.83 |
865 | 0.00 | 17.67 | −9.28 | 0.54 | 2.74 | −1.23 |
Total | 0.78 | 26.15 | −1.23 | 0.94 | 10.74 | −0.01 |
Wavelength (nm) | R2/RMSE (×10−3)/PD | |||||
---|---|---|---|---|---|---|
ρw | Reconstructed ρw | |||||
443 | 0.53 | 32.28 | 1.03 | 0.79 | 18.34 | 0.74 |
490 | 0.78 | 23.86 | 0.31 | 0.88 | 15.11 | 0.17 |
560 | 0.92 | 17.18 | 0.04 | 0.95 | 13.47 | 0.06 |
667 | 0.83 | 15.42 | 0.21 | 0.91 | 10.27 | 0.09 |
779 | 0.23 | 9.05 | 0.60 | 0.45 | 6.59 | 0.79 |
865 | 0.07 | 9.26 | −2.41 | 0.31 | 4.40 | −1.28 |
Total | 0.84 | 20.69 | −0.13 | 0.93 | 12.87 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; He, L.; Guo, B.; Ye, C. Deep Learning-Based Spectral Reconstruction Technology for Water Color Remote Sensing and Error Analysis. Remote Sens. 2025, 17, 2860. https://doi.org/10.3390/rs17162860
Tang R, He L, Guo B, Ye C. Deep Learning-Based Spectral Reconstruction Technology for Water Color Remote Sensing and Error Analysis. Remote Sensing. 2025; 17(16):2860. https://doi.org/10.3390/rs17162860
Chicago/Turabian StyleTang, Rugang, Li He, Biyun Guo, and Cuishuo Ye. 2025. "Deep Learning-Based Spectral Reconstruction Technology for Water Color Remote Sensing and Error Analysis" Remote Sensing 17, no. 16: 2860. https://doi.org/10.3390/rs17162860
APA StyleTang, R., He, L., Guo, B., & Ye, C. (2025). Deep Learning-Based Spectral Reconstruction Technology for Water Color Remote Sensing and Error Analysis. Remote Sensing, 17(16), 2860. https://doi.org/10.3390/rs17162860